diff options
Diffstat (limited to 'lib/librte_cryptodev/rte_crypto_sym.h')
-rw-r--r-- | lib/librte_cryptodev/rte_crypto_sym.h | 662 |
1 files changed, 662 insertions, 0 deletions
diff --git a/lib/librte_cryptodev/rte_crypto_sym.h b/lib/librte_cryptodev/rte_crypto_sym.h new file mode 100644 index 00000000..4ae9b9e8 --- /dev/null +++ b/lib/librte_cryptodev/rte_crypto_sym.h @@ -0,0 +1,662 @@ +/*- + * BSD LICENSE + * + * Copyright(c) 2016 Intel Corporation. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef _RTE_CRYPTO_SYM_H_ +#define _RTE_CRYPTO_SYM_H_ + +/** + * @file rte_crypto_sym.h + * + * RTE Definitions for Symmetric Cryptography + * + * Defines symmetric cipher and authentication algorithms and modes, as well + * as supported symmetric crypto operation combinations. + */ + +#ifdef __cplusplus +extern "C" { +#endif + +#include <string.h> + +#include <rte_mbuf.h> +#include <rte_memory.h> +#include <rte_mempool.h> + + +/** Symmetric Cipher Algorithms */ +enum rte_crypto_cipher_algorithm { + RTE_CRYPTO_CIPHER_NULL = 1, + /**< NULL cipher algorithm. No mode applies to the NULL algorithm. */ + + RTE_CRYPTO_CIPHER_3DES_CBC, + /**< Triple DES algorithm in CBC mode */ + RTE_CRYPTO_CIPHER_3DES_CTR, + /**< Triple DES algorithm in CTR mode */ + RTE_CRYPTO_CIPHER_3DES_ECB, + /**< Triple DES algorithm in ECB mode */ + + RTE_CRYPTO_CIPHER_AES_CBC, + /**< AES algorithm in CBC mode */ + RTE_CRYPTO_CIPHER_AES_CCM, + /**< AES algorithm in CCM mode. When this cipher algorithm is used the + * *RTE_CRYPTO_AUTH_AES_CCM* element of the + * *rte_crypto_hash_algorithm* enum MUST be used to set up the related + * *rte_crypto_auth_xform* structure in the session context or in + * the op_params of the crypto operation structure in the case of a + * session-less crypto operation + */ + RTE_CRYPTO_CIPHER_AES_CTR, + /**< AES algorithm in Counter mode */ + RTE_CRYPTO_CIPHER_AES_ECB, + /**< AES algorithm in ECB mode */ + RTE_CRYPTO_CIPHER_AES_F8, + /**< AES algorithm in F8 mode */ + RTE_CRYPTO_CIPHER_AES_GCM, + /**< AES algorithm in GCM mode. When this cipher algorithm is used the + * *RTE_CRYPTO_AUTH_AES_GCM* element of the + * *rte_crypto_auth_algorithm* enum MUST be used to set up the related + * *rte_crypto_auth_setup_data* structure in the session context or in + * the op_params of the crypto operation structure in the case of a + * session-less crypto operation. + */ + RTE_CRYPTO_CIPHER_AES_XTS, + /**< AES algorithm in XTS mode */ + + RTE_CRYPTO_CIPHER_ARC4, + /**< (A)RC4 cipher algorithm */ + + RTE_CRYPTO_CIPHER_KASUMI_F8, + /**< Kasumi algorithm in F8 mode */ + + RTE_CRYPTO_CIPHER_SNOW3G_UEA2, + /**< SNOW3G algorithm in UEA2 mode */ + + RTE_CRYPTO_CIPHER_ZUC_EEA3, + /**< ZUC algorithm in EEA3 mode */ + + RTE_CRYPTO_CIPHER_LIST_END +}; + +/** Symmetric Cipher Direction */ +enum rte_crypto_cipher_operation { + RTE_CRYPTO_CIPHER_OP_ENCRYPT, + /**< Encrypt cipher operation */ + RTE_CRYPTO_CIPHER_OP_DECRYPT + /**< Decrypt cipher operation */ +}; + +/** + * Symmetric Cipher Setup Data. + * + * This structure contains data relating to Cipher (Encryption and Decryption) + * use to create a session. + */ +struct rte_crypto_cipher_xform { + enum rte_crypto_cipher_operation op; + /**< This parameter determines if the cipher operation is an encrypt or + * a decrypt operation. For the RC4 algorithm and the F8/CTR modes, + * only encrypt operations are valid. + */ + enum rte_crypto_cipher_algorithm algo; + /**< Cipher algorithm */ + + struct { + uint8_t *data; /**< pointer to key data */ + size_t length; /**< key length in bytes */ + } key; + /**< Cipher key + * + * For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.data will + * point to a concatenation of the AES encryption key followed by a + * keymask. As per RFC3711, the keymask should be padded with trailing + * bytes to match the length of the encryption key used. + * + * For AES-XTS mode of operation, two keys must be provided and + * key.data must point to the two keys concatenated together (Key1 || + * Key2). The cipher key length will contain the total size of both + * keys. + * + * Cipher key length is in bytes. For AES it can be 128 bits (16 bytes), + * 192 bits (24 bytes) or 256 bits (32 bytes). + * + * For the CCM mode of operation, the only supported key length is 128 + * bits (16 bytes). + * + * For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.length + * should be set to the combined length of the encryption key and the + * keymask. Since the keymask and the encryption key are the same size, + * key.length should be set to 2 x the AES encryption key length. + * + * For the AES-XTS mode of operation: + * - Two keys must be provided and key.length refers to total length of + * the two keys. + * - Each key can be either 128 bits (16 bytes) or 256 bits (32 bytes). + * - Both keys must have the same size. + **/ +}; + +/** Symmetric Authentication / Hash Algorithms */ +enum rte_crypto_auth_algorithm { + RTE_CRYPTO_AUTH_NULL = 1, + /**< NULL hash algorithm. */ + + RTE_CRYPTO_AUTH_AES_CBC_MAC, + /**< AES-CBC-MAC algorithm. Only 128-bit keys are supported. */ + RTE_CRYPTO_AUTH_AES_CCM, + /**< AES algorithm in CCM mode. This is an authenticated cipher. When + * this hash algorithm is used, the *RTE_CRYPTO_CIPHER_AES_CCM* + * element of the *rte_crypto_cipher_algorithm* enum MUST be used to + * set up the related rte_crypto_cipher_setup_data structure in the + * session context or the corresponding parameter in the crypto + * operation data structures op_params parameter MUST be set for a + * session-less crypto operation. + */ + RTE_CRYPTO_AUTH_AES_CMAC, + /**< AES CMAC algorithm. */ + RTE_CRYPTO_AUTH_AES_GCM, + /**< AES algorithm in GCM mode. When this hash algorithm + * is used, the RTE_CRYPTO_CIPHER_AES_GCM element of the + * rte_crypto_cipher_algorithm enum MUST be used to set up the related + * rte_crypto_cipher_setup_data structure in the session context, or + * the corresponding parameter in the crypto operation data structures + * op_params parameter MUST be set for a session-less crypto operation. + */ + RTE_CRYPTO_AUTH_AES_GMAC, + /**< AES GMAC algorithm. When this hash algorithm + * is used, the RTE_CRYPTO_CIPHER_AES_GCM element of the + * rte_crypto_cipher_algorithm enum MUST be used to set up the related + * rte_crypto_cipher_setup_data structure in the session context, or + * the corresponding parameter in the crypto operation data structures + * op_params parameter MUST be set for a session-less crypto operation. + */ + RTE_CRYPTO_AUTH_AES_XCBC_MAC, + /**< AES XCBC algorithm. */ + + RTE_CRYPTO_AUTH_KASUMI_F9, + /**< Kasumi algorithm in F9 mode. */ + + RTE_CRYPTO_AUTH_MD5, + /**< MD5 algorithm */ + RTE_CRYPTO_AUTH_MD5_HMAC, + /**< HMAC using MD5 algorithm */ + + RTE_CRYPTO_AUTH_SHA1, + /**< 128 bit SHA algorithm. */ + RTE_CRYPTO_AUTH_SHA1_HMAC, + /**< HMAC using 128 bit SHA algorithm. */ + RTE_CRYPTO_AUTH_SHA224, + /**< 224 bit SHA algorithm. */ + RTE_CRYPTO_AUTH_SHA224_HMAC, + /**< HMAC using 224 bit SHA algorithm. */ + RTE_CRYPTO_AUTH_SHA256, + /**< 256 bit SHA algorithm. */ + RTE_CRYPTO_AUTH_SHA256_HMAC, + /**< HMAC using 256 bit SHA algorithm. */ + RTE_CRYPTO_AUTH_SHA384, + /**< 384 bit SHA algorithm. */ + RTE_CRYPTO_AUTH_SHA384_HMAC, + /**< HMAC using 384 bit SHA algorithm. */ + RTE_CRYPTO_AUTH_SHA512, + /**< 512 bit SHA algorithm. */ + RTE_CRYPTO_AUTH_SHA512_HMAC, + /**< HMAC using 512 bit SHA algorithm. */ + + RTE_CRYPTO_AUTH_SNOW3G_UIA2, + /**< SNOW3G algorithm in UIA2 mode. */ + + RTE_CRYPTO_AUTH_ZUC_EIA3, + /**< ZUC algorithm in EIA3 mode */ + + RTE_CRYPTO_AUTH_LIST_END +}; + +/** Symmetric Authentication / Hash Operations */ +enum rte_crypto_auth_operation { + RTE_CRYPTO_AUTH_OP_VERIFY, /**< Verify authentication digest */ + RTE_CRYPTO_AUTH_OP_GENERATE /**< Generate authentication digest */ +}; + +/** + * Authentication / Hash transform data. + * + * This structure contains data relating to an authentication/hash crypto + * transforms. The fields op, algo and digest_length are common to all + * authentication transforms and MUST be set. + */ +struct rte_crypto_auth_xform { + enum rte_crypto_auth_operation op; + /**< Authentication operation type */ + enum rte_crypto_auth_algorithm algo; + /**< Authentication algorithm selection */ + + struct { + uint8_t *data; /**< pointer to key data */ + size_t length; /**< key length in bytes */ + } key; + /**< Authentication key data. + * The authentication key length MUST be less than or equal to the + * block size of the algorithm. It is the callers responsibility to + * ensure that the key length is compliant with the standard being used + * (for example RFC 2104, FIPS 198a). + */ + + uint32_t digest_length; + /**< Length of the digest to be returned. If the verify option is set, + * this specifies the length of the digest to be compared for the + * session. + * + * If the value is less than the maximum length allowed by the hash, + * the result shall be truncated. If the value is greater than the + * maximum length allowed by the hash then an error will be generated + * by *rte_cryptodev_sym_session_create* or by the + * *rte_cryptodev_sym_enqueue_burst* if using session-less APIs. + */ + + uint32_t add_auth_data_length; + /**< The length of the additional authenticated data (AAD) in bytes. + * The maximum permitted value is 240 bytes, unless otherwise specified + * below. + * + * This field must be specified when the hash algorithm is one of the + * following: + * + * - For SNOW3G (@ref RTE_CRYPTO_AUTH_SNOW3G_UIA2), this is the + * length of the IV (which should be 16). + * + * - For GCM (@ref RTE_CRYPTO_AUTH_AES_GCM). In this case, this is + * the length of the Additional Authenticated Data (called A, in NIST + * SP800-38D). + * + * - For CCM (@ref RTE_CRYPTO_AUTH_AES_CCM). In this case, this is + * the length of the associated data (called A, in NIST SP800-38C). + * Note that this does NOT include the length of any padding, or the + * 18 bytes reserved at the start of the above field to store the + * block B0 and the encoded length. The maximum permitted value in + * this case is 222 bytes. + * + * @note + * For AES-GMAC (@ref RTE_CRYPTO_AUTH_AES_GMAC) mode of operation + * this field is not used and should be set to 0. Instead the length + * of the AAD data is specified in the message length to hash field of + * the rte_crypto_sym_op_data structure. + */ +}; + +/** Crypto transformation types */ +enum rte_crypto_sym_xform_type { + RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED = 0, /**< No xform specified */ + RTE_CRYPTO_SYM_XFORM_AUTH, /**< Authentication xform */ + RTE_CRYPTO_SYM_XFORM_CIPHER /**< Cipher xform */ +}; + +/** + * Symmetric crypto transform structure. + * + * This is used to specify the crypto transforms required, multiple transforms + * can be chained together to specify a chain transforms such as authentication + * then cipher, or cipher then authentication. Each transform structure can + * hold a single transform, the type field is used to specify which transform + * is contained within the union + */ +struct rte_crypto_sym_xform { + struct rte_crypto_sym_xform *next; + /**< next xform in chain */ + enum rte_crypto_sym_xform_type type + ; /**< xform type */ + union { + struct rte_crypto_auth_xform auth; + /**< Authentication / hash xform */ + struct rte_crypto_cipher_xform cipher; + /**< Cipher xform */ + }; +}; + +/** + * Crypto operation session type. This is used to specify whether a crypto + * operation has session structure attached for immutable parameters or if all + * operation information is included in the operation data structure. + */ +enum rte_crypto_sym_op_sess_type { + RTE_CRYPTO_SYM_OP_WITH_SESSION, /**< Session based crypto operation */ + RTE_CRYPTO_SYM_OP_SESSIONLESS /**< Session-less crypto operation */ +}; + + +struct rte_cryptodev_sym_session; + +/** + * Symmetric Cryptographic Operation. + * + * This structure contains data relating to performing symmetric cryptographic + * processing on a referenced mbuf data buffer. + * + * When a symmetric crypto operation is enqueued with the device for processing + * it must have a valid *rte_mbuf* structure attached, via m_src parameter, + * which contains the source data which the crypto operation is to be performed + * on. + */ +struct rte_crypto_sym_op { + struct rte_mbuf *m_src; /**< source mbuf */ + struct rte_mbuf *m_dst; /**< destination mbuf */ + + enum rte_crypto_sym_op_sess_type sess_type; + + union { + struct rte_cryptodev_sym_session *session; + /**< Handle for the initialised session context */ + struct rte_crypto_sym_xform *xform; + /**< Session-less API crypto operation parameters */ + }; + + struct { + struct { + uint32_t offset; + /**< Starting point for cipher processing, specified + * as number of bytes from start of data in the source + * buffer. The result of the cipher operation will be + * written back into the output buffer starting at + * this location. + * + * @note + * For Snow3G @ RTE_CRYPTO_CIPHER_SNOW3G_UEA2, + * this field should be in bits. + */ + + uint32_t length; + /**< The message length, in bytes, of the source buffer + * on which the cryptographic operation will be + * computed. This must be a multiple of the block size + * if a block cipher is being used. This is also the + * same as the result length. + * + * @note + * In the case of CCM @ref RTE_CRYPTO_AUTH_AES_CCM, + * this value should not include the length of the + * padding or the length of the MAC; the driver will + * compute the actual number of bytes over which the + * encryption will occur, which will include these + * values. + * + * @note + * For AES-GMAC @ref RTE_CRYPTO_AUTH_AES_GMAC, this + * field should be set to 0. + * + * @note + * For Snow3G @ RTE_CRYPTO_AUTH_SNOW3G_UEA2 + * this field should be in bits. + */ + } data; /**< Data offsets and length for ciphering */ + + struct { + uint8_t *data; + /**< Initialisation Vector or Counter. + * + * - For block ciphers in CBC or F8 mode, or for Kasumi + * in F8 mode, or for SNOW3G in UEA2 mode, this is the + * Initialisation Vector (IV) value. + * + * - For block ciphers in CTR mode, this is the counter. + * + * - For GCM mode, this is either the IV (if the length + * is 96 bits) or J0 (for other sizes), where J0 is as + * defined by NIST SP800-38D. Regardless of the IV + * length, a full 16 bytes needs to be allocated. + * + * - For CCM mode, the first byte is reserved, and the + * nonce should be written starting at &iv[1] (to allow + * space for the implementation to write in the flags + * in the first byte). Note that a full 16 bytes should + * be allocated, even though the length field will + * have a value less than this. + * + * - For AES-XTS, this is the 128bit tweak, i, from + * IEEE Std 1619-2007. + * + * For optimum performance, the data pointed to SHOULD + * be 8-byte aligned. + */ + phys_addr_t phys_addr; + uint16_t length; + /**< Length of valid IV data. + * + * - For block ciphers in CBC or F8 mode, or for Kasumi + * in F8 mode, or for SNOW3G in UEA2 mode, this is the + * length of the IV (which must be the same as the + * block length of the cipher). + * + * - For block ciphers in CTR mode, this is the length + * of the counter (which must be the same as the block + * length of the cipher). + * + * - For GCM mode, this is either 12 (for 96-bit IVs) + * or 16, in which case data points to J0. + * + * - For CCM mode, this is the length of the nonce, + * which can be in the range 7 to 13 inclusive. + */ + } iv; /**< Initialisation vector parameters */ + } cipher; + + struct { + struct { + uint32_t offset; + /**< Starting point for hash processing, specified as + * number of bytes from start of packet in source + * buffer. + * + * @note + * For CCM and GCM modes of operation, this field is + * ignored. The field @ref aad field + * should be set instead. + * + * @note For AES-GMAC (@ref RTE_CRYPTO_AUTH_AES_GMAC) + * mode of operation, this field specifies the start + * of the AAD data in the source buffer. + * + * @note + * For Snow3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2 + * this field should be in bits. + */ + + uint32_t length; + /**< The message length, in bytes, of the source + * buffer that the hash will be computed on. + * + * @note + * For CCM and GCM modes of operation, this field is + * ignored. The field @ref aad field should be set + * instead. + * + * @note + * For AES-GMAC @ref RTE_CRYPTO_AUTH_AES_GMAC mode + * of operation, this field specifies the length of + * the AAD data in the source buffer. + * + * @note + * For Snow3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2 + * this field should be in bits. + */ + } data; /**< Data offsets and length for authentication */ + + struct { + uint8_t *data; + /**< If this member of this structure is set this is a + * pointer to the location where the digest result + * should be inserted (in the case of digest generation) + * or where the purported digest exists (in the case of + * digest verification). + * + * At session creation time, the client specified the + * digest result length with the digest_length member + * of the @ref rte_crypto_auth_xform structure. For + * physical crypto devices the caller must allocate at + * least digest_length of physically contiguous memory + * at this location. + * + * For digest generation, the digest result will + * overwrite any data at this location. + * + * @note + * For GCM (@ref RTE_CRYPTO_AUTH_AES_GCM), for + * "digest result" read "authentication tag T". + * + * If this member is not set the digest result is + * understood to be in the destination buffer for + * digest generation, and in the source buffer for + * digest verification. The location of the digest + * result in this case is immediately following the + * region over which the digest is computed. + */ + phys_addr_t phys_addr; + /**< Physical address of digest */ + uint16_t length; + /**< Length of digest */ + } digest; /**< Digest parameters */ + + struct { + uint8_t *data; + /**< Pointer to Additional Authenticated Data (AAD) + * needed for authenticated cipher mechanisms (CCM and + * GCM), and to the IV for SNOW3G authentication + * (@ref RTE_CRYPTO_AUTH_SNOW3G_UIA2). For other + * authentication mechanisms this pointer is ignored. + * + * The length of the data pointed to by this field is + * set up for the session in the @ref + * rte_crypto_auth_xform structure as part of the @ref + * rte_cryptodev_sym_session_create function call. + * This length must not exceed 240 bytes. + * + * Specifically for CCM (@ref RTE_CRYPTO_AUTH_AES_CCM), + * the caller should setup this field as follows: + * + * - the nonce should be written starting at an offset + * of one byte into the array, leaving room for the + * implementation to write in the flags to the first + * byte. + * + * - the additional authentication data itself should + * be written starting at an offset of 18 bytes into + * the array, leaving room for the length encoding in + * the first two bytes of the second block. + * + * - the array should be big enough to hold the above + * fields, plus any padding to round this up to the + * nearest multiple of the block size (16 bytes). + * Padding will be added by the implementation. + * + * Finally, for GCM (@ref RTE_CRYPTO_AUTH_AES_GCM), the + * caller should setup this field as follows: + * + * - the AAD is written in starting at byte 0 + * - the array must be big enough to hold the AAD, plus + * any space to round this up to the nearest multiple + * of the block size (16 bytes). + * + * @note + * For AES-GMAC (@ref RTE_CRYPTO_AUTH_AES_GMAC) mode of + * operation, this field is not used and should be set + * to 0. Instead the AAD data should be placed in the + * source buffer. + */ + phys_addr_t phys_addr; /**< physical address */ + uint16_t length; /**< Length of digest */ + } aad; + /**< Additional authentication parameters */ + } auth; +} __rte_cache_aligned; + + +/** + * Reset the fields of a symmetric operation to their default values. + * + * @param op The crypto operation to be reset. + */ +static inline void +__rte_crypto_sym_op_reset(struct rte_crypto_sym_op *op) +{ + memset(op, 0, sizeof(*op)); + + op->sess_type = RTE_CRYPTO_SYM_OP_SESSIONLESS; +} + + +/** + * Allocate space for symmetric crypto xforms in the private data space of the + * crypto operation. This also defaults the crypto xform type to + * RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED and configures the chaining of the xforms + * in the crypto operation + * + * @return + * - On success returns pointer to first crypto xform in crypto operations chain + * - On failure returns NULL + */ +static inline struct rte_crypto_sym_xform * +__rte_crypto_sym_op_sym_xforms_alloc(struct rte_crypto_sym_op *sym_op, + void *priv_data, uint8_t nb_xforms) +{ + struct rte_crypto_sym_xform *xform; + + sym_op->xform = xform = (struct rte_crypto_sym_xform *)priv_data; + + do { + xform->type = RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED; + xform = xform->next = --nb_xforms > 0 ? xform + 1 : NULL; + } while (xform); + + return sym_op->xform; +} + + +/** + * Attach a session to a symmetric crypto operation + * + * @param sym_op crypto operation + * @param sess cryptodev session + */ +static inline int +__rte_crypto_sym_op_attach_sym_session(struct rte_crypto_sym_op *sym_op, + struct rte_cryptodev_sym_session *sess) +{ + sym_op->session = sess; + sym_op->sess_type = RTE_CRYPTO_SYM_OP_WITH_SESSION; + + return 0; +} + + +#ifdef __cplusplus +} +#endif + +#endif /* _RTE_CRYPTO_SYM_H_ */ |