diff options
Diffstat (limited to 'lib/librte_eal/linuxapp/kni/ethtool/igb')
28 files changed, 0 insertions, 36760 deletions
diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_82575.c b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_82575.c deleted file mode 100644 index 98346709..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_82575.c +++ /dev/null @@ -1,3650 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -/* - * 82575EB Gigabit Network Connection - * 82575EB Gigabit Backplane Connection - * 82575GB Gigabit Network Connection - * 82576 Gigabit Network Connection - * 82576 Quad Port Gigabit Mezzanine Adapter - * 82580 Gigabit Network Connection - * I350 Gigabit Network Connection - */ - -#include "e1000_api.h" -#include "e1000_i210.h" - -static s32 e1000_init_phy_params_82575(struct e1000_hw *hw); -static s32 e1000_init_mac_params_82575(struct e1000_hw *hw); -static s32 e1000_acquire_phy_82575(struct e1000_hw *hw); -static void e1000_release_phy_82575(struct e1000_hw *hw); -static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw); -static void e1000_release_nvm_82575(struct e1000_hw *hw); -static s32 e1000_check_for_link_82575(struct e1000_hw *hw); -static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw); -static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw); -static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, - u16 *duplex); -static s32 e1000_init_hw_82575(struct e1000_hw *hw); -static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw); -static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, - u16 *data); -static s32 e1000_reset_hw_82575(struct e1000_hw *hw); -static s32 e1000_reset_hw_82580(struct e1000_hw *hw); -static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, - u32 offset, u16 *data); -static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, - u32 offset, u16 data); -static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, - bool active); -static s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, - bool active); -static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, - bool active); -static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw); -static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw); -static s32 e1000_get_media_type_82575(struct e1000_hw *hw); -static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw); -static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data); -static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, - u32 offset, u16 data); -static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw); -static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask); -static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, - u16 *speed, u16 *duplex); -static s32 e1000_get_phy_id_82575(struct e1000_hw *hw); -static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask); -static bool e1000_sgmii_active_82575(struct e1000_hw *hw); -static s32 e1000_reset_init_script_82575(struct e1000_hw *hw); -static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw); -static void e1000_config_collision_dist_82575(struct e1000_hw *hw); -static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw); -static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw); -static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw); -static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw); -static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw); -static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw); -static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw); -static s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, - u16 offset); -static s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, - u16 offset); -static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw); -static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw); -static void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value); -static void e1000_clear_vfta_i350(struct e1000_hw *hw); - -static void e1000_i2c_start(struct e1000_hw *hw); -static void e1000_i2c_stop(struct e1000_hw *hw); -static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data); -static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data); -static s32 e1000_get_i2c_ack(struct e1000_hw *hw); -static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data); -static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data); -static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl); -static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl); -static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data); -static bool e1000_get_i2c_data(u32 *i2cctl); - -static const u16 e1000_82580_rxpbs_table[] = { - 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 }; -#define E1000_82580_RXPBS_TABLE_SIZE \ - (sizeof(e1000_82580_rxpbs_table)/sizeof(u16)) - - -/** - * e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO - * @hw: pointer to the HW structure - * - * Called to determine if the I2C pins are being used for I2C or as an - * external MDIO interface since the two options are mutually exclusive. - **/ -static bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw) -{ - u32 reg = 0; - bool ext_mdio = false; - - DEBUGFUNC("e1000_sgmii_uses_mdio_82575"); - - switch (hw->mac.type) { - case e1000_82575: - case e1000_82576: - reg = E1000_READ_REG(hw, E1000_MDIC); - ext_mdio = !!(reg & E1000_MDIC_DEST); - break; - case e1000_82580: - case e1000_i350: - case e1000_i354: - case e1000_i210: - case e1000_i211: - reg = E1000_READ_REG(hw, E1000_MDICNFG); - ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO); - break; - default: - break; - } - return ext_mdio; -} - -/** - * e1000_init_phy_params_82575 - Init PHY func ptrs. - * @hw: pointer to the HW structure - **/ -static s32 e1000_init_phy_params_82575(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u32 ctrl_ext; - - DEBUGFUNC("e1000_init_phy_params_82575"); - - phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic; - phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic; - - if (hw->phy.media_type != e1000_media_type_copper) { - phy->type = e1000_phy_none; - goto out; - } - - phy->ops.power_up = e1000_power_up_phy_copper; - phy->ops.power_down = e1000_power_down_phy_copper_82575; - - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->reset_delay_us = 100; - - phy->ops.acquire = e1000_acquire_phy_82575; - phy->ops.check_reset_block = e1000_check_reset_block_generic; - phy->ops.commit = e1000_phy_sw_reset_generic; - phy->ops.get_cfg_done = e1000_get_cfg_done_82575; - phy->ops.release = e1000_release_phy_82575; - - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - - if (e1000_sgmii_active_82575(hw)) { - phy->ops.reset = e1000_phy_hw_reset_sgmii_82575; - ctrl_ext |= E1000_CTRL_I2C_ENA; - } else { - phy->ops.reset = e1000_phy_hw_reset_generic; - ctrl_ext &= ~E1000_CTRL_I2C_ENA; - } - - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - e1000_reset_mdicnfg_82580(hw); - - if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) { - phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575; - phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575; - } else { - switch (hw->mac.type) { - case e1000_82580: - case e1000_i350: - case e1000_i354: - phy->ops.read_reg = e1000_read_phy_reg_82580; - phy->ops.write_reg = e1000_write_phy_reg_82580; - break; - case e1000_i210: - case e1000_i211: - phy->ops.read_reg = e1000_read_phy_reg_gs40g; - phy->ops.write_reg = e1000_write_phy_reg_gs40g; - break; - default: - phy->ops.read_reg = e1000_read_phy_reg_igp; - phy->ops.write_reg = e1000_write_phy_reg_igp; - } - } - - /* Set phy->phy_addr and phy->id. */ - ret_val = e1000_get_phy_id_82575(hw); - - /* Verify phy id and set remaining function pointers */ - switch (phy->id) { - case M88E1543_E_PHY_ID: - case I347AT4_E_PHY_ID: - case M88E1112_E_PHY_ID: - case M88E1340M_E_PHY_ID: - case M88E1111_I_PHY_ID: - phy->type = e1000_phy_m88; - phy->ops.check_polarity = e1000_check_polarity_m88; - phy->ops.get_info = e1000_get_phy_info_m88; - if (phy->id == I347AT4_E_PHY_ID || - phy->id == M88E1112_E_PHY_ID || - phy->id == M88E1340M_E_PHY_ID) - phy->ops.get_cable_length = - e1000_get_cable_length_m88_gen2; - else if (phy->id == M88E1543_E_PHY_ID) - phy->ops.get_cable_length = - e1000_get_cable_length_m88_gen2; - else - phy->ops.get_cable_length = e1000_get_cable_length_m88; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; - /* Check if this PHY is configured for media swap. */ - if (phy->id == M88E1112_E_PHY_ID) { - u16 data; - - ret_val = phy->ops.write_reg(hw, - E1000_M88E1112_PAGE_ADDR, - 2); - if (ret_val) - goto out; - - ret_val = phy->ops.read_reg(hw, - E1000_M88E1112_MAC_CTRL_1, - &data); - if (ret_val) - goto out; - - data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >> - E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT; - if (data == E1000_M88E1112_AUTO_COPPER_SGMII || - data == E1000_M88E1112_AUTO_COPPER_BASEX) - hw->mac.ops.check_for_link = - e1000_check_for_link_media_swap; - } - break; - case IGP03E1000_E_PHY_ID: - case IGP04E1000_E_PHY_ID: - phy->type = e1000_phy_igp_3; - phy->ops.check_polarity = e1000_check_polarity_igp; - phy->ops.get_info = e1000_get_phy_info_igp; - phy->ops.get_cable_length = e1000_get_cable_length_igp_2; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; - phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575; - phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; - break; - case I82580_I_PHY_ID: - case I350_I_PHY_ID: - phy->type = e1000_phy_82580; - phy->ops.check_polarity = e1000_check_polarity_82577; - phy->ops.force_speed_duplex = - e1000_phy_force_speed_duplex_82577; - phy->ops.get_cable_length = e1000_get_cable_length_82577; - phy->ops.get_info = e1000_get_phy_info_82577; - phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580; - phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580; - break; - case I210_I_PHY_ID: - phy->type = e1000_phy_i210; - phy->ops.check_polarity = e1000_check_polarity_m88; - phy->ops.get_info = e1000_get_phy_info_m88; - phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2; - phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580; - phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; - break; - default: - ret_val = -E1000_ERR_PHY; - goto out; - } - -out: - return ret_val; -} - -/** - * e1000_init_nvm_params_82575 - Init NVM func ptrs. - * @hw: pointer to the HW structure - **/ -s32 e1000_init_nvm_params_82575(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - u16 size; - - DEBUGFUNC("e1000_init_nvm_params_82575"); - - size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> - E1000_EECD_SIZE_EX_SHIFT); - /* - * Added to a constant, "size" becomes the left-shift value - * for setting word_size. - */ - size += NVM_WORD_SIZE_BASE_SHIFT; - - /* Just in case size is out of range, cap it to the largest - * EEPROM size supported - */ - if (size > 15) - size = 15; - - nvm->word_size = 1 << size; - if (hw->mac.type < e1000_i210) { - nvm->opcode_bits = 8; - nvm->delay_usec = 1; - - switch (nvm->override) { - case e1000_nvm_override_spi_large: - nvm->page_size = 32; - nvm->address_bits = 16; - break; - case e1000_nvm_override_spi_small: - nvm->page_size = 8; - nvm->address_bits = 8; - break; - default: - nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; - nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? - 16 : 8; - break; - } - if (nvm->word_size == (1 << 15)) - nvm->page_size = 128; - - nvm->type = e1000_nvm_eeprom_spi; - } else { - nvm->type = e1000_nvm_flash_hw; - } - - /* Function Pointers */ - nvm->ops.acquire = e1000_acquire_nvm_82575; - nvm->ops.release = e1000_release_nvm_82575; - if (nvm->word_size < (1 << 15)) - nvm->ops.read = e1000_read_nvm_eerd; - else - nvm->ops.read = e1000_read_nvm_spi; - - nvm->ops.write = e1000_write_nvm_spi; - nvm->ops.validate = e1000_validate_nvm_checksum_generic; - nvm->ops.update = e1000_update_nvm_checksum_generic; - nvm->ops.valid_led_default = e1000_valid_led_default_82575; - - /* override generic family function pointers for specific descendants */ - switch (hw->mac.type) { - case e1000_82580: - nvm->ops.validate = e1000_validate_nvm_checksum_82580; - nvm->ops.update = e1000_update_nvm_checksum_82580; - break; - case e1000_i350: - //case e1000_i354: - nvm->ops.validate = e1000_validate_nvm_checksum_i350; - nvm->ops.update = e1000_update_nvm_checksum_i350; - break; - default: - break; - } - - return E1000_SUCCESS; -} - -/** - * e1000_init_mac_params_82575 - Init MAC func ptrs. - * @hw: pointer to the HW structure - **/ -static s32 e1000_init_mac_params_82575(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; - - DEBUGFUNC("e1000_init_mac_params_82575"); - - /* Derives media type */ - e1000_get_media_type_82575(hw); - /* Set mta register count */ - mac->mta_reg_count = 128; - /* Set uta register count */ - mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128; - /* Set rar entry count */ - mac->rar_entry_count = E1000_RAR_ENTRIES_82575; - if (mac->type == e1000_82576) - mac->rar_entry_count = E1000_RAR_ENTRIES_82576; - if (mac->type == e1000_82580) - mac->rar_entry_count = E1000_RAR_ENTRIES_82580; - if (mac->type == e1000_i350 || mac->type == e1000_i354) - mac->rar_entry_count = E1000_RAR_ENTRIES_I350; - - /* Enable EEE default settings for EEE supported devices */ - if (mac->type >= e1000_i350) - dev_spec->eee_disable = false; - - /* Allow a single clear of the SW semaphore on I210 and newer */ - if (mac->type >= e1000_i210) - dev_spec->clear_semaphore_once = true; - - /* Set if part includes ASF firmware */ - mac->asf_firmware_present = true; - /* FWSM register */ - mac->has_fwsm = true; - /* ARC supported; valid only if manageability features are enabled. */ - mac->arc_subsystem_valid = - !!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK); - - /* Function pointers */ - - /* bus type/speed/width */ - mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; - /* reset */ - if (mac->type >= e1000_82580) - mac->ops.reset_hw = e1000_reset_hw_82580; - else - mac->ops.reset_hw = e1000_reset_hw_82575; - /* hw initialization */ - mac->ops.init_hw = e1000_init_hw_82575; - /* link setup */ - mac->ops.setup_link = e1000_setup_link_generic; - /* physical interface link setup */ - mac->ops.setup_physical_interface = - (hw->phy.media_type == e1000_media_type_copper) - ? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575; - /* physical interface shutdown */ - mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575; - /* physical interface power up */ - mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575; - /* check for link */ - mac->ops.check_for_link = e1000_check_for_link_82575; - /* read mac address */ - mac->ops.read_mac_addr = e1000_read_mac_addr_82575; - /* configure collision distance */ - mac->ops.config_collision_dist = e1000_config_collision_dist_82575; - /* multicast address update */ - mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; - if (hw->mac.type == e1000_i350 || mac->type == e1000_i354) { - /* writing VFTA */ - mac->ops.write_vfta = e1000_write_vfta_i350; - /* clearing VFTA */ - mac->ops.clear_vfta = e1000_clear_vfta_i350; - } else { - /* writing VFTA */ - mac->ops.write_vfta = e1000_write_vfta_generic; - /* clearing VFTA */ - mac->ops.clear_vfta = e1000_clear_vfta_generic; - } - if (hw->mac.type >= e1000_82580) - mac->ops.validate_mdi_setting = - e1000_validate_mdi_setting_crossover_generic; - /* ID LED init */ - mac->ops.id_led_init = e1000_id_led_init_generic; - /* blink LED */ - mac->ops.blink_led = e1000_blink_led_generic; - /* setup LED */ - mac->ops.setup_led = e1000_setup_led_generic; - /* cleanup LED */ - mac->ops.cleanup_led = e1000_cleanup_led_generic; - /* turn on/off LED */ - mac->ops.led_on = e1000_led_on_generic; - mac->ops.led_off = e1000_led_off_generic; - /* clear hardware counters */ - mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575; - /* link info */ - mac->ops.get_link_up_info = e1000_get_link_up_info_82575; - /* get thermal sensor data */ - mac->ops.get_thermal_sensor_data = - e1000_get_thermal_sensor_data_generic; - mac->ops.init_thermal_sensor_thresh = - e1000_init_thermal_sensor_thresh_generic; - /* acquire SW_FW sync */ - mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_82575; - mac->ops.release_swfw_sync = e1000_release_swfw_sync_82575; - if (mac->type >= e1000_i210) { - mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_i210; - mac->ops.release_swfw_sync = e1000_release_swfw_sync_i210; - } - - /* set lan id for port to determine which phy lock to use */ - hw->mac.ops.set_lan_id(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_init_function_pointers_82575 - Init func ptrs. - * @hw: pointer to the HW structure - * - * Called to initialize all function pointers and parameters. - **/ -void e1000_init_function_pointers_82575(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_init_function_pointers_82575"); - - hw->mac.ops.init_params = e1000_init_mac_params_82575; - hw->nvm.ops.init_params = e1000_init_nvm_params_82575; - hw->phy.ops.init_params = e1000_init_phy_params_82575; - hw->mbx.ops.init_params = e1000_init_mbx_params_pf; -} - -/** - * e1000_acquire_phy_82575 - Acquire rights to access PHY - * @hw: pointer to the HW structure - * - * Acquire access rights to the correct PHY. - **/ -static s32 e1000_acquire_phy_82575(struct e1000_hw *hw) -{ - u16 mask = E1000_SWFW_PHY0_SM; - - DEBUGFUNC("e1000_acquire_phy_82575"); - - if (hw->bus.func == E1000_FUNC_1) - mask = E1000_SWFW_PHY1_SM; - else if (hw->bus.func == E1000_FUNC_2) - mask = E1000_SWFW_PHY2_SM; - else if (hw->bus.func == E1000_FUNC_3) - mask = E1000_SWFW_PHY3_SM; - - return hw->mac.ops.acquire_swfw_sync(hw, mask); -} - -/** - * e1000_release_phy_82575 - Release rights to access PHY - * @hw: pointer to the HW structure - * - * A wrapper to release access rights to the correct PHY. - **/ -static void e1000_release_phy_82575(struct e1000_hw *hw) -{ - u16 mask = E1000_SWFW_PHY0_SM; - - DEBUGFUNC("e1000_release_phy_82575"); - - if (hw->bus.func == E1000_FUNC_1) - mask = E1000_SWFW_PHY1_SM; - else if (hw->bus.func == E1000_FUNC_2) - mask = E1000_SWFW_PHY2_SM; - else if (hw->bus.func == E1000_FUNC_3) - mask = E1000_SWFW_PHY3_SM; - - hw->mac.ops.release_swfw_sync(hw, mask); -} - -/** - * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset using the serial gigabit media independent - * interface and stores the retrieved information in data. - **/ -static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, - u16 *data) -{ - s32 ret_val = -E1000_ERR_PARAM; - - DEBUGFUNC("e1000_read_phy_reg_sgmii_82575"); - - if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { - DEBUGOUT1("PHY Address %u is out of range\n", offset); - goto out; - } - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - ret_val = e1000_read_phy_reg_i2c(hw, offset, data); - - hw->phy.ops.release(hw); - -out: - return ret_val; -} - -/** - * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes the data to PHY register at the offset using the serial gigabit - * media independent interface. - **/ -static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, - u16 data) -{ - s32 ret_val = -E1000_ERR_PARAM; - - DEBUGFUNC("e1000_write_phy_reg_sgmii_82575"); - - if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { - DEBUGOUT1("PHY Address %d is out of range\n", offset); - goto out; - } - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - ret_val = e1000_write_phy_reg_i2c(hw, offset, data); - - hw->phy.ops.release(hw); - -out: - return ret_val; -} - -/** - * e1000_get_phy_id_82575 - Retrieve PHY addr and id - * @hw: pointer to the HW structure - * - * Retrieves the PHY address and ID for both PHY's which do and do not use - * sgmi interface. - **/ -static s32 e1000_get_phy_id_82575(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 phy_id; - u32 ctrl_ext; - u32 mdic; - - DEBUGFUNC("e1000_get_phy_id_82575"); - - /* i354 devices can have a PHY that needs an extra read for id */ - if (hw->mac.type == e1000_i354) - e1000_get_phy_id(hw); - - - /* - * For SGMII PHYs, we try the list of possible addresses until - * we find one that works. For non-SGMII PHYs - * (e.g. integrated copper PHYs), an address of 1 should - * work. The result of this function should mean phy->phy_addr - * and phy->id are set correctly. - */ - if (!e1000_sgmii_active_82575(hw)) { - phy->addr = 1; - ret_val = e1000_get_phy_id(hw); - goto out; - } - - if (e1000_sgmii_uses_mdio_82575(hw)) { - switch (hw->mac.type) { - case e1000_82575: - case e1000_82576: - mdic = E1000_READ_REG(hw, E1000_MDIC); - mdic &= E1000_MDIC_PHY_MASK; - phy->addr = mdic >> E1000_MDIC_PHY_SHIFT; - break; - case e1000_82580: - case e1000_i350: - case e1000_i354: - case e1000_i210: - case e1000_i211: - mdic = E1000_READ_REG(hw, E1000_MDICNFG); - mdic &= E1000_MDICNFG_PHY_MASK; - phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT; - break; - default: - ret_val = -E1000_ERR_PHY; - goto out; - break; - } - ret_val = e1000_get_phy_id(hw); - goto out; - } - - /* Power on sgmii phy if it is disabled */ - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - E1000_WRITE_REG(hw, E1000_CTRL_EXT, - ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA); - E1000_WRITE_FLUSH(hw); - msec_delay(300); - - /* - * The address field in the I2CCMD register is 3 bits and 0 is invalid. - * Therefore, we need to test 1-7 - */ - for (phy->addr = 1; phy->addr < 8; phy->addr++) { - ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); - if (ret_val == E1000_SUCCESS) { - DEBUGOUT2("Vendor ID 0x%08X read at address %u\n", - phy_id, phy->addr); - /* - * At the time of this writing, The M88 part is - * the only supported SGMII PHY product. - */ - if (phy_id == M88_VENDOR) - break; - } else { - DEBUGOUT1("PHY address %u was unreadable\n", - phy->addr); - } - } - - /* A valid PHY type couldn't be found. */ - if (phy->addr == 8) { - phy->addr = 0; - ret_val = -E1000_ERR_PHY; - } else { - ret_val = e1000_get_phy_id(hw); - } - - /* restore previous sfp cage power state */ - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - -out: - return ret_val; -} - -/** - * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset - * @hw: pointer to the HW structure - * - * Resets the PHY using the serial gigabit media independent interface. - **/ -static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575"); - - /* - * This isn't a true "hard" reset, but is the only reset - * available to us at this time. - */ - - DEBUGOUT("Soft resetting SGMII attached PHY...\n"); - - if (!(hw->phy.ops.write_reg)) - goto out; - - /* - * SFP documentation requires the following to configure the SPF module - * to work on SGMII. No further documentation is given. - */ - ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084); - if (ret_val) - goto out; - - ret_val = hw->phy.ops.commit(hw); - -out: - return ret_val; -} - -/** - * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state - * @hw: pointer to the HW structure - * @active: true to enable LPLU, false to disable - * - * Sets the LPLU D0 state according to the active flag. When - * activating LPLU this function also disables smart speed - * and vice versa. LPLU will not be activated unless the - * device autonegotiation advertisement meets standards of - * either 10 or 10/100 or 10/100/1000 at all duplexes. - * This is a function pointer entry point only called by - * PHY setup routines. - **/ -static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 data; - - DEBUGFUNC("e1000_set_d0_lplu_state_82575"); - - if (!(hw->phy.ops.read_reg)) - goto out; - - ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); - if (ret_val) - goto out; - - if (active) { - data |= IGP02E1000_PM_D0_LPLU; - ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, - data); - if (ret_val) - goto out; - - /* When LPLU is enabled, we should disable SmartSpeed */ - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } else { - data &= ~IGP02E1000_PM_D0_LPLU; - ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, - data); - /* - * LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } else if (phy->smart_speed == e1000_smart_speed_off) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } - } - -out: - return ret_val; -} - -/** - * e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state - * @hw: pointer to the HW structure - * @active: true to enable LPLU, false to disable - * - * Sets the LPLU D0 state according to the active flag. When - * activating LPLU this function also disables smart speed - * and vice versa. LPLU will not be activated unless the - * device autonegotiation advertisement meets standards of - * either 10 or 10/100 or 10/100/1000 at all duplexes. - * This is a function pointer entry point only called by - * PHY setup routines. - **/ -static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u32 data; - - DEBUGFUNC("e1000_set_d0_lplu_state_82580"); - - data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); - - if (active) { - data |= E1000_82580_PM_D0_LPLU; - - /* When LPLU is enabled, we should disable SmartSpeed */ - data &= ~E1000_82580_PM_SPD; - } else { - data &= ~E1000_82580_PM_D0_LPLU; - - /* - * LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) - data |= E1000_82580_PM_SPD; - else if (phy->smart_speed == e1000_smart_speed_off) - data &= ~E1000_82580_PM_SPD; - } - - E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data); - return ret_val; -} - -/** - * e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * Success returns 0, Failure returns 1 - * - * The low power link up (lplu) state is set to the power management level D3 - * and SmartSpeed is disabled when active is true, else clear lplu for D3 - * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. - **/ -s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u32 data; - - DEBUGFUNC("e1000_set_d3_lplu_state_82580"); - - data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); - - if (!active) { - data &= ~E1000_82580_PM_D3_LPLU; - /* - * LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) - data |= E1000_82580_PM_SPD; - else if (phy->smart_speed == e1000_smart_speed_off) - data &= ~E1000_82580_PM_SPD; - } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || - (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || - (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { - data |= E1000_82580_PM_D3_LPLU; - /* When LPLU is enabled, we should disable SmartSpeed */ - data &= ~E1000_82580_PM_SPD; - } - - E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data); - return ret_val; -} - -/** - * e1000_acquire_nvm_82575 - Request for access to EEPROM - * @hw: pointer to the HW structure - * - * Acquire the necessary semaphores for exclusive access to the EEPROM. - * Set the EEPROM access request bit and wait for EEPROM access grant bit. - * Return successful if access grant bit set, else clear the request for - * EEPROM access and return -E1000_ERR_NVM (-1). - **/ -static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw) -{ - s32 ret_val; - - DEBUGFUNC("e1000_acquire_nvm_82575"); - - ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); - if (ret_val) - goto out; - - /* - * Check if there is some access - * error this access may hook on - */ - if (hw->mac.type == e1000_i350) { - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT | - E1000_EECD_TIMEOUT)) { - /* Clear all access error flags */ - E1000_WRITE_REG(hw, E1000_EECD, eecd | - E1000_EECD_ERROR_CLR); - DEBUGOUT("Nvm bit banging access error detected and cleared.\n"); - } - } - if (hw->mac.type == e1000_82580) { - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - if (eecd & E1000_EECD_BLOCKED) { - /* Clear access error flag */ - E1000_WRITE_REG(hw, E1000_EECD, eecd | - E1000_EECD_BLOCKED); - DEBUGOUT("Nvm bit banging access error detected and cleared.\n"); - } - } - - - ret_val = e1000_acquire_nvm_generic(hw); - if (ret_val) - e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); - -out: - return ret_val; -} - -/** - * e1000_release_nvm_82575 - Release exclusive access to EEPROM - * @hw: pointer to the HW structure - * - * Stop any current commands to the EEPROM and clear the EEPROM request bit, - * then release the semaphores acquired. - **/ -static void e1000_release_nvm_82575(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_release_nvm_82575"); - - e1000_release_nvm_generic(hw); - - e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); -} - -/** - * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore - * @hw: pointer to the HW structure - * @mask: specifies which semaphore to acquire - * - * Acquire the SW/FW semaphore to access the PHY or NVM. The mask - * will also specify which port we're acquiring the lock for. - **/ -static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) -{ - u32 swfw_sync; - u32 swmask = mask; - u32 fwmask = mask << 16; - s32 ret_val = E1000_SUCCESS; - s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ - - DEBUGFUNC("e1000_acquire_swfw_sync_82575"); - - while (i < timeout) { - if (e1000_get_hw_semaphore_generic(hw)) { - ret_val = -E1000_ERR_SWFW_SYNC; - goto out; - } - - swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); - if (!(swfw_sync & (fwmask | swmask))) - break; - - /* - * Firmware currently using resource (fwmask) - * or other software thread using resource (swmask) - */ - e1000_put_hw_semaphore_generic(hw); - msec_delay_irq(5); - i++; - } - - if (i == timeout) { - DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); - ret_val = -E1000_ERR_SWFW_SYNC; - goto out; - } - - swfw_sync |= swmask; - E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); - - e1000_put_hw_semaphore_generic(hw); - -out: - return ret_val; -} - -/** - * e1000_release_swfw_sync_82575 - Release SW/FW semaphore - * @hw: pointer to the HW structure - * @mask: specifies which semaphore to acquire - * - * Release the SW/FW semaphore used to access the PHY or NVM. The mask - * will also specify which port we're releasing the lock for. - **/ -static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) -{ - u32 swfw_sync; - - DEBUGFUNC("e1000_release_swfw_sync_82575"); - - while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS) - ; /* Empty */ - - swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); - swfw_sync &= ~mask; - E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); - - e1000_put_hw_semaphore_generic(hw); -} - -/** - * e1000_get_cfg_done_82575 - Read config done bit - * @hw: pointer to the HW structure - * - * Read the management control register for the config done bit for - * completion status. NOTE: silicon which is EEPROM-less will fail trying - * to read the config done bit, so an error is *ONLY* logged and returns - * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon - * would not be able to be reset or change link. - **/ -static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw) -{ - s32 timeout = PHY_CFG_TIMEOUT; - s32 ret_val = E1000_SUCCESS; - u32 mask = E1000_NVM_CFG_DONE_PORT_0; - - DEBUGFUNC("e1000_get_cfg_done_82575"); - - if (hw->bus.func == E1000_FUNC_1) - mask = E1000_NVM_CFG_DONE_PORT_1; - else if (hw->bus.func == E1000_FUNC_2) - mask = E1000_NVM_CFG_DONE_PORT_2; - else if (hw->bus.func == E1000_FUNC_3) - mask = E1000_NVM_CFG_DONE_PORT_3; - while (timeout) { - if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask) - break; - msec_delay(1); - timeout--; - } - if (!timeout) - DEBUGOUT("MNG configuration cycle has not completed.\n"); - - /* If EEPROM is not marked present, init the PHY manually */ - if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) && - (hw->phy.type == e1000_phy_igp_3)) - e1000_phy_init_script_igp3(hw); - - return ret_val; -} - -/** - * e1000_get_link_up_info_82575 - Get link speed/duplex info - * @hw: pointer to the HW structure - * @speed: stores the current speed - * @duplex: stores the current duplex - * - * This is a wrapper function, if using the serial gigabit media independent - * interface, use PCS to retrieve the link speed and duplex information. - * Otherwise, use the generic function to get the link speed and duplex info. - **/ -static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, - u16 *duplex) -{ - s32 ret_val; - - DEBUGFUNC("e1000_get_link_up_info_82575"); - - if (hw->phy.media_type != e1000_media_type_copper) - ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed, - duplex); - else - ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, - duplex); - - return ret_val; -} - -/** - * e1000_check_for_link_82575 - Check for link - * @hw: pointer to the HW structure - * - * If sgmii is enabled, then use the pcs register to determine link, otherwise - * use the generic interface for determining link. - **/ -static s32 e1000_check_for_link_82575(struct e1000_hw *hw) -{ - s32 ret_val; - u16 speed, duplex; - - DEBUGFUNC("e1000_check_for_link_82575"); - - if (hw->phy.media_type != e1000_media_type_copper) { - ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed, - &duplex); - /* - * Use this flag to determine if link needs to be checked or - * not. If we have link clear the flag so that we do not - * continue to check for link. - */ - hw->mac.get_link_status = !hw->mac.serdes_has_link; - - /* - * Configure Flow Control now that Auto-Neg has completed. - * First, we need to restore the desired flow control - * settings because we may have had to re-autoneg with a - * different link partner. - */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) - DEBUGOUT("Error configuring flow control\n"); - } else { - ret_val = e1000_check_for_copper_link_generic(hw); - } - - return ret_val; -} - -/** - * e1000_check_for_link_media_swap - Check which M88E1112 interface linked - * @hw: pointer to the HW structure - * - * Poll the M88E1112 interfaces to see which interface achieved link. - */ -static s32 e1000_check_for_link_media_swap(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - u8 port = 0; - - DEBUGFUNC("e1000_check_for_link_media_swap"); - - /* Check the copper medium. */ - ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); - if (ret_val) - return ret_val; - - ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); - if (ret_val) - return ret_val; - - if (data & E1000_M88E1112_STATUS_LINK) - port = E1000_MEDIA_PORT_COPPER; - - /* Check the other medium. */ - ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1); - if (ret_val) - return ret_val; - - ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); - if (ret_val) - return ret_val; - - if (data & E1000_M88E1112_STATUS_LINK) - port = E1000_MEDIA_PORT_OTHER; - - /* Determine if a swap needs to happen. */ - if (port && (hw->dev_spec._82575.media_port != port)) { - hw->dev_spec._82575.media_port = port; - hw->dev_spec._82575.media_changed = true; - } else { - ret_val = e1000_check_for_link_82575(hw); - } - - return E1000_SUCCESS; -} - -/** - * e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown - * @hw: pointer to the HW structure - **/ -static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw) -{ - u32 reg; - - DEBUGFUNC("e1000_power_up_serdes_link_82575"); - - if ((hw->phy.media_type != e1000_media_type_internal_serdes) && - !e1000_sgmii_active_82575(hw)) - return; - - /* Enable PCS to turn on link */ - reg = E1000_READ_REG(hw, E1000_PCS_CFG0); - reg |= E1000_PCS_CFG_PCS_EN; - E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); - - /* Power up the laser */ - reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - reg &= ~E1000_CTRL_EXT_SDP3_DATA; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); - - /* flush the write to verify completion */ - E1000_WRITE_FLUSH(hw); - msec_delay(1); -} - -/** - * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex - * @hw: pointer to the HW structure - * @speed: stores the current speed - * @duplex: stores the current duplex - * - * Using the physical coding sub-layer (PCS), retrieve the current speed and - * duplex, then store the values in the pointers provided. - **/ -static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, - u16 *speed, u16 *duplex) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 pcs; - u32 status; - - DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575"); - - /* - * Read the PCS Status register for link state. For non-copper mode, - * the status register is not accurate. The PCS status register is - * used instead. - */ - pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT); - - /* - * The link up bit determines when link is up on autoneg. - */ - if (pcs & E1000_PCS_LSTS_LINK_OK) { - mac->serdes_has_link = true; - - /* Detect and store PCS speed */ - if (pcs & E1000_PCS_LSTS_SPEED_1000) - *speed = SPEED_1000; - else if (pcs & E1000_PCS_LSTS_SPEED_100) - *speed = SPEED_100; - else - *speed = SPEED_10; - - /* Detect and store PCS duplex */ - if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) - *duplex = FULL_DUPLEX; - else - *duplex = HALF_DUPLEX; - - /* Check if it is an I354 2.5Gb backplane connection. */ - if (mac->type == e1000_i354) { - status = E1000_READ_REG(hw, E1000_STATUS); - if ((status & E1000_STATUS_2P5_SKU) && - !(status & E1000_STATUS_2P5_SKU_OVER)) { - *speed = SPEED_2500; - *duplex = FULL_DUPLEX; - DEBUGOUT("2500 Mbs, "); - DEBUGOUT("Full Duplex\n"); - } - } - - } else { - mac->serdes_has_link = false; - *speed = 0; - *duplex = 0; - } - - return E1000_SUCCESS; -} - -/** - * e1000_shutdown_serdes_link_82575 - Remove link during power down - * @hw: pointer to the HW structure - * - * In the case of serdes shut down sfp and PCS on driver unload - * when management pass through is not enabled. - **/ -void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw) -{ - u32 reg; - - DEBUGFUNC("e1000_shutdown_serdes_link_82575"); - - if ((hw->phy.media_type != e1000_media_type_internal_serdes) && - !e1000_sgmii_active_82575(hw)) - return; - - if (!e1000_enable_mng_pass_thru(hw)) { - /* Disable PCS to turn off link */ - reg = E1000_READ_REG(hw, E1000_PCS_CFG0); - reg &= ~E1000_PCS_CFG_PCS_EN; - E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); - - /* shutdown the laser */ - reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - reg |= E1000_CTRL_EXT_SDP3_DATA; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); - - /* flush the write to verify completion */ - E1000_WRITE_FLUSH(hw); - msec_delay(1); - } - - return; -} - -/** - * e1000_reset_hw_82575 - Reset hardware - * @hw: pointer to the HW structure - * - * This resets the hardware into a known state. - **/ -static s32 e1000_reset_hw_82575(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - - DEBUGFUNC("e1000_reset_hw_82575"); - - /* - * Prevent the PCI-E bus from sticking if there is no TLP connection - * on the last TLP read/write transaction when MAC is reset. - */ - ret_val = e1000_disable_pcie_master_generic(hw); - if (ret_val) - DEBUGOUT("PCI-E Master disable polling has failed.\n"); - - /* set the completion timeout for interface */ - ret_val = e1000_set_pcie_completion_timeout(hw); - if (ret_val) - DEBUGOUT("PCI-E Set completion timeout has failed.\n"); - - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - - E1000_WRITE_REG(hw, E1000_RCTL, 0); - E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); - E1000_WRITE_FLUSH(hw); - - msec_delay(10); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - DEBUGOUT("Issuing a global reset to MAC\n"); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); - - ret_val = e1000_get_auto_rd_done_generic(hw); - if (ret_val) { - /* - * When auto config read does not complete, do not - * return with an error. This can happen in situations - * where there is no eeprom and prevents getting link. - */ - DEBUGOUT("Auto Read Done did not complete\n"); - } - - /* If EEPROM is not present, run manual init scripts */ - if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES)) - e1000_reset_init_script_82575(hw); - - /* Clear any pending interrupt events. */ - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - E1000_READ_REG(hw, E1000_ICR); - - /* Install any alternate MAC address into RAR0 */ - ret_val = e1000_check_alt_mac_addr_generic(hw); - - return ret_val; -} - -/** - * e1000_init_hw_82575 - Initialize hardware - * @hw: pointer to the HW structure - * - * This inits the hardware readying it for operation. - **/ -static s32 e1000_init_hw_82575(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - u16 i, rar_count = mac->rar_entry_count; - - DEBUGFUNC("e1000_init_hw_82575"); - - /* Initialize identification LED */ - ret_val = mac->ops.id_led_init(hw); - if (ret_val) { - DEBUGOUT("Error initializing identification LED\n"); - /* This is not fatal and we should not stop init due to this */ - } - - /* Disabling VLAN filtering */ - DEBUGOUT("Initializing the IEEE VLAN\n"); - mac->ops.clear_vfta(hw); - - /* Setup the receive address */ - e1000_init_rx_addrs_generic(hw, rar_count); - - /* Zero out the Multicast HASH table */ - DEBUGOUT("Zeroing the MTA\n"); - for (i = 0; i < mac->mta_reg_count; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); - - /* Zero out the Unicast HASH table */ - DEBUGOUT("Zeroing the UTA\n"); - for (i = 0; i < mac->uta_reg_count; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0); - - /* Setup link and flow control */ - ret_val = mac->ops.setup_link(hw); - - /* Set the default MTU size */ - hw->dev_spec._82575.mtu = 1500; - - /* - * Clear all of the statistics registers (clear on read). It is - * important that we do this after we have tried to establish link - * because the symbol error count will increment wildly if there - * is no link. - */ - e1000_clear_hw_cntrs_82575(hw); - - return ret_val; -} - -/** - * e1000_setup_copper_link_82575 - Configure copper link settings - * @hw: pointer to the HW structure - * - * Configures the link for auto-neg or forced speed and duplex. Then we check - * for link, once link is established calls to configure collision distance - * and flow control are called. - **/ -static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - u32 phpm_reg; - - DEBUGFUNC("e1000_setup_copper_link_82575"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_SLU; - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* Clear Go Link Disconnect bit on supported devices */ - switch (hw->mac.type) { - case e1000_82580: - case e1000_i350: - case e1000_i210: - case e1000_i211: - phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); - phpm_reg &= ~E1000_82580_PM_GO_LINKD; - E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg); - break; - default: - break; - } - - ret_val = e1000_setup_serdes_link_82575(hw); - if (ret_val) - goto out; - - if (e1000_sgmii_active_82575(hw) && !hw->phy.reset_disable) { - /* allow time for SFP cage time to power up phy */ - msec_delay(300); - - ret_val = hw->phy.ops.reset(hw); - if (ret_val) { - DEBUGOUT("Error resetting the PHY.\n"); - goto out; - } - } - switch (hw->phy.type) { - case e1000_phy_i210: - case e1000_phy_m88: - switch (hw->phy.id) { - case I347AT4_E_PHY_ID: - case M88E1112_E_PHY_ID: - case M88E1340M_E_PHY_ID: - case M88E1543_E_PHY_ID: - case I210_I_PHY_ID: - ret_val = e1000_copper_link_setup_m88_gen2(hw); - break; - default: - ret_val = e1000_copper_link_setup_m88(hw); - break; - } - break; - case e1000_phy_igp_3: - ret_val = e1000_copper_link_setup_igp(hw); - break; - case e1000_phy_82580: - ret_val = e1000_copper_link_setup_82577(hw); - break; - default: - ret_val = -E1000_ERR_PHY; - break; - } - - if (ret_val) - goto out; - - ret_val = e1000_setup_copper_link_generic(hw); -out: - return ret_val; -} - -/** - * e1000_setup_serdes_link_82575 - Setup link for serdes - * @hw: pointer to the HW structure - * - * Configure the physical coding sub-layer (PCS) link. The PCS link is - * used on copper connections where the serialized gigabit media independent - * interface (sgmii), or serdes fiber is being used. Configures the link - * for auto-negotiation or forces speed/duplex. - **/ -static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw) -{ - u32 ctrl_ext, ctrl_reg, reg, anadv_reg; - bool pcs_autoneg; - s32 ret_val = E1000_SUCCESS; - u16 data; - - DEBUGFUNC("e1000_setup_serdes_link_82575"); - - if ((hw->phy.media_type != e1000_media_type_internal_serdes) && - !e1000_sgmii_active_82575(hw)) - return ret_val; - - /* - * On the 82575, SerDes loopback mode persists until it is - * explicitly turned off or a power cycle is performed. A read to - * the register does not indicate its status. Therefore, we ensure - * loopback mode is disabled during initialization. - */ - E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); - - /* power on the sfp cage if present */ - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - - ctrl_reg = E1000_READ_REG(hw, E1000_CTRL); - ctrl_reg |= E1000_CTRL_SLU; - - /* set both sw defined pins on 82575/82576*/ - if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) - ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1; - - reg = E1000_READ_REG(hw, E1000_PCS_LCTL); - - /* default pcs_autoneg to the same setting as mac autoneg */ - pcs_autoneg = hw->mac.autoneg; - - switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { - case E1000_CTRL_EXT_LINK_MODE_SGMII: - /* sgmii mode lets the phy handle forcing speed/duplex */ - pcs_autoneg = true; - /* autoneg time out should be disabled for SGMII mode */ - reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); - break; - case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: - /* disable PCS autoneg and support parallel detect only */ - pcs_autoneg = false; - /* fall through to default case */ - default: - if (hw->mac.type == e1000_82575 || - hw->mac.type == e1000_82576) { - ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT) - pcs_autoneg = false; - } - - /* - * non-SGMII modes only supports a speed of 1000/Full for the - * link so it is best to just force the MAC and let the pcs - * link either autoneg or be forced to 1000/Full - */ - ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD | - E1000_CTRL_FD | E1000_CTRL_FRCDPX; - - /* set speed of 1000/Full if speed/duplex is forced */ - reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL; - break; - } - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg); - - /* - * New SerDes mode allows for forcing speed or autonegotiating speed - * at 1gb. Autoneg should be default set by most drivers. This is the - * mode that will be compatible with older link partners and switches. - * However, both are supported by the hardware and some drivers/tools. - */ - reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | - E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); - - if (pcs_autoneg) { - /* Set PCS register for autoneg */ - reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ - E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ - - /* Disable force flow control for autoneg */ - reg &= ~E1000_PCS_LCTL_FORCE_FCTRL; - - /* Configure flow control advertisement for autoneg */ - anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV); - anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE); - - switch (hw->fc.requested_mode) { - case e1000_fc_full: - case e1000_fc_rx_pause: - anadv_reg |= E1000_TXCW_ASM_DIR; - anadv_reg |= E1000_TXCW_PAUSE; - break; - case e1000_fc_tx_pause: - anadv_reg |= E1000_TXCW_ASM_DIR; - break; - default: - break; - } - - E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg); - - DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg); - } else { - /* Set PCS register for forced link */ - reg |= E1000_PCS_LCTL_FSD; /* Force Speed */ - - /* Force flow control for forced link */ - reg |= E1000_PCS_LCTL_FORCE_FCTRL; - - DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg); - } - - E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg); - - if (!pcs_autoneg && !e1000_sgmii_active_82575(hw)) - e1000_force_mac_fc_generic(hw); - - return ret_val; -} - -/** - * e1000_get_media_type_82575 - derives current media type. - * @hw: pointer to the HW structure - * - * The media type is chosen reflecting few settings. - * The following are taken into account: - * - link mode set in the current port Init Control Word #3 - * - current link mode settings in CSR register - * - MDIO vs. I2C PHY control interface chosen - * - SFP module media type - **/ -static s32 e1000_get_media_type_82575(struct e1000_hw *hw) -{ - struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; - s32 ret_val = E1000_SUCCESS; - u32 ctrl_ext = 0; - u32 link_mode = 0; - - /* Set internal phy as default */ - dev_spec->sgmii_active = false; - dev_spec->module_plugged = false; - - /* Get CSR setting */ - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - - /* extract link mode setting */ - link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK; - - switch (link_mode) { - case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: - hw->phy.media_type = e1000_media_type_internal_serdes; - break; - case E1000_CTRL_EXT_LINK_MODE_GMII: - hw->phy.media_type = e1000_media_type_copper; - break; - case E1000_CTRL_EXT_LINK_MODE_SGMII: - /* Get phy control interface type set (MDIO vs. I2C)*/ - if (e1000_sgmii_uses_mdio_82575(hw)) { - hw->phy.media_type = e1000_media_type_copper; - dev_spec->sgmii_active = true; - break; - } - /* fall through for I2C based SGMII */ - case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES: - /* read media type from SFP EEPROM */ - ret_val = e1000_set_sfp_media_type_82575(hw); - if ((ret_val != E1000_SUCCESS) || - (hw->phy.media_type == e1000_media_type_unknown)) { - /* - * If media type was not identified then return media - * type defined by the CTRL_EXT settings. - */ - hw->phy.media_type = e1000_media_type_internal_serdes; - - if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) { - hw->phy.media_type = e1000_media_type_copper; - dev_spec->sgmii_active = true; - } - - break; - } - - /* do not change link mode for 100BaseFX */ - if (dev_spec->eth_flags.e100_base_fx) - break; - - /* change current link mode setting */ - ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK; - - if (hw->phy.media_type == e1000_media_type_copper) - ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII; - else - ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; - - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - - break; - } - - return ret_val; -} - -/** - * e1000_set_sfp_media_type_82575 - derives SFP module media type. - * @hw: pointer to the HW structure - * - * The media type is chosen based on SFP module. - * compatibility flags retrieved from SFP ID EEPROM. - **/ -static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw) -{ - s32 ret_val = E1000_ERR_CONFIG; - u32 ctrl_ext = 0; - struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; - struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags; - u8 tranceiver_type = 0; - s32 timeout = 3; - - /* Turn I2C interface ON and power on sfp cage */ - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA); - - E1000_WRITE_FLUSH(hw); - - /* Read SFP module data */ - while (timeout) { - ret_val = e1000_read_sfp_data_byte(hw, - E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET), - &tranceiver_type); - if (ret_val == E1000_SUCCESS) - break; - msec_delay(100); - timeout--; - } - if (ret_val != E1000_SUCCESS) - goto out; - - ret_val = e1000_read_sfp_data_byte(hw, - E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET), - (u8 *)eth_flags); - if (ret_val != E1000_SUCCESS) - goto out; - - /* Check if there is some SFP module plugged and powered */ - if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) || - (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) { - dev_spec->module_plugged = true; - if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) { - hw->phy.media_type = e1000_media_type_internal_serdes; - } else if (eth_flags->e100_base_fx) { - dev_spec->sgmii_active = true; - hw->phy.media_type = e1000_media_type_internal_serdes; - } else if (eth_flags->e1000_base_t) { - dev_spec->sgmii_active = true; - hw->phy.media_type = e1000_media_type_copper; - } else { - hw->phy.media_type = e1000_media_type_unknown; - DEBUGOUT("PHY module has not been recognized\n"); - goto out; - } - } else { - hw->phy.media_type = e1000_media_type_unknown; - } - ret_val = E1000_SUCCESS; -out: - /* Restore I2C interface setting */ - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - return ret_val; -} - -/** - * e1000_valid_led_default_82575 - Verify a valid default LED config - * @hw: pointer to the HW structure - * @data: pointer to the NVM (EEPROM) - * - * Read the EEPROM for the current default LED configuration. If the - * LED configuration is not valid, set to a valid LED configuration. - **/ -static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_valid_led_default_82575"); - - ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - - if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { - switch (hw->phy.media_type) { - case e1000_media_type_internal_serdes: - *data = ID_LED_DEFAULT_82575_SERDES; - break; - case e1000_media_type_copper: - default: - *data = ID_LED_DEFAULT; - break; - } - } -out: - return ret_val; -} - -/** - * e1000_sgmii_active_82575 - Return sgmii state - * @hw: pointer to the HW structure - * - * 82575 silicon has a serialized gigabit media independent interface (sgmii) - * which can be enabled for use in the embedded applications. Simply - * return the current state of the sgmii interface. - **/ -static bool e1000_sgmii_active_82575(struct e1000_hw *hw) -{ - struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; - return dev_spec->sgmii_active; -} - -/** - * e1000_reset_init_script_82575 - Inits HW defaults after reset - * @hw: pointer to the HW structure - * - * Inits recommended HW defaults after a reset when there is no EEPROM - * detected. This is only for the 82575. - **/ -static s32 e1000_reset_init_script_82575(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_reset_init_script_82575"); - - if (hw->mac.type == e1000_82575) { - DEBUGOUT("Running reset init script for 82575\n"); - /* SerDes configuration via SERDESCTRL */ - e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C); - e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78); - e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23); - e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15); - - /* CCM configuration via CCMCTL register */ - e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00); - e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00); - - /* PCIe lanes configuration */ - e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC); - e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF); - e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05); - e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81); - - /* PCIe PLL Configuration */ - e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47); - e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00); - e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00); - } - - return E1000_SUCCESS; -} - -/** - * e1000_read_mac_addr_82575 - Read device MAC address - * @hw: pointer to the HW structure - **/ -static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_read_mac_addr_82575"); - - /* - * If there's an alternate MAC address place it in RAR0 - * so that it will override the Si installed default perm - * address. - */ - ret_val = e1000_check_alt_mac_addr_generic(hw); - if (ret_val) - goto out; - - ret_val = e1000_read_mac_addr_generic(hw); - -out: - return ret_val; -} - -/** - * e1000_config_collision_dist_82575 - Configure collision distance - * @hw: pointer to the HW structure - * - * Configures the collision distance to the default value and is used - * during link setup. - **/ -static void e1000_config_collision_dist_82575(struct e1000_hw *hw) -{ - u32 tctl_ext; - - DEBUGFUNC("e1000_config_collision_dist_82575"); - - tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT); - - tctl_ext &= ~E1000_TCTL_EXT_COLD; - tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT; - - E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext); - E1000_WRITE_FLUSH(hw); -} - -/** - * e1000_power_down_phy_copper_82575 - Remove link during PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, remove the link. - **/ -static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - - if (!(phy->ops.check_reset_block)) - return; - - /* If the management interface is not enabled, then power down */ - if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw))) - e1000_power_down_phy_copper(hw); - - return; -} - -/** - * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters - * @hw: pointer to the HW structure - * - * Clears the hardware counters by reading the counter registers. - **/ -static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_clear_hw_cntrs_82575"); - - e1000_clear_hw_cntrs_base_generic(hw); - - E1000_READ_REG(hw, E1000_PRC64); - E1000_READ_REG(hw, E1000_PRC127); - E1000_READ_REG(hw, E1000_PRC255); - E1000_READ_REG(hw, E1000_PRC511); - E1000_READ_REG(hw, E1000_PRC1023); - E1000_READ_REG(hw, E1000_PRC1522); - E1000_READ_REG(hw, E1000_PTC64); - E1000_READ_REG(hw, E1000_PTC127); - E1000_READ_REG(hw, E1000_PTC255); - E1000_READ_REG(hw, E1000_PTC511); - E1000_READ_REG(hw, E1000_PTC1023); - E1000_READ_REG(hw, E1000_PTC1522); - - E1000_READ_REG(hw, E1000_ALGNERRC); - E1000_READ_REG(hw, E1000_RXERRC); - E1000_READ_REG(hw, E1000_TNCRS); - E1000_READ_REG(hw, E1000_CEXTERR); - E1000_READ_REG(hw, E1000_TSCTC); - E1000_READ_REG(hw, E1000_TSCTFC); - - E1000_READ_REG(hw, E1000_MGTPRC); - E1000_READ_REG(hw, E1000_MGTPDC); - E1000_READ_REG(hw, E1000_MGTPTC); - - E1000_READ_REG(hw, E1000_IAC); - E1000_READ_REG(hw, E1000_ICRXOC); - - E1000_READ_REG(hw, E1000_ICRXPTC); - E1000_READ_REG(hw, E1000_ICRXATC); - E1000_READ_REG(hw, E1000_ICTXPTC); - E1000_READ_REG(hw, E1000_ICTXATC); - E1000_READ_REG(hw, E1000_ICTXQEC); - E1000_READ_REG(hw, E1000_ICTXQMTC); - E1000_READ_REG(hw, E1000_ICRXDMTC); - - E1000_READ_REG(hw, E1000_CBTMPC); - E1000_READ_REG(hw, E1000_HTDPMC); - E1000_READ_REG(hw, E1000_CBRMPC); - E1000_READ_REG(hw, E1000_RPTHC); - E1000_READ_REG(hw, E1000_HGPTC); - E1000_READ_REG(hw, E1000_HTCBDPC); - E1000_READ_REG(hw, E1000_HGORCL); - E1000_READ_REG(hw, E1000_HGORCH); - E1000_READ_REG(hw, E1000_HGOTCL); - E1000_READ_REG(hw, E1000_HGOTCH); - E1000_READ_REG(hw, E1000_LENERRS); - - /* This register should not be read in copper configurations */ - if ((hw->phy.media_type == e1000_media_type_internal_serdes) || - e1000_sgmii_active_82575(hw)) - E1000_READ_REG(hw, E1000_SCVPC); -} - -/** - * e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable - * @hw: pointer to the HW structure - * - * After rx enable if managability is enabled then there is likely some - * bad data at the start of the fifo and possibly in the DMA fifo. This - * function clears the fifos and flushes any packets that came in as rx was - * being enabled. - **/ -void e1000_rx_fifo_flush_82575(struct e1000_hw *hw) -{ - u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled; - int i, ms_wait; - - DEBUGFUNC("e1000_rx_fifo_workaround_82575"); - if (hw->mac.type != e1000_82575 || - !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) - return; - - /* Disable all Rx queues */ - for (i = 0; i < 4; i++) { - rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i)); - E1000_WRITE_REG(hw, E1000_RXDCTL(i), - rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE); - } - /* Poll all queues to verify they have shut down */ - for (ms_wait = 0; ms_wait < 10; ms_wait++) { - msec_delay(1); - rx_enabled = 0; - for (i = 0; i < 4; i++) - rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i)); - if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE)) - break; - } - - if (ms_wait == 10) - DEBUGOUT("Queue disable timed out after 10ms\n"); - - /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all - * incoming packets are rejected. Set enable and wait 2ms so that - * any packet that was coming in as RCTL.EN was set is flushed - */ - rfctl = E1000_READ_REG(hw, E1000_RFCTL); - E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF); - - rlpml = E1000_READ_REG(hw, E1000_RLPML); - E1000_WRITE_REG(hw, E1000_RLPML, 0); - - rctl = E1000_READ_REG(hw, E1000_RCTL); - temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP); - temp_rctl |= E1000_RCTL_LPE; - - E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl); - E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN); - E1000_WRITE_FLUSH(hw); - msec_delay(2); - - /* Enable Rx queues that were previously enabled and restore our - * previous state - */ - for (i = 0; i < 4; i++) - E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]); - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - E1000_WRITE_FLUSH(hw); - - E1000_WRITE_REG(hw, E1000_RLPML, rlpml); - E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); - - /* Flush receive errors generated by workaround */ - E1000_READ_REG(hw, E1000_ROC); - E1000_READ_REG(hw, E1000_RNBC); - E1000_READ_REG(hw, E1000_MPC); -} - -/** - * e1000_set_pcie_completion_timeout - set pci-e completion timeout - * @hw: pointer to the HW structure - * - * The defaults for 82575 and 82576 should be in the range of 50us to 50ms, - * however the hardware default for these parts is 500us to 1ms which is less - * than the 10ms recommended by the pci-e spec. To address this we need to - * increase the value to either 10ms to 200ms for capability version 1 config, - * or 16ms to 55ms for version 2. - **/ -static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw) -{ - u32 gcr = E1000_READ_REG(hw, E1000_GCR); - s32 ret_val = E1000_SUCCESS; - u16 pcie_devctl2; - - /* only take action if timeout value is defaulted to 0 */ - if (gcr & E1000_GCR_CMPL_TMOUT_MASK) - goto out; - - /* - * if capababilities version is type 1 we can write the - * timeout of 10ms to 200ms through the GCR register - */ - if (!(gcr & E1000_GCR_CAP_VER2)) { - gcr |= E1000_GCR_CMPL_TMOUT_10ms; - goto out; - } - - /* - * for version 2 capabilities we need to write the config space - * directly in order to set the completion timeout value for - * 16ms to 55ms - */ - ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, - &pcie_devctl2); - if (ret_val) - goto out; - - pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms; - - ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, - &pcie_devctl2); -out: - /* disable completion timeout resend */ - gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND; - - E1000_WRITE_REG(hw, E1000_GCR, gcr); - return ret_val; -} - -/** - * e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing - * @hw: pointer to the hardware struct - * @enable: state to enter, either enabled or disabled - * @pf: Physical Function pool - do not set anti-spoofing for the PF - * - * enables/disables L2 switch anti-spoofing functionality. - **/ -void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf) -{ - u32 reg_val, reg_offset; - - switch (hw->mac.type) { - case e1000_82576: - reg_offset = E1000_DTXSWC; - break; - case e1000_i350: - case e1000_i354: - reg_offset = E1000_TXSWC; - break; - default: - return; - } - - reg_val = E1000_READ_REG(hw, reg_offset); - if (enable) { - reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK | - E1000_DTXSWC_VLAN_SPOOF_MASK); - /* The PF can spoof - it has to in order to - * support emulation mode NICs - */ - reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS)); - } else { - reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK | - E1000_DTXSWC_VLAN_SPOOF_MASK); - } - E1000_WRITE_REG(hw, reg_offset, reg_val); -} - -/** - * e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback - * @hw: pointer to the hardware struct - * @enable: state to enter, either enabled or disabled - * - * enables/disables L2 switch loopback functionality. - **/ -void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable) -{ - u32 dtxswc; - - switch (hw->mac.type) { - case e1000_82576: - dtxswc = E1000_READ_REG(hw, E1000_DTXSWC); - if (enable) - dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; - else - dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; - E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc); - break; - case e1000_i350: - case e1000_i354: - dtxswc = E1000_READ_REG(hw, E1000_TXSWC); - if (enable) - dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; - else - dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; - E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc); - break; - default: - /* Currently no other hardware supports loopback */ - break; - } - - -} - -/** - * e1000_vmdq_set_replication_pf - enable or disable vmdq replication - * @hw: pointer to the hardware struct - * @enable: state to enter, either enabled or disabled - * - * enables/disables replication of packets across multiple pools. - **/ -void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) -{ - u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL); - - if (enable) - vt_ctl |= E1000_VT_CTL_VM_REPL_EN; - else - vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN; - - E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl); -} - -/** - * e1000_read_phy_reg_82580 - Read 82580 MDI control register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the MDI control register in the PHY at offset and stores the - * information read to data. - **/ -static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_read_phy_reg_82580"); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - ret_val = e1000_read_phy_reg_mdic(hw, offset, data); - - hw->phy.ops.release(hw); - -out: - return ret_val; -} - -/** - * e1000_write_phy_reg_82580 - Write 82580 MDI control register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write to register at offset - * - * Writes data to MDI control register in the PHY at offset. - **/ -static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_write_phy_reg_82580"); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - ret_val = e1000_write_phy_reg_mdic(hw, offset, data); - - hw->phy.ops.release(hw); - -out: - return ret_val; -} - -/** - * e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits - * @hw: pointer to the HW structure - * - * This resets the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on - * the values found in the EEPROM. This addresses an issue in which these - * bits are not restored from EEPROM after reset. - **/ -static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u32 mdicnfg; - u16 nvm_data = 0; - - DEBUGFUNC("e1000_reset_mdicnfg_82580"); - - if (hw->mac.type != e1000_82580) - goto out; - if (!e1000_sgmii_active_82575(hw)) - goto out; - - ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + - NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, - &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - - mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG); - if (nvm_data & NVM_WORD24_EXT_MDIO) - mdicnfg |= E1000_MDICNFG_EXT_MDIO; - if (nvm_data & NVM_WORD24_COM_MDIO) - mdicnfg |= E1000_MDICNFG_COM_MDIO; - E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg); -out: - return ret_val; -} - -/** - * e1000_reset_hw_82580 - Reset hardware - * @hw: pointer to the HW structure - * - * This resets function or entire device (all ports, etc.) - * to a known state. - **/ -static s32 e1000_reset_hw_82580(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - /* BH SW mailbox bit in SW_FW_SYNC */ - u16 swmbsw_mask = E1000_SW_SYNCH_MB; - u32 ctrl; - bool global_device_reset = hw->dev_spec._82575.global_device_reset; - - DEBUGFUNC("e1000_reset_hw_82580"); - - hw->dev_spec._82575.global_device_reset = false; - - /* 82580 does not reliably do global_device_reset due to hw errata */ - if (hw->mac.type == e1000_82580) - global_device_reset = false; - - /* Get current control state. */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - /* - * Prevent the PCI-E bus from sticking if there is no TLP connection - * on the last TLP read/write transaction when MAC is reset. - */ - ret_val = e1000_disable_pcie_master_generic(hw); - if (ret_val) - DEBUGOUT("PCI-E Master disable polling has failed.\n"); - - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - E1000_WRITE_REG(hw, E1000_RCTL, 0); - E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); - E1000_WRITE_FLUSH(hw); - - msec_delay(10); - - /* Determine whether or not a global dev reset is requested */ - if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw, - swmbsw_mask)) - global_device_reset = false; - - if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) & - E1000_STAT_DEV_RST_SET)) - ctrl |= E1000_CTRL_DEV_RST; - else - ctrl |= E1000_CTRL_RST; - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - /* Add delay to insure DEV_RST has time to complete */ - if (global_device_reset) - msec_delay(5); - - ret_val = e1000_get_auto_rd_done_generic(hw); - if (ret_val) { - /* - * When auto config read does not complete, do not - * return with an error. This can happen in situations - * where there is no eeprom and prevents getting link. - */ - DEBUGOUT("Auto Read Done did not complete\n"); - } - - /* clear global device reset status bit */ - E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET); - - /* Clear any pending interrupt events. */ - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - E1000_READ_REG(hw, E1000_ICR); - - ret_val = e1000_reset_mdicnfg_82580(hw); - if (ret_val) - DEBUGOUT("Could not reset MDICNFG based on EEPROM\n"); - - /* Install any alternate MAC address into RAR0 */ - ret_val = e1000_check_alt_mac_addr_generic(hw); - - /* Release semaphore */ - if (global_device_reset) - hw->mac.ops.release_swfw_sync(hw, swmbsw_mask); - - return ret_val; -} - -/** - * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size - * @data: data received by reading RXPBS register - * - * The 82580 uses a table based approach for packet buffer allocation sizes. - * This function converts the retrieved value into the correct table value - * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 - * 0x0 36 72 144 1 2 4 8 16 - * 0x8 35 70 140 rsv rsv rsv rsv rsv - */ -u16 e1000_rxpbs_adjust_82580(u32 data) -{ - u16 ret_val = 0; - - if (data < E1000_82580_RXPBS_TABLE_SIZE) - ret_val = e1000_82580_rxpbs_table[data]; - - return ret_val; -} - -/** - * e1000_validate_nvm_checksum_with_offset - Validate EEPROM - * checksum - * @hw: pointer to the HW structure - * @offset: offset in words of the checksum protected region - * - * Calculates the EEPROM checksum by reading/adding each word of the EEPROM - * and then verifies that the sum of the EEPROM is equal to 0xBABA. - **/ -s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) -{ - s32 ret_val = E1000_SUCCESS; - u16 checksum = 0; - u16 i, nvm_data; - - DEBUGFUNC("e1000_validate_nvm_checksum_with_offset"); - - for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) { - ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - checksum += nvm_data; - } - - if (checksum != (u16) NVM_SUM) { - DEBUGOUT("NVM Checksum Invalid\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - -out: - return ret_val; -} - -/** - * e1000_update_nvm_checksum_with_offset - Update EEPROM - * checksum - * @hw: pointer to the HW structure - * @offset: offset in words of the checksum protected region - * - * Updates the EEPROM checksum by reading/adding each word of the EEPROM - * up to the checksum. Then calculates the EEPROM checksum and writes the - * value to the EEPROM. - **/ -s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) -{ - s32 ret_val; - u16 checksum = 0; - u16 i, nvm_data; - - DEBUGFUNC("e1000_update_nvm_checksum_with_offset"); - - for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) { - ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error while updating checksum.\n"); - goto out; - } - checksum += nvm_data; - } - checksum = (u16) NVM_SUM - checksum; - ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1, - &checksum); - if (ret_val) - DEBUGOUT("NVM Write Error while updating checksum.\n"); - -out: - return ret_val; -} - -/** - * e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum - * @hw: pointer to the HW structure - * - * Calculates the EEPROM section checksum by reading/adding each word of - * the EEPROM and then verifies that the sum of the EEPROM is - * equal to 0xBABA. - **/ -static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 eeprom_regions_count = 1; - u16 j, nvm_data; - u16 nvm_offset; - - DEBUGFUNC("e1000_validate_nvm_checksum_82580"); - - ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - - if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) { - /* if chekcsums compatibility bit is set validate checksums - * for all 4 ports. */ - eeprom_regions_count = 4; - } - - for (j = 0; j < eeprom_regions_count; j++) { - nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); - ret_val = e1000_validate_nvm_checksum_with_offset(hw, - nvm_offset); - if (ret_val != E1000_SUCCESS) - goto out; - } - -out: - return ret_val; -} - -/** - * e1000_update_nvm_checksum_82580 - Update EEPROM checksum - * @hw: pointer to the HW structure - * - * Updates the EEPROM section checksums for all 4 ports by reading/adding - * each word of the EEPROM up to the checksum. Then calculates the EEPROM - * checksum and writes the value to the EEPROM. - **/ -static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw) -{ - s32 ret_val; - u16 j, nvm_data; - u16 nvm_offset; - - DEBUGFUNC("e1000_update_nvm_checksum_82580"); - - ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n"); - goto out; - } - - if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) { - /* set compatibility bit to validate checksums appropriately */ - nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK; - ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1, - &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n"); - goto out; - } - } - - for (j = 0; j < 4; j++) { - nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); - ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset); - if (ret_val) - goto out; - } - -out: - return ret_val; -} - -/** - * e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum - * @hw: pointer to the HW structure - * - * Calculates the EEPROM section checksum by reading/adding each word of - * the EEPROM and then verifies that the sum of the EEPROM is - * equal to 0xBABA. - **/ -static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 j; - u16 nvm_offset; - - DEBUGFUNC("e1000_validate_nvm_checksum_i350"); - - for (j = 0; j < 4; j++) { - nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); - ret_val = e1000_validate_nvm_checksum_with_offset(hw, - nvm_offset); - if (ret_val != E1000_SUCCESS) - goto out; - } - -out: - return ret_val; -} - -/** - * e1000_update_nvm_checksum_i350 - Update EEPROM checksum - * @hw: pointer to the HW structure - * - * Updates the EEPROM section checksums for all 4 ports by reading/adding - * each word of the EEPROM up to the checksum. Then calculates the EEPROM - * checksum and writes the value to the EEPROM. - **/ -static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 j; - u16 nvm_offset; - - DEBUGFUNC("e1000_update_nvm_checksum_i350"); - - for (j = 0; j < 4; j++) { - nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); - ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset); - if (ret_val != E1000_SUCCESS) - goto out; - } - -out: - return ret_val; -} - -/** - * __e1000_access_emi_reg - Read/write EMI register - * @hw: pointer to the HW structure - * @addr: EMI address to program - * @data: pointer to value to read/write from/to the EMI address - * @read: boolean flag to indicate read or write - **/ -static s32 __e1000_access_emi_reg(struct e1000_hw *hw, u16 address, - u16 *data, bool read) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("__e1000_access_emi_reg"); - - ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address); - if (ret_val) - return ret_val; - - if (read) - ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data); - else - ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data); - - return ret_val; -} - -/** - * e1000_read_emi_reg - Read Extended Management Interface register - * @hw: pointer to the HW structure - * @addr: EMI address to program - * @data: value to be read from the EMI address - **/ -s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data) -{ - DEBUGFUNC("e1000_read_emi_reg"); - - return __e1000_access_emi_reg(hw, addr, data, true); -} - -/** - * e1000_set_eee_i350 - Enable/disable EEE support - * @hw: pointer to the HW structure - * - * Enable/disable EEE based on setting in dev_spec structure. - * - **/ -s32 e1000_set_eee_i350(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u32 ipcnfg, eeer; - - DEBUGFUNC("e1000_set_eee_i350"); - - if ((hw->mac.type < e1000_i350) || - (hw->phy.media_type != e1000_media_type_copper)) - goto out; - ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG); - eeer = E1000_READ_REG(hw, E1000_EEER); - - /* enable or disable per user setting */ - if (!(hw->dev_spec._82575.eee_disable)) { - u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU); - - ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN); - eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | - E1000_EEER_LPI_FC); - - /* This bit should not be set in normal operation. */ - if (eee_su & E1000_EEE_SU_LPI_CLK_STP) - DEBUGOUT("LPI Clock Stop Bit should not be set!\n"); - } else { - ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN); - eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | - E1000_EEER_LPI_FC); - } - E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg); - E1000_WRITE_REG(hw, E1000_EEER, eeer); - E1000_READ_REG(hw, E1000_IPCNFG); - E1000_READ_REG(hw, E1000_EEER); -out: - - return ret_val; -} - -/** - * e1000_set_eee_i354 - Enable/disable EEE support - * @hw: pointer to the HW structure - * - * Enable/disable EEE legacy mode based on setting in dev_spec structure. - * - **/ -s32 e1000_set_eee_i354(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 phy_data; - - DEBUGFUNC("e1000_set_eee_i354"); - - if ((hw->phy.media_type != e1000_media_type_copper) || - ((phy->id != M88E1543_E_PHY_ID))) - goto out; - - if (!hw->dev_spec._82575.eee_disable) { - /* Switch to PHY page 18. */ - ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18); - if (ret_val) - goto out; - - ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1, - &phy_data); - if (ret_val) - goto out; - - phy_data |= E1000_M88E1543_EEE_CTRL_1_MS; - ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1, - phy_data); - if (ret_val) - goto out; - - /* Return the PHY to page 0. */ - ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); - if (ret_val) - goto out; - - /* Turn on EEE advertisement. */ - ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, - E1000_EEE_ADV_DEV_I354, - &phy_data); - if (ret_val) - goto out; - - phy_data |= E1000_EEE_ADV_100_SUPPORTED | - E1000_EEE_ADV_1000_SUPPORTED; - ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, - E1000_EEE_ADV_DEV_I354, - phy_data); - } else { - /* Turn off EEE advertisement. */ - ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, - E1000_EEE_ADV_DEV_I354, - &phy_data); - if (ret_val) - goto out; - - phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED | - E1000_EEE_ADV_1000_SUPPORTED); - ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, - E1000_EEE_ADV_DEV_I354, - phy_data); - } - -out: - return ret_val; -} - -/** - * e1000_get_eee_status_i354 - Get EEE status - * @hw: pointer to the HW structure - * @status: EEE status - * - * Get EEE status by guessing based on whether Tx or Rx LPI indications have - * been received. - **/ -s32 e1000_get_eee_status_i354(struct e1000_hw *hw, bool *status) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 phy_data; - - DEBUGFUNC("e1000_get_eee_status_i354"); - - /* Check if EEE is supported on this device. */ - if ((hw->phy.media_type != e1000_media_type_copper) || - ((phy->id != M88E1543_E_PHY_ID))) - goto out; - - ret_val = e1000_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354, - E1000_PCS_STATUS_DEV_I354, - &phy_data); - if (ret_val) - goto out; - - *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD | - E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false; - -out: - return ret_val; -} - -/* Due to a hw errata, if the host tries to configure the VFTA register - * while performing queries from the BMC or DMA, then the VFTA in some - * cases won't be written. - */ - -/** - * e1000_clear_vfta_i350 - Clear VLAN filter table - * @hw: pointer to the HW structure - * - * Clears the register array which contains the VLAN filter table by - * setting all the values to 0. - **/ -void e1000_clear_vfta_i350(struct e1000_hw *hw) -{ - u32 offset; - int i; - - DEBUGFUNC("e1000_clear_vfta_350"); - - for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { - for (i = 0; i < 10; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); - - E1000_WRITE_FLUSH(hw); - } -} - -/** - * e1000_write_vfta_i350 - Write value to VLAN filter table - * @hw: pointer to the HW structure - * @offset: register offset in VLAN filter table - * @value: register value written to VLAN filter table - * - * Writes value at the given offset in the register array which stores - * the VLAN filter table. - **/ -void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value) -{ - int i; - - DEBUGFUNC("e1000_write_vfta_350"); - - for (i = 0; i < 10; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); - - E1000_WRITE_FLUSH(hw); -} - - -/** - * e1000_set_i2c_bb - Enable I2C bit-bang - * @hw: pointer to the HW structure - * - * Enable I2C bit-bang interface - * - **/ -s32 e1000_set_i2c_bb(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u32 ctrl_ext, i2cparams; - - DEBUGFUNC("e1000_set_i2c_bb"); - - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - ctrl_ext |= E1000_CTRL_I2C_ENA; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - - i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS); - i2cparams |= E1000_I2CBB_EN; - i2cparams |= E1000_I2C_DATA_OE_N; - i2cparams |= E1000_I2C_CLK_OE_N; - E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams); - E1000_WRITE_FLUSH(hw); - - return ret_val; -} - -/** - * e1000_read_i2c_byte_generic - Reads 8 bit word over I2C - * @hw: pointer to hardware structure - * @byte_offset: byte offset to read - * @dev_addr: device address - * @data: value read - * - * Performs byte read operation over I2C interface at - * a specified device address. - **/ -s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, - u8 dev_addr, u8 *data) -{ - s32 status = E1000_SUCCESS; - u32 max_retry = 10; - u32 retry = 1; - u16 swfw_mask = 0; - - bool nack = true; - - DEBUGFUNC("e1000_read_i2c_byte_generic"); - - swfw_mask = E1000_SWFW_PHY0_SM; - - do { - if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) - != E1000_SUCCESS) { - status = E1000_ERR_SWFW_SYNC; - goto read_byte_out; - } - - e1000_i2c_start(hw); - - /* Device Address and write indication */ - status = e1000_clock_out_i2c_byte(hw, dev_addr); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_get_i2c_ack(hw); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_clock_out_i2c_byte(hw, byte_offset); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_get_i2c_ack(hw); - if (status != E1000_SUCCESS) - goto fail; - - e1000_i2c_start(hw); - - /* Device Address and read indication */ - status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1)); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_get_i2c_ack(hw); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_clock_in_i2c_byte(hw, data); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_clock_out_i2c_bit(hw, nack); - if (status != E1000_SUCCESS) - goto fail; - - e1000_i2c_stop(hw); - break; - -fail: - hw->mac.ops.release_swfw_sync(hw, swfw_mask); - msec_delay(100); - e1000_i2c_bus_clear(hw); - retry++; - if (retry < max_retry) - DEBUGOUT("I2C byte read error - Retrying.\n"); - else - DEBUGOUT("I2C byte read error.\n"); - - } while (retry < max_retry); - - hw->mac.ops.release_swfw_sync(hw, swfw_mask); - -read_byte_out: - - return status; -} - -/** - * e1000_write_i2c_byte_generic - Writes 8 bit word over I2C - * @hw: pointer to hardware structure - * @byte_offset: byte offset to write - * @dev_addr: device address - * @data: value to write - * - * Performs byte write operation over I2C interface at - * a specified device address. - **/ -s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, - u8 dev_addr, u8 data) -{ - s32 status = E1000_SUCCESS; - u32 max_retry = 1; - u32 retry = 0; - u16 swfw_mask = 0; - - DEBUGFUNC("e1000_write_i2c_byte_generic"); - - swfw_mask = E1000_SWFW_PHY0_SM; - - if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) { - status = E1000_ERR_SWFW_SYNC; - goto write_byte_out; - } - - do { - e1000_i2c_start(hw); - - status = e1000_clock_out_i2c_byte(hw, dev_addr); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_get_i2c_ack(hw); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_clock_out_i2c_byte(hw, byte_offset); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_get_i2c_ack(hw); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_clock_out_i2c_byte(hw, data); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_get_i2c_ack(hw); - if (status != E1000_SUCCESS) - goto fail; - - e1000_i2c_stop(hw); - break; - -fail: - e1000_i2c_bus_clear(hw); - retry++; - if (retry < max_retry) - DEBUGOUT("I2C byte write error - Retrying.\n"); - else - DEBUGOUT("I2C byte write error.\n"); - } while (retry < max_retry); - - hw->mac.ops.release_swfw_sync(hw, swfw_mask); - -write_byte_out: - - return status; -} - -/** - * e1000_i2c_start - Sets I2C start condition - * @hw: pointer to hardware structure - * - * Sets I2C start condition (High -> Low on SDA while SCL is High) - **/ -static void e1000_i2c_start(struct e1000_hw *hw) -{ - u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - - DEBUGFUNC("e1000_i2c_start"); - - /* Start condition must begin with data and clock high */ - e1000_set_i2c_data(hw, &i2cctl, 1); - e1000_raise_i2c_clk(hw, &i2cctl); - - /* Setup time for start condition (4.7us) */ - usec_delay(E1000_I2C_T_SU_STA); - - e1000_set_i2c_data(hw, &i2cctl, 0); - - /* Hold time for start condition (4us) */ - usec_delay(E1000_I2C_T_HD_STA); - - e1000_lower_i2c_clk(hw, &i2cctl); - - /* Minimum low period of clock is 4.7 us */ - usec_delay(E1000_I2C_T_LOW); - -} - -/** - * e1000_i2c_stop - Sets I2C stop condition - * @hw: pointer to hardware structure - * - * Sets I2C stop condition (Low -> High on SDA while SCL is High) - **/ -static void e1000_i2c_stop(struct e1000_hw *hw) -{ - u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - - DEBUGFUNC("e1000_i2c_stop"); - - /* Stop condition must begin with data low and clock high */ - e1000_set_i2c_data(hw, &i2cctl, 0); - e1000_raise_i2c_clk(hw, &i2cctl); - - /* Setup time for stop condition (4us) */ - usec_delay(E1000_I2C_T_SU_STO); - - e1000_set_i2c_data(hw, &i2cctl, 1); - - /* bus free time between stop and start (4.7us)*/ - usec_delay(E1000_I2C_T_BUF); -} - -/** - * e1000_clock_in_i2c_byte - Clocks in one byte via I2C - * @hw: pointer to hardware structure - * @data: data byte to clock in - * - * Clocks in one byte data via I2C data/clock - **/ -static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data) -{ - s32 i; - bool bit = 0; - - DEBUGFUNC("e1000_clock_in_i2c_byte"); - - *data = 0; - for (i = 7; i >= 0; i--) { - e1000_clock_in_i2c_bit(hw, &bit); - *data |= bit << i; - } - - return E1000_SUCCESS; -} - -/** - * e1000_clock_out_i2c_byte - Clocks out one byte via I2C - * @hw: pointer to hardware structure - * @data: data byte clocked out - * - * Clocks out one byte data via I2C data/clock - **/ -static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data) -{ - s32 status = E1000_SUCCESS; - s32 i; - u32 i2cctl; - bool bit = 0; - - DEBUGFUNC("e1000_clock_out_i2c_byte"); - - for (i = 7; i >= 0; i--) { - bit = (data >> i) & 0x1; - status = e1000_clock_out_i2c_bit(hw, bit); - - if (status != E1000_SUCCESS) - break; - } - - /* Release SDA line (set high) */ - i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - - i2cctl |= E1000_I2C_DATA_OE_N; - E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl); - E1000_WRITE_FLUSH(hw); - - return status; -} - -/** - * e1000_get_i2c_ack - Polls for I2C ACK - * @hw: pointer to hardware structure - * - * Clocks in/out one bit via I2C data/clock - **/ -static s32 e1000_get_i2c_ack(struct e1000_hw *hw) -{ - s32 status = E1000_SUCCESS; - u32 i = 0; - u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - u32 timeout = 10; - bool ack = true; - - DEBUGFUNC("e1000_get_i2c_ack"); - - e1000_raise_i2c_clk(hw, &i2cctl); - - /* Minimum high period of clock is 4us */ - usec_delay(E1000_I2C_T_HIGH); - - /* Wait until SCL returns high */ - for (i = 0; i < timeout; i++) { - usec_delay(1); - i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - if (i2cctl & E1000_I2C_CLK_IN) - break; - } - if (!(i2cctl & E1000_I2C_CLK_IN)) - return E1000_ERR_I2C; - - ack = e1000_get_i2c_data(&i2cctl); - if (ack) { - DEBUGOUT("I2C ack was not received.\n"); - status = E1000_ERR_I2C; - } - - e1000_lower_i2c_clk(hw, &i2cctl); - - /* Minimum low period of clock is 4.7 us */ - usec_delay(E1000_I2C_T_LOW); - - return status; -} - -/** - * e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock - * @hw: pointer to hardware structure - * @data: read data value - * - * Clocks in one bit via I2C data/clock - **/ -static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data) -{ - u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - - DEBUGFUNC("e1000_clock_in_i2c_bit"); - - e1000_raise_i2c_clk(hw, &i2cctl); - - /* Minimum high period of clock is 4us */ - usec_delay(E1000_I2C_T_HIGH); - - i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - *data = e1000_get_i2c_data(&i2cctl); - - e1000_lower_i2c_clk(hw, &i2cctl); - - /* Minimum low period of clock is 4.7 us */ - usec_delay(E1000_I2C_T_LOW); - - return E1000_SUCCESS; -} - -/** - * e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock - * @hw: pointer to hardware structure - * @data: data value to write - * - * Clocks out one bit via I2C data/clock - **/ -static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data) -{ - s32 status; - u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - - DEBUGFUNC("e1000_clock_out_i2c_bit"); - - status = e1000_set_i2c_data(hw, &i2cctl, data); - if (status == E1000_SUCCESS) { - e1000_raise_i2c_clk(hw, &i2cctl); - - /* Minimum high period of clock is 4us */ - usec_delay(E1000_I2C_T_HIGH); - - e1000_lower_i2c_clk(hw, &i2cctl); - - /* Minimum low period of clock is 4.7 us. - * This also takes care of the data hold time. - */ - usec_delay(E1000_I2C_T_LOW); - } else { - status = E1000_ERR_I2C; - DEBUGOUT1("I2C data was not set to %X\n", data); - } - - return status; -} -/** - * e1000_raise_i2c_clk - Raises the I2C SCL clock - * @hw: pointer to hardware structure - * @i2cctl: Current value of I2CCTL register - * - * Raises the I2C clock line '0'->'1' - **/ -static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl) -{ - DEBUGFUNC("e1000_raise_i2c_clk"); - - *i2cctl |= E1000_I2C_CLK_OUT; - *i2cctl &= ~E1000_I2C_CLK_OE_N; - E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); - E1000_WRITE_FLUSH(hw); - - /* SCL rise time (1000ns) */ - usec_delay(E1000_I2C_T_RISE); -} - -/** - * e1000_lower_i2c_clk - Lowers the I2C SCL clock - * @hw: pointer to hardware structure - * @i2cctl: Current value of I2CCTL register - * - * Lowers the I2C clock line '1'->'0' - **/ -static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl) -{ - - DEBUGFUNC("e1000_lower_i2c_clk"); - - *i2cctl &= ~E1000_I2C_CLK_OUT; - *i2cctl &= ~E1000_I2C_CLK_OE_N; - E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); - E1000_WRITE_FLUSH(hw); - - /* SCL fall time (300ns) */ - usec_delay(E1000_I2C_T_FALL); -} - -/** - * e1000_set_i2c_data - Sets the I2C data bit - * @hw: pointer to hardware structure - * @i2cctl: Current value of I2CCTL register - * @data: I2C data value (0 or 1) to set - * - * Sets the I2C data bit - **/ -static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data) -{ - s32 status = E1000_SUCCESS; - - DEBUGFUNC("e1000_set_i2c_data"); - - if (data) - *i2cctl |= E1000_I2C_DATA_OUT; - else - *i2cctl &= ~E1000_I2C_DATA_OUT; - - *i2cctl &= ~E1000_I2C_DATA_OE_N; - *i2cctl |= E1000_I2C_CLK_OE_N; - E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); - E1000_WRITE_FLUSH(hw); - - /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */ - usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA); - - *i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - if (data != e1000_get_i2c_data(i2cctl)) { - status = E1000_ERR_I2C; - DEBUGOUT1("Error - I2C data was not set to %X.\n", data); - } - - return status; -} - -/** - * e1000_get_i2c_data - Reads the I2C SDA data bit - * @hw: pointer to hardware structure - * @i2cctl: Current value of I2CCTL register - * - * Returns the I2C data bit value - **/ -static bool e1000_get_i2c_data(u32 *i2cctl) -{ - bool data; - - DEBUGFUNC("e1000_get_i2c_data"); - - if (*i2cctl & E1000_I2C_DATA_IN) - data = 1; - else - data = 0; - - return data; -} - -/** - * e1000_i2c_bus_clear - Clears the I2C bus - * @hw: pointer to hardware structure - * - * Clears the I2C bus by sending nine clock pulses. - * Used when data line is stuck low. - **/ -void e1000_i2c_bus_clear(struct e1000_hw *hw) -{ - u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - u32 i; - - DEBUGFUNC("e1000_i2c_bus_clear"); - - e1000_i2c_start(hw); - - e1000_set_i2c_data(hw, &i2cctl, 1); - - for (i = 0; i < 9; i++) { - e1000_raise_i2c_clk(hw, &i2cctl); - - /* Min high period of clock is 4us */ - usec_delay(E1000_I2C_T_HIGH); - - e1000_lower_i2c_clk(hw, &i2cctl); - - /* Min low period of clock is 4.7us*/ - usec_delay(E1000_I2C_T_LOW); - } - - e1000_i2c_start(hw); - - /* Put the i2c bus back to default state */ - e1000_i2c_stop(hw); -} - -static const u8 e1000_emc_temp_data[4] = { - E1000_EMC_INTERNAL_DATA, - E1000_EMC_DIODE1_DATA, - E1000_EMC_DIODE2_DATA, - E1000_EMC_DIODE3_DATA -}; -static const u8 e1000_emc_therm_limit[4] = { - E1000_EMC_INTERNAL_THERM_LIMIT, - E1000_EMC_DIODE1_THERM_LIMIT, - E1000_EMC_DIODE2_THERM_LIMIT, - E1000_EMC_DIODE3_THERM_LIMIT -}; - -/** - * e1000_get_thermal_sensor_data_generic - Gathers thermal sensor data - * @hw: pointer to hardware structure - * - * Updates the temperatures in mac.thermal_sensor_data - **/ -s32 e1000_get_thermal_sensor_data_generic(struct e1000_hw *hw) -{ - s32 status = E1000_SUCCESS; - u16 ets_offset; - u16 ets_cfg; - u16 ets_sensor; - u8 num_sensors; - u8 sensor_index; - u8 sensor_location; - u8 i; - struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; - - DEBUGFUNC("e1000_get_thermal_sensor_data_generic"); - - if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0)) - return E1000_NOT_IMPLEMENTED; - - data->sensor[0].temp = (E1000_READ_REG(hw, E1000_THMJT) & 0xFF); - - /* Return the internal sensor only if ETS is unsupported */ - e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_offset); - if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) - return status; - - e1000_read_nvm(hw, ets_offset, 1, &ets_cfg); - if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT) - != NVM_ETS_TYPE_EMC) - return E1000_NOT_IMPLEMENTED; - - num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK); - if (num_sensors > E1000_MAX_SENSORS) - num_sensors = E1000_MAX_SENSORS; - - for (i = 1; i < num_sensors; i++) { - e1000_read_nvm(hw, (ets_offset + i), 1, &ets_sensor); - sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >> - NVM_ETS_DATA_INDEX_SHIFT); - sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >> - NVM_ETS_DATA_LOC_SHIFT); - - if (sensor_location != 0) - hw->phy.ops.read_i2c_byte(hw, - e1000_emc_temp_data[sensor_index], - E1000_I2C_THERMAL_SENSOR_ADDR, - &data->sensor[i].temp); - } - return status; -} - -/** - * e1000_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds - * @hw: pointer to hardware structure - * - * Sets the thermal sensor thresholds according to the NVM map - * and save off the threshold and location values into mac.thermal_sensor_data - **/ -s32 e1000_init_thermal_sensor_thresh_generic(struct e1000_hw *hw) -{ - s32 status = E1000_SUCCESS; - u16 ets_offset; - u16 ets_cfg; - u16 ets_sensor; - u8 low_thresh_delta; - u8 num_sensors; - u8 sensor_index; - u8 sensor_location; - u8 therm_limit; - u8 i; - struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; - - DEBUGFUNC("e1000_init_thermal_sensor_thresh_generic"); - - if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0)) - return E1000_NOT_IMPLEMENTED; - - memset(data, 0, sizeof(struct e1000_thermal_sensor_data)); - - data->sensor[0].location = 0x1; - data->sensor[0].caution_thresh = - (E1000_READ_REG(hw, E1000_THHIGHTC) & 0xFF); - data->sensor[0].max_op_thresh = - (E1000_READ_REG(hw, E1000_THLOWTC) & 0xFF); - - /* Return the internal sensor only if ETS is unsupported */ - e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_offset); - if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) - return status; - - e1000_read_nvm(hw, ets_offset, 1, &ets_cfg); - if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT) - != NVM_ETS_TYPE_EMC) - return E1000_NOT_IMPLEMENTED; - - low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >> - NVM_ETS_LTHRES_DELTA_SHIFT); - num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK); - - for (i = 1; i <= num_sensors; i++) { - e1000_read_nvm(hw, (ets_offset + i), 1, &ets_sensor); - sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >> - NVM_ETS_DATA_INDEX_SHIFT); - sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >> - NVM_ETS_DATA_LOC_SHIFT); - therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK; - - hw->phy.ops.write_i2c_byte(hw, - e1000_emc_therm_limit[sensor_index], - E1000_I2C_THERMAL_SENSOR_ADDR, - therm_limit); - - if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) { - data->sensor[i].location = sensor_location; - data->sensor[i].caution_thresh = therm_limit; - data->sensor[i].max_op_thresh = therm_limit - - low_thresh_delta; - } - } - return status; -} diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_82575.h b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_82575.h deleted file mode 100644 index 2e0dbb2f..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_82575.h +++ /dev/null @@ -1,494 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#ifndef _E1000_82575_H_ -#define _E1000_82575_H_ - -#define ID_LED_DEFAULT_82575_SERDES ((ID_LED_DEF1_DEF2 << 12) | \ - (ID_LED_DEF1_DEF2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_OFF1_ON2)) -/* - * Receive Address Register Count - * Number of high/low register pairs in the RAR. The RAR (Receive Address - * Registers) holds the directed and multicast addresses that we monitor. - * These entries are also used for MAC-based filtering. - */ -/* - * For 82576, there are an additional set of RARs that begin at an offset - * separate from the first set of RARs. - */ -#define E1000_RAR_ENTRIES_82575 16 -#define E1000_RAR_ENTRIES_82576 24 -#define E1000_RAR_ENTRIES_82580 24 -#define E1000_RAR_ENTRIES_I350 32 -#define E1000_SW_SYNCH_MB 0x00000100 -#define E1000_STAT_DEV_RST_SET 0x00100000 -#define E1000_CTRL_DEV_RST 0x20000000 - -struct e1000_adv_data_desc { - __le64 buffer_addr; /* Address of the descriptor's data buffer */ - union { - u32 data; - struct { - u32 datalen:16; /* Data buffer length */ - u32 rsvd:4; - u32 dtyp:4; /* Descriptor type */ - u32 dcmd:8; /* Descriptor command */ - } config; - } lower; - union { - u32 data; - struct { - u32 status:4; /* Descriptor status */ - u32 idx:4; - u32 popts:6; /* Packet Options */ - u32 paylen:18; /* Payload length */ - } options; - } upper; -}; - -#define E1000_TXD_DTYP_ADV_C 0x2 /* Advanced Context Descriptor */ -#define E1000_TXD_DTYP_ADV_D 0x3 /* Advanced Data Descriptor */ -#define E1000_ADV_TXD_CMD_DEXT 0x20 /* Descriptor extension (0 = legacy) */ -#define E1000_ADV_TUCMD_IPV4 0x2 /* IP Packet Type: 1=IPv4 */ -#define E1000_ADV_TUCMD_IPV6 0x0 /* IP Packet Type: 0=IPv6 */ -#define E1000_ADV_TUCMD_L4T_UDP 0x0 /* L4 Packet TYPE of UDP */ -#define E1000_ADV_TUCMD_L4T_TCP 0x4 /* L4 Packet TYPE of TCP */ -#define E1000_ADV_TUCMD_MKRREQ 0x10 /* Indicates markers are required */ -#define E1000_ADV_DCMD_EOP 0x1 /* End of Packet */ -#define E1000_ADV_DCMD_IFCS 0x2 /* Insert FCS (Ethernet CRC) */ -#define E1000_ADV_DCMD_RS 0x8 /* Report Status */ -#define E1000_ADV_DCMD_VLE 0x40 /* Add VLAN tag */ -#define E1000_ADV_DCMD_TSE 0x80 /* TCP Seg enable */ -/* Extended Device Control */ -#define E1000_CTRL_EXT_NSICR 0x00000001 /* Disable Intr Clear all on read */ - -struct e1000_adv_context_desc { - union { - u32 ip_config; - struct { - u32 iplen:9; - u32 maclen:7; - u32 vlan_tag:16; - } fields; - } ip_setup; - u32 seq_num; - union { - u64 l4_config; - struct { - u32 mkrloc:9; - u32 tucmd:11; - u32 dtyp:4; - u32 adv:8; - u32 rsvd:4; - u32 idx:4; - u32 l4len:8; - u32 mss:16; - } fields; - } l4_setup; -}; - -/* SRRCTL bit definitions */ -#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */ -#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00 -#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */ -#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000 -#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000 -#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000 -#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000 -#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000 -#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000 -#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000 -#define E1000_SRRCTL_TIMESTAMP 0x40000000 -#define E1000_SRRCTL_DROP_EN 0x80000000 - -#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F -#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00 - -#define E1000_TX_HEAD_WB_ENABLE 0x1 -#define E1000_TX_SEQNUM_WB_ENABLE 0x2 - -#define E1000_MRQC_ENABLE_RSS_4Q 0x00000002 -#define E1000_MRQC_ENABLE_VMDQ 0x00000003 -#define E1000_MRQC_ENABLE_VMDQ_RSS_2Q 0x00000005 -#define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000 -#define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000 -#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000 -#define E1000_MRQC_ENABLE_RSS_8Q 0x00000002 - -#define E1000_VMRCTL_MIRROR_PORT_SHIFT 8 -#define E1000_VMRCTL_MIRROR_DSTPORT_MASK (7 << \ - E1000_VMRCTL_MIRROR_PORT_SHIFT) -#define E1000_VMRCTL_POOL_MIRROR_ENABLE (1 << 0) -#define E1000_VMRCTL_UPLINK_MIRROR_ENABLE (1 << 1) -#define E1000_VMRCTL_DOWNLINK_MIRROR_ENABLE (1 << 2) - -#define E1000_EICR_TX_QUEUE ( \ - E1000_EICR_TX_QUEUE0 | \ - E1000_EICR_TX_QUEUE1 | \ - E1000_EICR_TX_QUEUE2 | \ - E1000_EICR_TX_QUEUE3) - -#define E1000_EICR_RX_QUEUE ( \ - E1000_EICR_RX_QUEUE0 | \ - E1000_EICR_RX_QUEUE1 | \ - E1000_EICR_RX_QUEUE2 | \ - E1000_EICR_RX_QUEUE3) - -#define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE -#define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE - -#define EIMS_ENABLE_MASK ( \ - E1000_EIMS_RX_QUEUE | \ - E1000_EIMS_TX_QUEUE | \ - E1000_EIMS_TCP_TIMER | \ - E1000_EIMS_OTHER) - -/* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */ -#define E1000_IMIR_PORT_IM_EN 0x00010000 /* TCP port enable */ -#define E1000_IMIR_PORT_BP 0x00020000 /* TCP port check bypass */ -#define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */ -#define E1000_IMIREXT_CTRL_URG 0x00002000 /* Check URG bit in header */ -#define E1000_IMIREXT_CTRL_ACK 0x00004000 /* Check ACK bit in header */ -#define E1000_IMIREXT_CTRL_PSH 0x00008000 /* Check PSH bit in header */ -#define E1000_IMIREXT_CTRL_RST 0x00010000 /* Check RST bit in header */ -#define E1000_IMIREXT_CTRL_SYN 0x00020000 /* Check SYN bit in header */ -#define E1000_IMIREXT_CTRL_FIN 0x00040000 /* Check FIN bit in header */ -#define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of ctrl bits */ - -/* Receive Descriptor - Advanced */ -union e1000_adv_rx_desc { - struct { - __le64 pkt_addr; /* Packet buffer address */ - __le64 hdr_addr; /* Header buffer address */ - } read; - struct { - struct { - union { - __le32 data; - struct { - __le16 pkt_info; /*RSS type, Pkt type*/ - /* Split Header, header buffer len */ - __le16 hdr_info; - } hs_rss; - } lo_dword; - union { - __le32 rss; /* RSS Hash */ - struct { - __le16 ip_id; /* IP id */ - __le16 csum; /* Packet Checksum */ - } csum_ip; - } hi_dword; - } lower; - struct { - __le32 status_error; /* ext status/error */ - __le16 length; /* Packet length */ - __le16 vlan; /* VLAN tag */ - } upper; - } wb; /* writeback */ -}; - -#define E1000_RXDADV_RSSTYPE_MASK 0x0000000F -#define E1000_RXDADV_RSSTYPE_SHIFT 12 -#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0 -#define E1000_RXDADV_HDRBUFLEN_SHIFT 5 -#define E1000_RXDADV_SPLITHEADER_EN 0x00001000 -#define E1000_RXDADV_SPH 0x8000 -#define E1000_RXDADV_STAT_TS 0x10000 /* Pkt was time stamped */ -#define E1000_RXDADV_STAT_TSIP 0x08000 /* timestamp in packet */ -#define E1000_RXDADV_ERR_HBO 0x00800000 - -/* RSS Hash results */ -#define E1000_RXDADV_RSSTYPE_NONE 0x00000000 -#define E1000_RXDADV_RSSTYPE_IPV4_TCP 0x00000001 -#define E1000_RXDADV_RSSTYPE_IPV4 0x00000002 -#define E1000_RXDADV_RSSTYPE_IPV6_TCP 0x00000003 -#define E1000_RXDADV_RSSTYPE_IPV6_EX 0x00000004 -#define E1000_RXDADV_RSSTYPE_IPV6 0x00000005 -#define E1000_RXDADV_RSSTYPE_IPV6_TCP_EX 0x00000006 -#define E1000_RXDADV_RSSTYPE_IPV4_UDP 0x00000007 -#define E1000_RXDADV_RSSTYPE_IPV6_UDP 0x00000008 -#define E1000_RXDADV_RSSTYPE_IPV6_UDP_EX 0x00000009 - -/* RSS Packet Types as indicated in the receive descriptor */ -#define E1000_RXDADV_PKTTYPE_NONE 0x00000000 -#define E1000_RXDADV_PKTTYPE_IPV4 0x00000010 /* IPV4 hdr present */ -#define E1000_RXDADV_PKTTYPE_IPV4_EX 0x00000020 /* IPV4 hdr + extensions */ -#define E1000_RXDADV_PKTTYPE_IPV6 0x00000040 /* IPV6 hdr present */ -#define E1000_RXDADV_PKTTYPE_IPV6_EX 0x00000080 /* IPV6 hdr + extensions */ -#define E1000_RXDADV_PKTTYPE_TCP 0x00000100 /* TCP hdr present */ -#define E1000_RXDADV_PKTTYPE_UDP 0x00000200 /* UDP hdr present */ -#define E1000_RXDADV_PKTTYPE_SCTP 0x00000400 /* SCTP hdr present */ -#define E1000_RXDADV_PKTTYPE_NFS 0x00000800 /* NFS hdr present */ - -#define E1000_RXDADV_PKTTYPE_IPSEC_ESP 0x00001000 /* IPSec ESP */ -#define E1000_RXDADV_PKTTYPE_IPSEC_AH 0x00002000 /* IPSec AH */ -#define E1000_RXDADV_PKTTYPE_LINKSEC 0x00004000 /* LinkSec Encap */ -#define E1000_RXDADV_PKTTYPE_ETQF 0x00008000 /* PKTTYPE is ETQF index */ -#define E1000_RXDADV_PKTTYPE_ETQF_MASK 0x00000070 /* ETQF has 8 indices */ -#define E1000_RXDADV_PKTTYPE_ETQF_SHIFT 4 /* Right-shift 4 bits */ - -/* LinkSec results */ -/* Security Processing bit Indication */ -#define E1000_RXDADV_LNKSEC_STATUS_SECP 0x00020000 -#define E1000_RXDADV_LNKSEC_ERROR_BIT_MASK 0x18000000 -#define E1000_RXDADV_LNKSEC_ERROR_NO_SA_MATCH 0x08000000 -#define E1000_RXDADV_LNKSEC_ERROR_REPLAY_ERROR 0x10000000 -#define E1000_RXDADV_LNKSEC_ERROR_BAD_SIG 0x18000000 - -#define E1000_RXDADV_IPSEC_STATUS_SECP 0x00020000 -#define E1000_RXDADV_IPSEC_ERROR_BIT_MASK 0x18000000 -#define E1000_RXDADV_IPSEC_ERROR_INVALID_PROTOCOL 0x08000000 -#define E1000_RXDADV_IPSEC_ERROR_INVALID_LENGTH 0x10000000 -#define E1000_RXDADV_IPSEC_ERROR_AUTHENTICATION_FAILED 0x18000000 - -/* Transmit Descriptor - Advanced */ -union e1000_adv_tx_desc { - struct { - __le64 buffer_addr; /* Address of descriptor's data buf */ - __le32 cmd_type_len; - __le32 olinfo_status; - } read; - struct { - __le64 rsvd; /* Reserved */ - __le32 nxtseq_seed; - __le32 status; - } wb; -}; - -/* Adv Transmit Descriptor Config Masks */ -#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */ -#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */ -#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */ -#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ -#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */ -#define E1000_ADVTXD_DCMD_DDTYP_ISCSI 0x10000000 /* DDP hdr type or iSCSI */ -#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */ -#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */ -#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */ -#define E1000_ADVTXD_MAC_LINKSEC 0x00040000 /* Apply LinkSec on pkt */ -#define E1000_ADVTXD_MAC_TSTAMP 0x00080000 /* IEEE1588 Timestamp pkt */ -#define E1000_ADVTXD_STAT_SN_CRC 0x00000002 /* NXTSEQ/SEED prsnt in WB */ -#define E1000_ADVTXD_IDX_SHIFT 4 /* Adv desc Index shift */ -#define E1000_ADVTXD_POPTS_ISCO_1ST 0x00000000 /* 1st TSO of iSCSI PDU */ -#define E1000_ADVTXD_POPTS_ISCO_MDL 0x00000800 /* Middle TSO of iSCSI PDU */ -#define E1000_ADVTXD_POPTS_ISCO_LAST 0x00001000 /* Last TSO of iSCSI PDU */ -/* 1st & Last TSO-full iSCSI PDU*/ -#define E1000_ADVTXD_POPTS_ISCO_FULL 0x00001800 -#define E1000_ADVTXD_POPTS_IPSEC 0x00000400 /* IPSec offload request */ -#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */ - -/* Context descriptors */ -struct e1000_adv_tx_context_desc { - __le32 vlan_macip_lens; - __le32 seqnum_seed; - __le32 type_tucmd_mlhl; - __le32 mss_l4len_idx; -}; - -#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */ -#define E1000_ADVTXD_VLAN_SHIFT 16 /* Adv ctxt vlan tag shift */ -#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */ -#define E1000_ADVTXD_TUCMD_IPV6 0x00000000 /* IP Packet Type: 0=IPv6 */ -#define E1000_ADVTXD_TUCMD_L4T_UDP 0x00000000 /* L4 Packet TYPE of UDP */ -#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */ -#define E1000_ADVTXD_TUCMD_L4T_SCTP 0x00001000 /* L4 Packet TYPE of SCTP */ -#define E1000_ADVTXD_TUCMD_IPSEC_TYPE_ESP 0x00002000 /* IPSec Type ESP */ -/* IPSec Encrypt Enable for ESP */ -#define E1000_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN 0x00004000 -/* Req requires Markers and CRC */ -#define E1000_ADVTXD_TUCMD_MKRREQ 0x00002000 -#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */ -#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */ -/* Adv ctxt IPSec SA IDX mask */ -#define E1000_ADVTXD_IPSEC_SA_INDEX_MASK 0x000000FF -/* Adv ctxt IPSec ESP len mask */ -#define E1000_ADVTXD_IPSEC_ESP_LEN_MASK 0x000000FF - -/* Additional Transmit Descriptor Control definitions */ -#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Tx Queue */ -#define E1000_TXDCTL_SWFLSH 0x04000000 /* Tx Desc. wbk flushing */ -/* Tx Queue Arbitration Priority 0=low, 1=high */ -#define E1000_TXDCTL_PRIORITY 0x08000000 - -/* Additional Receive Descriptor Control definitions */ -#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Rx Queue */ -#define E1000_RXDCTL_SWFLSH 0x04000000 /* Rx Desc. wbk flushing */ - -/* Direct Cache Access (DCA) definitions */ -#define E1000_DCA_CTRL_DCA_ENABLE 0x00000000 /* DCA Enable */ -#define E1000_DCA_CTRL_DCA_DISABLE 0x00000001 /* DCA Disable */ - -#define E1000_DCA_CTRL_DCA_MODE_CB1 0x00 /* DCA Mode CB1 */ -#define E1000_DCA_CTRL_DCA_MODE_CB2 0x02 /* DCA Mode CB2 */ - -#define E1000_DCA_RXCTRL_CPUID_MASK 0x0000001F /* Rx CPUID Mask */ -#define E1000_DCA_RXCTRL_DESC_DCA_EN (1 << 5) /* DCA Rx Desc enable */ -#define E1000_DCA_RXCTRL_HEAD_DCA_EN (1 << 6) /* DCA Rx Desc header ena */ -#define E1000_DCA_RXCTRL_DATA_DCA_EN (1 << 7) /* DCA Rx Desc payload ena */ -#define E1000_DCA_RXCTRL_DESC_RRO_EN (1 << 9) /* DCA Rx Desc Relax Order */ - -#define E1000_DCA_TXCTRL_CPUID_MASK 0x0000001F /* Tx CPUID Mask */ -#define E1000_DCA_TXCTRL_DESC_DCA_EN (1 << 5) /* DCA Tx Desc enable */ -#define E1000_DCA_TXCTRL_DESC_RRO_EN (1 << 9) /* Tx rd Desc Relax Order */ -#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */ -#define E1000_DCA_TXCTRL_DATA_RRO_EN (1 << 13) /* Tx rd data Relax Order */ - -#define E1000_DCA_TXCTRL_CPUID_MASK_82576 0xFF000000 /* Tx CPUID Mask */ -#define E1000_DCA_RXCTRL_CPUID_MASK_82576 0xFF000000 /* Rx CPUID Mask */ -#define E1000_DCA_TXCTRL_CPUID_SHIFT_82576 24 /* Tx CPUID */ -#define E1000_DCA_RXCTRL_CPUID_SHIFT_82576 24 /* Rx CPUID */ - -/* Additional interrupt register bit definitions */ -#define E1000_ICR_LSECPNS 0x00000020 /* PN threshold - server */ -#define E1000_IMS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */ -#define E1000_ICS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */ - -/* ETQF register bit definitions */ -#define E1000_ETQF_FILTER_ENABLE (1 << 26) -#define E1000_ETQF_IMM_INT (1 << 29) -#define E1000_ETQF_1588 (1 << 30) -#define E1000_ETQF_QUEUE_ENABLE (1 << 31) -/* - * ETQF filter list: one static filter per filter consumer. This is - * to avoid filter collisions later. Add new filters - * here!! - * - * Current filters: - * EAPOL 802.1x (0x888e): Filter 0 - */ -#define E1000_ETQF_FILTER_EAPOL 0 - -#define E1000_FTQF_VF_BP 0x00008000 -#define E1000_FTQF_1588_TIME_STAMP 0x08000000 -#define E1000_FTQF_MASK 0xF0000000 -#define E1000_FTQF_MASK_PROTO_BP 0x10000000 -#define E1000_FTQF_MASK_SOURCE_ADDR_BP 0x20000000 -#define E1000_FTQF_MASK_DEST_ADDR_BP 0x40000000 -#define E1000_FTQF_MASK_SOURCE_PORT_BP 0x80000000 - -#define E1000_NVM_APME_82575 0x0400 -#define MAX_NUM_VFS 7 - -#define E1000_DTXSWC_MAC_SPOOF_MASK 0x000000FF /* Per VF MAC spoof cntrl */ -#define E1000_DTXSWC_VLAN_SPOOF_MASK 0x0000FF00 /* Per VF VLAN spoof cntrl */ -#define E1000_DTXSWC_LLE_MASK 0x00FF0000 /* Per VF Local LB enables */ -#define E1000_DTXSWC_VLAN_SPOOF_SHIFT 8 -#define E1000_DTXSWC_LLE_SHIFT 16 -#define E1000_DTXSWC_VMDQ_LOOPBACK_EN (1 << 31) /* global VF LB enable */ - -/* Easy defines for setting default pool, would normally be left a zero */ -#define E1000_VT_CTL_DEFAULT_POOL_SHIFT 7 -#define E1000_VT_CTL_DEFAULT_POOL_MASK (0x7 << E1000_VT_CTL_DEFAULT_POOL_SHIFT) - -/* Other useful VMD_CTL register defines */ -#define E1000_VT_CTL_IGNORE_MAC (1 << 28) -#define E1000_VT_CTL_DISABLE_DEF_POOL (1 << 29) -#define E1000_VT_CTL_VM_REPL_EN (1 << 30) - -/* Per VM Offload register setup */ -#define E1000_VMOLR_RLPML_MASK 0x00003FFF /* Long Packet Maximum Length mask */ -#define E1000_VMOLR_LPE 0x00010000 /* Accept Long packet */ -#define E1000_VMOLR_RSSE 0x00020000 /* Enable RSS */ -#define E1000_VMOLR_AUPE 0x01000000 /* Accept untagged packets */ -#define E1000_VMOLR_ROMPE 0x02000000 /* Accept overflow multicast */ -#define E1000_VMOLR_ROPE 0x04000000 /* Accept overflow unicast */ -#define E1000_VMOLR_BAM 0x08000000 /* Accept Broadcast packets */ -#define E1000_VMOLR_MPME 0x10000000 /* Multicast promiscuous mode */ -#define E1000_VMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */ -#define E1000_VMOLR_STRCRC 0x80000000 /* CRC stripping enable */ - -#define E1000_VMOLR_VPE 0x00800000 /* VLAN promiscuous enable */ -#define E1000_VMOLR_UPE 0x20000000 /* Unicast promisuous enable */ -#define E1000_DVMOLR_HIDVLAN 0x20000000 /* Vlan hiding enable */ -#define E1000_DVMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */ -#define E1000_DVMOLR_STRCRC 0x80000000 /* CRC stripping enable */ - -#define E1000_PBRWAC_WALPB 0x00000007 /* Wrap around event on LAN Rx PB */ -#define E1000_PBRWAC_PBE 0x00000008 /* Rx packet buffer empty */ - -#define E1000_VLVF_ARRAY_SIZE 32 -#define E1000_VLVF_VLANID_MASK 0x00000FFF -#define E1000_VLVF_POOLSEL_SHIFT 12 -#define E1000_VLVF_POOLSEL_MASK (0xFF << E1000_VLVF_POOLSEL_SHIFT) -#define E1000_VLVF_LVLAN 0x00100000 -#define E1000_VLVF_VLANID_ENABLE 0x80000000 - -#define E1000_VMVIR_VLANA_DEFAULT 0x40000000 /* Always use default VLAN */ -#define E1000_VMVIR_VLANA_NEVER 0x80000000 /* Never insert VLAN tag */ - -#define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */ - -#define E1000_IOVCTL 0x05BBC -#define E1000_IOVCTL_REUSE_VFQ 0x00000001 - -#define E1000_RPLOLR_STRVLAN 0x40000000 -#define E1000_RPLOLR_STRCRC 0x80000000 - -#define E1000_TCTL_EXT_COLD 0x000FFC00 -#define E1000_TCTL_EXT_COLD_SHIFT 10 - -#define E1000_DTXCTL_8023LL 0x0004 -#define E1000_DTXCTL_VLAN_ADDED 0x0008 -#define E1000_DTXCTL_OOS_ENABLE 0x0010 -#define E1000_DTXCTL_MDP_EN 0x0020 -#define E1000_DTXCTL_SPOOF_INT 0x0040 - -#define E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT (1 << 14) - -#define ALL_QUEUES 0xFFFF - -/* Rx packet buffer size defines */ -#define E1000_RXPBS_SIZE_MASK_82576 0x0000007F -void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable); -void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf); -void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable); -s32 e1000_init_nvm_params_82575(struct e1000_hw *hw); - -u16 e1000_rxpbs_adjust_82580(u32 data); -s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data); -s32 e1000_set_eee_i350(struct e1000_hw *); -s32 e1000_set_eee_i354(struct e1000_hw *); -s32 e1000_get_eee_status_i354(struct e1000_hw *, bool *); -#define E1000_I2C_THERMAL_SENSOR_ADDR 0xF8 -#define E1000_EMC_INTERNAL_DATA 0x00 -#define E1000_EMC_INTERNAL_THERM_LIMIT 0x20 -#define E1000_EMC_DIODE1_DATA 0x01 -#define E1000_EMC_DIODE1_THERM_LIMIT 0x19 -#define E1000_EMC_DIODE2_DATA 0x23 -#define E1000_EMC_DIODE2_THERM_LIMIT 0x1A -#define E1000_EMC_DIODE3_DATA 0x2A -#define E1000_EMC_DIODE3_THERM_LIMIT 0x30 - -s32 e1000_get_thermal_sensor_data_generic(struct e1000_hw *hw); -s32 e1000_init_thermal_sensor_thresh_generic(struct e1000_hw *hw); - -/* I2C SDA and SCL timing parameters for standard mode */ -#define E1000_I2C_T_HD_STA 4 -#define E1000_I2C_T_LOW 5 -#define E1000_I2C_T_HIGH 4 -#define E1000_I2C_T_SU_STA 5 -#define E1000_I2C_T_HD_DATA 5 -#define E1000_I2C_T_SU_DATA 1 -#define E1000_I2C_T_RISE 1 -#define E1000_I2C_T_FALL 1 -#define E1000_I2C_T_SU_STO 4 -#define E1000_I2C_T_BUF 5 - -s32 e1000_set_i2c_bb(struct e1000_hw *hw); -s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, - u8 dev_addr, u8 *data); -s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, - u8 dev_addr, u8 data); -void e1000_i2c_bus_clear(struct e1000_hw *hw); -#endif /* _E1000_82575_H_ */ diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_api.c b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_api.c deleted file mode 100644 index 3e54e50e..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_api.c +++ /dev/null @@ -1,1144 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#include "e1000_api.h" - -/** - * e1000_init_mac_params - Initialize MAC function pointers - * @hw: pointer to the HW structure - * - * This function initializes the function pointers for the MAC - * set of functions. Called by drivers or by e1000_setup_init_funcs. - **/ -s32 e1000_init_mac_params(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - if (hw->mac.ops.init_params) { - ret_val = hw->mac.ops.init_params(hw); - if (ret_val) { - DEBUGOUT("MAC Initialization Error\n"); - goto out; - } - } else { - DEBUGOUT("mac.init_mac_params was NULL\n"); - ret_val = -E1000_ERR_CONFIG; - } - -out: - return ret_val; -} - -/** - * e1000_init_nvm_params - Initialize NVM function pointers - * @hw: pointer to the HW structure - * - * This function initializes the function pointers for the NVM - * set of functions. Called by drivers or by e1000_setup_init_funcs. - **/ -s32 e1000_init_nvm_params(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - if (hw->nvm.ops.init_params) { - ret_val = hw->nvm.ops.init_params(hw); - if (ret_val) { - DEBUGOUT("NVM Initialization Error\n"); - goto out; - } - } else { - DEBUGOUT("nvm.init_nvm_params was NULL\n"); - ret_val = -E1000_ERR_CONFIG; - } - -out: - return ret_val; -} - -/** - * e1000_init_phy_params - Initialize PHY function pointers - * @hw: pointer to the HW structure - * - * This function initializes the function pointers for the PHY - * set of functions. Called by drivers or by e1000_setup_init_funcs. - **/ -s32 e1000_init_phy_params(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - if (hw->phy.ops.init_params) { - ret_val = hw->phy.ops.init_params(hw); - if (ret_val) { - DEBUGOUT("PHY Initialization Error\n"); - goto out; - } - } else { - DEBUGOUT("phy.init_phy_params was NULL\n"); - ret_val = -E1000_ERR_CONFIG; - } - -out: - return ret_val; -} - -/** - * e1000_init_mbx_params - Initialize mailbox function pointers - * @hw: pointer to the HW structure - * - * This function initializes the function pointers for the PHY - * set of functions. Called by drivers or by e1000_setup_init_funcs. - **/ -s32 e1000_init_mbx_params(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - if (hw->mbx.ops.init_params) { - ret_val = hw->mbx.ops.init_params(hw); - if (ret_val) { - DEBUGOUT("Mailbox Initialization Error\n"); - goto out; - } - } else { - DEBUGOUT("mbx.init_mbx_params was NULL\n"); - ret_val = -E1000_ERR_CONFIG; - } - -out: - return ret_val; -} - -/** - * e1000_set_mac_type - Sets MAC type - * @hw: pointer to the HW structure - * - * This function sets the mac type of the adapter based on the - * device ID stored in the hw structure. - * MUST BE FIRST FUNCTION CALLED (explicitly or through - * e1000_setup_init_funcs()). - **/ -s32 e1000_set_mac_type(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_set_mac_type"); - - switch (hw->device_id) { - case E1000_DEV_ID_82575EB_COPPER: - case E1000_DEV_ID_82575EB_FIBER_SERDES: - case E1000_DEV_ID_82575GB_QUAD_COPPER: - mac->type = e1000_82575; - break; - case E1000_DEV_ID_82576: - case E1000_DEV_ID_82576_FIBER: - case E1000_DEV_ID_82576_SERDES: - case E1000_DEV_ID_82576_QUAD_COPPER: - case E1000_DEV_ID_82576_QUAD_COPPER_ET2: - case E1000_DEV_ID_82576_NS: - case E1000_DEV_ID_82576_NS_SERDES: - case E1000_DEV_ID_82576_SERDES_QUAD: - mac->type = e1000_82576; - break; - case E1000_DEV_ID_82580_COPPER: - case E1000_DEV_ID_82580_FIBER: - case E1000_DEV_ID_82580_SERDES: - case E1000_DEV_ID_82580_SGMII: - case E1000_DEV_ID_82580_COPPER_DUAL: - case E1000_DEV_ID_82580_QUAD_FIBER: - case E1000_DEV_ID_DH89XXCC_SGMII: - case E1000_DEV_ID_DH89XXCC_SERDES: - case E1000_DEV_ID_DH89XXCC_BACKPLANE: - case E1000_DEV_ID_DH89XXCC_SFP: - mac->type = e1000_82580; - break; - case E1000_DEV_ID_I350_COPPER: - case E1000_DEV_ID_I350_FIBER: - case E1000_DEV_ID_I350_SERDES: - case E1000_DEV_ID_I350_SGMII: - case E1000_DEV_ID_I350_DA4: - mac->type = e1000_i350; - break; - case E1000_DEV_ID_I210_COPPER_FLASHLESS: - case E1000_DEV_ID_I210_SERDES_FLASHLESS: - case E1000_DEV_ID_I210_COPPER: - case E1000_DEV_ID_I210_COPPER_OEM1: - case E1000_DEV_ID_I210_COPPER_IT: - case E1000_DEV_ID_I210_FIBER: - case E1000_DEV_ID_I210_SERDES: - case E1000_DEV_ID_I210_SGMII: - mac->type = e1000_i210; - break; - case E1000_DEV_ID_I211_COPPER: - mac->type = e1000_i211; - break; - - case E1000_DEV_ID_I354_BACKPLANE_1GBPS: - case E1000_DEV_ID_I354_SGMII: - case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: - mac->type = e1000_i354; - break; - default: - /* Should never have loaded on this device */ - ret_val = -E1000_ERR_MAC_INIT; - break; - } - - return ret_val; -} - -/** - * e1000_setup_init_funcs - Initializes function pointers - * @hw: pointer to the HW structure - * @init_device: true will initialize the rest of the function pointers - * getting the device ready for use. false will only set - * MAC type and the function pointers for the other init - * functions. Passing false will not generate any hardware - * reads or writes. - * - * This function must be called by a driver in order to use the rest - * of the 'shared' code files. Called by drivers only. - **/ -s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) -{ - s32 ret_val; - - /* Can't do much good without knowing the MAC type. */ - ret_val = e1000_set_mac_type(hw); - if (ret_val) { - DEBUGOUT("ERROR: MAC type could not be set properly.\n"); - goto out; - } - - if (!hw->hw_addr) { - DEBUGOUT("ERROR: Registers not mapped\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - /* - * Init function pointers to generic implementations. We do this first - * allowing a driver module to override it afterward. - */ - e1000_init_mac_ops_generic(hw); - e1000_init_phy_ops_generic(hw); - e1000_init_nvm_ops_generic(hw); - e1000_init_mbx_ops_generic(hw); - - /* - * Set up the init function pointers. These are functions within the - * adapter family file that sets up function pointers for the rest of - * the functions in that family. - */ - switch (hw->mac.type) { - case e1000_82575: - case e1000_82576: - case e1000_82580: - case e1000_i350: - case e1000_i354: - e1000_init_function_pointers_82575(hw); - break; - case e1000_i210: - case e1000_i211: - e1000_init_function_pointers_i210(hw); - break; - default: - DEBUGOUT("Hardware not supported\n"); - ret_val = -E1000_ERR_CONFIG; - break; - } - - /* - * Initialize the rest of the function pointers. These require some - * register reads/writes in some cases. - */ - if (!(ret_val) && init_device) { - ret_val = e1000_init_mac_params(hw); - if (ret_val) - goto out; - - ret_val = e1000_init_nvm_params(hw); - if (ret_val) - goto out; - - ret_val = e1000_init_phy_params(hw); - if (ret_val) - goto out; - - ret_val = e1000_init_mbx_params(hw); - if (ret_val) - goto out; - } - -out: - return ret_val; -} - -/** - * e1000_get_bus_info - Obtain bus information for adapter - * @hw: pointer to the HW structure - * - * This will obtain information about the HW bus for which the - * adapter is attached and stores it in the hw structure. This is a - * function pointer entry point called by drivers. - **/ -s32 e1000_get_bus_info(struct e1000_hw *hw) -{ - if (hw->mac.ops.get_bus_info) - return hw->mac.ops.get_bus_info(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_clear_vfta - Clear VLAN filter table - * @hw: pointer to the HW structure - * - * This clears the VLAN filter table on the adapter. This is a function - * pointer entry point called by drivers. - **/ -void e1000_clear_vfta(struct e1000_hw *hw) -{ - if (hw->mac.ops.clear_vfta) - hw->mac.ops.clear_vfta(hw); -} - -/** - * e1000_write_vfta - Write value to VLAN filter table - * @hw: pointer to the HW structure - * @offset: the 32-bit offset in which to write the value to. - * @value: the 32-bit value to write at location offset. - * - * This writes a 32-bit value to a 32-bit offset in the VLAN filter - * table. This is a function pointer entry point called by drivers. - **/ -void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) -{ - if (hw->mac.ops.write_vfta) - hw->mac.ops.write_vfta(hw, offset, value); -} - -/** - * e1000_update_mc_addr_list - Update Multicast addresses - * @hw: pointer to the HW structure - * @mc_addr_list: array of multicast addresses to program - * @mc_addr_count: number of multicast addresses to program - * - * Updates the Multicast Table Array. - * The caller must have a packed mc_addr_list of multicast addresses. - **/ -void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, - u32 mc_addr_count) -{ - if (hw->mac.ops.update_mc_addr_list) - hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, - mc_addr_count); -} - -/** - * e1000_force_mac_fc - Force MAC flow control - * @hw: pointer to the HW structure - * - * Force the MAC's flow control settings. Currently no func pointer exists - * and all implementations are handled in the generic version of this - * function. - **/ -s32 e1000_force_mac_fc(struct e1000_hw *hw) -{ - return e1000_force_mac_fc_generic(hw); -} - -/** - * e1000_check_for_link - Check/Store link connection - * @hw: pointer to the HW structure - * - * This checks the link condition of the adapter and stores the - * results in the hw->mac structure. This is a function pointer entry - * point called by drivers. - **/ -s32 e1000_check_for_link(struct e1000_hw *hw) -{ - if (hw->mac.ops.check_for_link) - return hw->mac.ops.check_for_link(hw); - - return -E1000_ERR_CONFIG; -} - -/** - * e1000_check_mng_mode - Check management mode - * @hw: pointer to the HW structure - * - * This checks if the adapter has manageability enabled. - * This is a function pointer entry point called by drivers. - **/ -bool e1000_check_mng_mode(struct e1000_hw *hw) -{ - if (hw->mac.ops.check_mng_mode) - return hw->mac.ops.check_mng_mode(hw); - - return false; -} - -/** - * e1000_mng_write_dhcp_info - Writes DHCP info to host interface - * @hw: pointer to the HW structure - * @buffer: pointer to the host interface - * @length: size of the buffer - * - * Writes the DHCP information to the host interface. - **/ -s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) -{ - return e1000_mng_write_dhcp_info_generic(hw, buffer, length); -} - -/** - * e1000_reset_hw - Reset hardware - * @hw: pointer to the HW structure - * - * This resets the hardware into a known state. This is a function pointer - * entry point called by drivers. - **/ -s32 e1000_reset_hw(struct e1000_hw *hw) -{ - if (hw->mac.ops.reset_hw) - return hw->mac.ops.reset_hw(hw); - - return -E1000_ERR_CONFIG; -} - -/** - * e1000_init_hw - Initialize hardware - * @hw: pointer to the HW structure - * - * This inits the hardware readying it for operation. This is a function - * pointer entry point called by drivers. - **/ -s32 e1000_init_hw(struct e1000_hw *hw) -{ - if (hw->mac.ops.init_hw) - return hw->mac.ops.init_hw(hw); - - return -E1000_ERR_CONFIG; -} - -/** - * e1000_setup_link - Configures link and flow control - * @hw: pointer to the HW structure - * - * This configures link and flow control settings for the adapter. This - * is a function pointer entry point called by drivers. While modules can - * also call this, they probably call their own version of this function. - **/ -s32 e1000_setup_link(struct e1000_hw *hw) -{ - if (hw->mac.ops.setup_link) - return hw->mac.ops.setup_link(hw); - - return -E1000_ERR_CONFIG; -} - -/** - * e1000_get_speed_and_duplex - Returns current speed and duplex - * @hw: pointer to the HW structure - * @speed: pointer to a 16-bit value to store the speed - * @duplex: pointer to a 16-bit value to store the duplex. - * - * This returns the speed and duplex of the adapter in the two 'out' - * variables passed in. This is a function pointer entry point called - * by drivers. - **/ -s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) -{ - if (hw->mac.ops.get_link_up_info) - return hw->mac.ops.get_link_up_info(hw, speed, duplex); - - return -E1000_ERR_CONFIG; -} - -/** - * e1000_setup_led - Configures SW controllable LED - * @hw: pointer to the HW structure - * - * This prepares the SW controllable LED for use and saves the current state - * of the LED so it can be later restored. This is a function pointer entry - * point called by drivers. - **/ -s32 e1000_setup_led(struct e1000_hw *hw) -{ - if (hw->mac.ops.setup_led) - return hw->mac.ops.setup_led(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_cleanup_led - Restores SW controllable LED - * @hw: pointer to the HW structure - * - * This restores the SW controllable LED to the value saved off by - * e1000_setup_led. This is a function pointer entry point called by drivers. - **/ -s32 e1000_cleanup_led(struct e1000_hw *hw) -{ - if (hw->mac.ops.cleanup_led) - return hw->mac.ops.cleanup_led(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_blink_led - Blink SW controllable LED - * @hw: pointer to the HW structure - * - * This starts the adapter LED blinking. Request the LED to be setup first - * and cleaned up after. This is a function pointer entry point called by - * drivers. - **/ -s32 e1000_blink_led(struct e1000_hw *hw) -{ - if (hw->mac.ops.blink_led) - return hw->mac.ops.blink_led(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_id_led_init - store LED configurations in SW - * @hw: pointer to the HW structure - * - * Initializes the LED config in SW. This is a function pointer entry point - * called by drivers. - **/ -s32 e1000_id_led_init(struct e1000_hw *hw) -{ - if (hw->mac.ops.id_led_init) - return hw->mac.ops.id_led_init(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_led_on - Turn on SW controllable LED - * @hw: pointer to the HW structure - * - * Turns the SW defined LED on. This is a function pointer entry point - * called by drivers. - **/ -s32 e1000_led_on(struct e1000_hw *hw) -{ - if (hw->mac.ops.led_on) - return hw->mac.ops.led_on(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_led_off - Turn off SW controllable LED - * @hw: pointer to the HW structure - * - * Turns the SW defined LED off. This is a function pointer entry point - * called by drivers. - **/ -s32 e1000_led_off(struct e1000_hw *hw) -{ - if (hw->mac.ops.led_off) - return hw->mac.ops.led_off(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_reset_adaptive - Reset adaptive IFS - * @hw: pointer to the HW structure - * - * Resets the adaptive IFS. Currently no func pointer exists and all - * implementations are handled in the generic version of this function. - **/ -void e1000_reset_adaptive(struct e1000_hw *hw) -{ - e1000_reset_adaptive_generic(hw); -} - -/** - * e1000_update_adaptive - Update adaptive IFS - * @hw: pointer to the HW structure - * - * Updates adapter IFS. Currently no func pointer exists and all - * implementations are handled in the generic version of this function. - **/ -void e1000_update_adaptive(struct e1000_hw *hw) -{ - e1000_update_adaptive_generic(hw); -} - -/** - * e1000_disable_pcie_master - Disable PCI-Express master access - * @hw: pointer to the HW structure - * - * Disables PCI-Express master access and verifies there are no pending - * requests. Currently no func pointer exists and all implementations are - * handled in the generic version of this function. - **/ -s32 e1000_disable_pcie_master(struct e1000_hw *hw) -{ - return e1000_disable_pcie_master_generic(hw); -} - -/** - * e1000_config_collision_dist - Configure collision distance - * @hw: pointer to the HW structure - * - * Configures the collision distance to the default value and is used - * during link setup. - **/ -void e1000_config_collision_dist(struct e1000_hw *hw) -{ - if (hw->mac.ops.config_collision_dist) - hw->mac.ops.config_collision_dist(hw); -} - -/** - * e1000_rar_set - Sets a receive address register - * @hw: pointer to the HW structure - * @addr: address to set the RAR to - * @index: the RAR to set - * - * Sets a Receive Address Register (RAR) to the specified address. - **/ -void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) -{ - if (hw->mac.ops.rar_set) - hw->mac.ops.rar_set(hw, addr, index); -} - -/** - * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state - * @hw: pointer to the HW structure - * - * Ensures that the MDI/MDIX SW state is valid. - **/ -s32 e1000_validate_mdi_setting(struct e1000_hw *hw) -{ - if (hw->mac.ops.validate_mdi_setting) - return hw->mac.ops.validate_mdi_setting(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_hash_mc_addr - Determines address location in multicast table - * @hw: pointer to the HW structure - * @mc_addr: Multicast address to hash. - * - * This hashes an address to determine its location in the multicast - * table. Currently no func pointer exists and all implementations - * are handled in the generic version of this function. - **/ -u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) -{ - return e1000_hash_mc_addr_generic(hw, mc_addr); -} - -/** - * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX - * @hw: pointer to the HW structure - * - * Enables packet filtering on transmit packets if manageability is enabled - * and host interface is enabled. - * Currently no func pointer exists and all implementations are handled in the - * generic version of this function. - **/ -bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) -{ - return e1000_enable_tx_pkt_filtering_generic(hw); -} - -/** - * e1000_mng_host_if_write - Writes to the manageability host interface - * @hw: pointer to the HW structure - * @buffer: pointer to the host interface buffer - * @length: size of the buffer - * @offset: location in the buffer to write to - * @sum: sum of the data (not checksum) - * - * This function writes the buffer content at the offset given on the host if. - * It also does alignment considerations to do the writes in most efficient - * way. Also fills up the sum of the buffer in *buffer parameter. - **/ -s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, - u16 offset, u8 *sum) -{ - return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); -} - -/** - * e1000_mng_write_cmd_header - Writes manageability command header - * @hw: pointer to the HW structure - * @hdr: pointer to the host interface command header - * - * Writes the command header after does the checksum calculation. - **/ -s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, - struct e1000_host_mng_command_header *hdr) -{ - return e1000_mng_write_cmd_header_generic(hw, hdr); -} - -/** - * e1000_mng_enable_host_if - Checks host interface is enabled - * @hw: pointer to the HW structure - * - * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND - * - * This function checks whether the HOST IF is enabled for command operation - * and also checks whether the previous command is completed. It busy waits - * in case of previous command is not completed. - **/ -s32 e1000_mng_enable_host_if(struct e1000_hw *hw) -{ - return e1000_mng_enable_host_if_generic(hw); -} - -/** - * e1000_check_reset_block - Verifies PHY can be reset - * @hw: pointer to the HW structure - * - * Checks if the PHY is in a state that can be reset or if manageability - * has it tied up. This is a function pointer entry point called by drivers. - **/ -s32 e1000_check_reset_block(struct e1000_hw *hw) -{ - if (hw->phy.ops.check_reset_block) - return hw->phy.ops.check_reset_block(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_read_phy_reg - Reads PHY register - * @hw: pointer to the HW structure - * @offset: the register to read - * @data: the buffer to store the 16-bit read. - * - * Reads the PHY register and returns the value in data. - * This is a function pointer entry point called by drivers. - **/ -s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) -{ - if (hw->phy.ops.read_reg) - return hw->phy.ops.read_reg(hw, offset, data); - - return E1000_SUCCESS; -} - -/** - * e1000_write_phy_reg - Writes PHY register - * @hw: pointer to the HW structure - * @offset: the register to write - * @data: the value to write. - * - * Writes the PHY register at offset with the value in data. - * This is a function pointer entry point called by drivers. - **/ -s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) -{ - if (hw->phy.ops.write_reg) - return hw->phy.ops.write_reg(hw, offset, data); - - return E1000_SUCCESS; -} - -/** - * e1000_release_phy - Generic release PHY - * @hw: pointer to the HW structure - * - * Return if silicon family does not require a semaphore when accessing the - * PHY. - **/ -void e1000_release_phy(struct e1000_hw *hw) -{ - if (hw->phy.ops.release) - hw->phy.ops.release(hw); -} - -/** - * e1000_acquire_phy - Generic acquire PHY - * @hw: pointer to the HW structure - * - * Return success if silicon family does not require a semaphore when - * accessing the PHY. - **/ -s32 e1000_acquire_phy(struct e1000_hw *hw) -{ - if (hw->phy.ops.acquire) - return hw->phy.ops.acquire(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_read_kmrn_reg - Reads register using Kumeran interface - * @hw: pointer to the HW structure - * @offset: the register to read - * @data: the location to store the 16-bit value read. - * - * Reads a register out of the Kumeran interface. Currently no func pointer - * exists and all implementations are handled in the generic version of - * this function. - **/ -s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return e1000_read_kmrn_reg_generic(hw, offset, data); -} - -/** - * e1000_write_kmrn_reg - Writes register using Kumeran interface - * @hw: pointer to the HW structure - * @offset: the register to write - * @data: the value to write. - * - * Writes a register to the Kumeran interface. Currently no func pointer - * exists and all implementations are handled in the generic version of - * this function. - **/ -s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) -{ - return e1000_write_kmrn_reg_generic(hw, offset, data); -} - -/** - * e1000_get_cable_length - Retrieves cable length estimation - * @hw: pointer to the HW structure - * - * This function estimates the cable length and stores them in - * hw->phy.min_length and hw->phy.max_length. This is a function pointer - * entry point called by drivers. - **/ -s32 e1000_get_cable_length(struct e1000_hw *hw) -{ - if (hw->phy.ops.get_cable_length) - return hw->phy.ops.get_cable_length(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_get_phy_info - Retrieves PHY information from registers - * @hw: pointer to the HW structure - * - * This function gets some information from various PHY registers and - * populates hw->phy values with it. This is a function pointer entry - * point called by drivers. - **/ -s32 e1000_get_phy_info(struct e1000_hw *hw) -{ - if (hw->phy.ops.get_info) - return hw->phy.ops.get_info(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_phy_hw_reset - Hard PHY reset - * @hw: pointer to the HW structure - * - * Performs a hard PHY reset. This is a function pointer entry point called - * by drivers. - **/ -s32 e1000_phy_hw_reset(struct e1000_hw *hw) -{ - if (hw->phy.ops.reset) - return hw->phy.ops.reset(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_phy_commit - Soft PHY reset - * @hw: pointer to the HW structure - * - * Performs a soft PHY reset on those that apply. This is a function pointer - * entry point called by drivers. - **/ -s32 e1000_phy_commit(struct e1000_hw *hw) -{ - if (hw->phy.ops.commit) - return hw->phy.ops.commit(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_set_d0_lplu_state - Sets low power link up state for D0 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * Success returns 0, Failure returns 1 - * - * The low power link up (lplu) state is set to the power management level D0 - * and SmartSpeed is disabled when active is true, else clear lplu for D0 - * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. This is a function pointer entry point called by drivers. - **/ -s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) -{ - if (hw->phy.ops.set_d0_lplu_state) - return hw->phy.ops.set_d0_lplu_state(hw, active); - - return E1000_SUCCESS; -} - -/** - * e1000_set_d3_lplu_state - Sets low power link up state for D3 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * Success returns 0, Failure returns 1 - * - * The low power link up (lplu) state is set to the power management level D3 - * and SmartSpeed is disabled when active is true, else clear lplu for D3 - * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. This is a function pointer entry point called by drivers. - **/ -s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) -{ - if (hw->phy.ops.set_d3_lplu_state) - return hw->phy.ops.set_d3_lplu_state(hw, active); - - return E1000_SUCCESS; -} - -/** - * e1000_read_mac_addr - Reads MAC address - * @hw: pointer to the HW structure - * - * Reads the MAC address out of the adapter and stores it in the HW structure. - * Currently no func pointer exists and all implementations are handled in the - * generic version of this function. - **/ -s32 e1000_read_mac_addr(struct e1000_hw *hw) -{ - if (hw->mac.ops.read_mac_addr) - return hw->mac.ops.read_mac_addr(hw); - - return e1000_read_mac_addr_generic(hw); -} - -/** - * e1000_read_pba_string - Read device part number string - * @hw: pointer to the HW structure - * @pba_num: pointer to device part number - * @pba_num_size: size of part number buffer - * - * Reads the product board assembly (PBA) number from the EEPROM and stores - * the value in pba_num. - * Currently no func pointer exists and all implementations are handled in the - * generic version of this function. - **/ -s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) -{ - return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); -} - -/** - * e1000_read_pba_length - Read device part number string length - * @hw: pointer to the HW structure - * @pba_num_size: size of part number buffer - * - * Reads the product board assembly (PBA) number length from the EEPROM and - * stores the value in pba_num. - * Currently no func pointer exists and all implementations are handled in the - * generic version of this function. - **/ -s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) -{ - return e1000_read_pba_length_generic(hw, pba_num_size); -} - -/** - * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum - * @hw: pointer to the HW structure - * - * Validates the NVM checksum is correct. This is a function pointer entry - * point called by drivers. - **/ -s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) -{ - if (hw->nvm.ops.validate) - return hw->nvm.ops.validate(hw); - - return -E1000_ERR_CONFIG; -} - -/** - * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum - * @hw: pointer to the HW structure - * - * Updates the NVM checksum. Currently no func pointer exists and all - * implementations are handled in the generic version of this function. - **/ -s32 e1000_update_nvm_checksum(struct e1000_hw *hw) -{ - if (hw->nvm.ops.update) - return hw->nvm.ops.update(hw); - - return -E1000_ERR_CONFIG; -} - -/** - * e1000_reload_nvm - Reloads EEPROM - * @hw: pointer to the HW structure - * - * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the - * extended control register. - **/ -void e1000_reload_nvm(struct e1000_hw *hw) -{ - if (hw->nvm.ops.reload) - hw->nvm.ops.reload(hw); -} - -/** - * e1000_read_nvm - Reads NVM (EEPROM) - * @hw: pointer to the HW structure - * @offset: the word offset to read - * @words: number of 16-bit words to read - * @data: pointer to the properly sized buffer for the data. - * - * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function - * pointer entry point called by drivers. - **/ -s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - if (hw->nvm.ops.read) - return hw->nvm.ops.read(hw, offset, words, data); - - return -E1000_ERR_CONFIG; -} - -/** - * e1000_write_nvm - Writes to NVM (EEPROM) - * @hw: pointer to the HW structure - * @offset: the word offset to read - * @words: number of 16-bit words to write - * @data: pointer to the properly sized buffer for the data. - * - * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function - * pointer entry point called by drivers. - **/ -s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - if (hw->nvm.ops.write) - return hw->nvm.ops.write(hw, offset, words, data); - - return E1000_SUCCESS; -} - -/** - * e1000_write_8bit_ctrl_reg - Writes 8bit Control register - * @hw: pointer to the HW structure - * @reg: 32bit register offset - * @offset: the register to write - * @data: the value to write. - * - * Writes the PHY register at offset with the value in data. - * This is a function pointer entry point called by drivers. - **/ -s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, - u8 data) -{ - return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); -} - -/** - * e1000_power_up_phy - Restores link in case of PHY power down - * @hw: pointer to the HW structure - * - * The phy may be powered down to save power, to turn off link when the - * driver is unloaded, or wake on lan is not enabled (among others). - **/ -void e1000_power_up_phy(struct e1000_hw *hw) -{ - if (hw->phy.ops.power_up) - hw->phy.ops.power_up(hw); - - e1000_setup_link(hw); -} - -/** - * e1000_power_down_phy - Power down PHY - * @hw: pointer to the HW structure - * - * The phy may be powered down to save power, to turn off link when the - * driver is unloaded, or wake on lan is not enabled (among others). - **/ -void e1000_power_down_phy(struct e1000_hw *hw) -{ - if (hw->phy.ops.power_down) - hw->phy.ops.power_down(hw); -} - -/** - * e1000_power_up_fiber_serdes_link - Power up serdes link - * @hw: pointer to the HW structure - * - * Power on the optics and PCS. - **/ -void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) -{ - if (hw->mac.ops.power_up_serdes) - hw->mac.ops.power_up_serdes(hw); -} - -/** - * e1000_shutdown_fiber_serdes_link - Remove link during power down - * @hw: pointer to the HW structure - * - * Shutdown the optics and PCS on driver unload. - **/ -void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) -{ - if (hw->mac.ops.shutdown_serdes) - hw->mac.ops.shutdown_serdes(hw); -} - -/** - * e1000_get_thermal_sensor_data - Gathers thermal sensor data - * @hw: pointer to hardware structure - * - * Updates the temperatures in mac.thermal_sensor_data - **/ -s32 e1000_get_thermal_sensor_data(struct e1000_hw *hw) -{ - if (hw->mac.ops.get_thermal_sensor_data) - return hw->mac.ops.get_thermal_sensor_data(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_init_thermal_sensor_thresh - Sets thermal sensor thresholds - * @hw: pointer to hardware structure - * - * Sets the thermal sensor thresholds according to the NVM map - **/ -s32 e1000_init_thermal_sensor_thresh(struct e1000_hw *hw) -{ - if (hw->mac.ops.init_thermal_sensor_thresh) - return hw->mac.ops.init_thermal_sensor_thresh(hw); - - return E1000_SUCCESS; -} diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_api.h b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_api.h deleted file mode 100644 index 0bc00acd..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_api.h +++ /dev/null @@ -1,142 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#ifndef _E1000_API_H_ -#define _E1000_API_H_ - -#include "e1000_hw.h" - -extern void e1000_init_function_pointers_82575(struct e1000_hw *hw); -extern void e1000_rx_fifo_flush_82575(struct e1000_hw *hw); -extern void e1000_init_function_pointers_vf(struct e1000_hw *hw); -extern void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw); -extern void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw); -extern void e1000_init_function_pointers_i210(struct e1000_hw *hw); - -s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr); -s32 e1000_set_mac_type(struct e1000_hw *hw); -s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device); -s32 e1000_init_mac_params(struct e1000_hw *hw); -s32 e1000_init_nvm_params(struct e1000_hw *hw); -s32 e1000_init_phy_params(struct e1000_hw *hw); -s32 e1000_init_mbx_params(struct e1000_hw *hw); -s32 e1000_get_bus_info(struct e1000_hw *hw); -void e1000_clear_vfta(struct e1000_hw *hw); -void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value); -s32 e1000_force_mac_fc(struct e1000_hw *hw); -s32 e1000_check_for_link(struct e1000_hw *hw); -s32 e1000_reset_hw(struct e1000_hw *hw); -s32 e1000_init_hw(struct e1000_hw *hw); -s32 e1000_setup_link(struct e1000_hw *hw); -s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex); -s32 e1000_disable_pcie_master(struct e1000_hw *hw); -void e1000_config_collision_dist(struct e1000_hw *hw); -void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index); -u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr); -void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, - u32 mc_addr_count); -s32 e1000_setup_led(struct e1000_hw *hw); -s32 e1000_cleanup_led(struct e1000_hw *hw); -s32 e1000_check_reset_block(struct e1000_hw *hw); -s32 e1000_blink_led(struct e1000_hw *hw); -s32 e1000_led_on(struct e1000_hw *hw); -s32 e1000_led_off(struct e1000_hw *hw); -s32 e1000_id_led_init(struct e1000_hw *hw); -void e1000_reset_adaptive(struct e1000_hw *hw); -void e1000_update_adaptive(struct e1000_hw *hw); -s32 e1000_get_cable_length(struct e1000_hw *hw); -s32 e1000_validate_mdi_setting(struct e1000_hw *hw); -s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, - u8 data); -s32 e1000_get_phy_info(struct e1000_hw *hw); -void e1000_release_phy(struct e1000_hw *hw); -s32 e1000_acquire_phy(struct e1000_hw *hw); -s32 e1000_phy_hw_reset(struct e1000_hw *hw); -s32 e1000_phy_commit(struct e1000_hw *hw); -void e1000_power_up_phy(struct e1000_hw *hw); -void e1000_power_down_phy(struct e1000_hw *hw); -s32 e1000_read_mac_addr(struct e1000_hw *hw); -s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size); -s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size); -void e1000_reload_nvm(struct e1000_hw *hw); -s32 e1000_update_nvm_checksum(struct e1000_hw *hw); -s32 e1000_validate_nvm_checksum(struct e1000_hw *hw); -s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); -s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); -bool e1000_check_mng_mode(struct e1000_hw *hw); -bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw); -s32 e1000_mng_enable_host_if(struct e1000_hw *hw); -s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, - u16 offset, u8 *sum); -s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, - struct e1000_host_mng_command_header *hdr); -s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length); -s32 e1000_get_thermal_sensor_data(struct e1000_hw *hw); -s32 e1000_init_thermal_sensor_thresh(struct e1000_hw *hw); - - - -/* - * TBI_ACCEPT macro definition: - * - * This macro requires: - * adapter = a pointer to struct e1000_hw - * status = the 8 bit status field of the Rx descriptor with EOP set - * error = the 8 bit error field of the Rx descriptor with EOP set - * length = the sum of all the length fields of the Rx descriptors that - * make up the current frame - * last_byte = the last byte of the frame DMAed by the hardware - * max_frame_length = the maximum frame length we want to accept. - * min_frame_length = the minimum frame length we want to accept. - * - * This macro is a conditional that should be used in the interrupt - * handler's Rx processing routine when RxErrors have been detected. - * - * Typical use: - * ... - * if (TBI_ACCEPT) { - * accept_frame = true; - * e1000_tbi_adjust_stats(adapter, MacAddress); - * frame_length--; - * } else { - * accept_frame = false; - * } - * ... - */ - -/* The carrier extension symbol, as received by the NIC. */ -#define CARRIER_EXTENSION 0x0F - -#define TBI_ACCEPT(a, status, errors, length, last_byte, \ - min_frame_size, max_frame_size) \ - (e1000_tbi_sbp_enabled_82543(a) && \ - (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \ - ((last_byte) == CARRIER_EXTENSION) && \ - (((status) & E1000_RXD_STAT_VP) ? \ - (((length) > (min_frame_size - VLAN_TAG_SIZE)) && \ - ((length) <= (max_frame_size + 1))) : \ - (((length) > min_frame_size) && \ - ((length) <= (max_frame_size + VLAN_TAG_SIZE + 1))))) - -#ifndef E1000_MAX -#define E1000_MAX(a, b) ((a) > (b) ? (a) : (b)) -#endif -#ifndef E1000_DIVIDE_ROUND_UP -#define E1000_DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b)) /* ceil(a/b) */ -#endif -#endif /* _E1000_API_H_ */ diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_defines.h b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_defines.h deleted file mode 100644 index b39aaf80..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_defines.h +++ /dev/null @@ -1,1365 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#ifndef _E1000_DEFINES_H_ -#define _E1000_DEFINES_H_ - -/* Number of Transmit and Receive Descriptors must be a multiple of 8 */ -#define REQ_TX_DESCRIPTOR_MULTIPLE 8 -#define REQ_RX_DESCRIPTOR_MULTIPLE 8 - -/* Definitions for power management and wakeup registers */ -/* Wake Up Control */ -#define E1000_WUC_APME 0x00000001 /* APM Enable */ -#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ -#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */ -#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */ -#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */ - -/* Wake Up Filter Control */ -#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ -#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ -#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ -#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ -#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ -#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ -#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ -#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ - -/* Wake Up Status */ -#define E1000_WUS_LNKC E1000_WUFC_LNKC -#define E1000_WUS_MAG E1000_WUFC_MAG -#define E1000_WUS_EX E1000_WUFC_EX -#define E1000_WUS_MC E1000_WUFC_MC -#define E1000_WUS_BC E1000_WUFC_BC - -/* Extended Device Control */ -#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* SW Definable Pin 4 data */ -#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* SW Definable Pin 6 data */ -#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* SW Definable Pin 3 data */ -#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ -#define E1000_CTRL_EXT_SDP3_DIR 0x00000800 /* Direction of SDP3 0=in 1=out */ -#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ -/* Physical Func Reset Done Indication */ -#define E1000_CTRL_EXT_PFRSTD 0x00004000 -#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ -#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */ -#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clk Gating */ -#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 -/* Offset of the link mode field in Ctrl Ext register */ -#define E1000_CTRL_EXT_LINK_MODE_OFFSET 22 -#define E1000_CTRL_EXT_LINK_MODE_1000BASE_KX 0x00400000 -#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 -#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000 -#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000 -#define E1000_CTRL_EXT_EIAME 0x01000000 -#define E1000_CTRL_EXT_IRCA 0x00000001 -#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Drv loaded bit for FW */ -#define E1000_CTRL_EXT_IAME 0x08000000 /* Int ACK Auto-mask */ -#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */ -#define E1000_I2CCMD_REG_ADDR_SHIFT 16 -#define E1000_I2CCMD_PHY_ADDR_SHIFT 24 -#define E1000_I2CCMD_OPCODE_READ 0x08000000 -#define E1000_I2CCMD_OPCODE_WRITE 0x00000000 -#define E1000_I2CCMD_READY 0x20000000 -#define E1000_I2CCMD_ERROR 0x80000000 -#define E1000_I2CCMD_SFP_DATA_ADDR(a) (0x0000 + (a)) -#define E1000_I2CCMD_SFP_DIAG_ADDR(a) (0x0100 + (a)) -#define E1000_MAX_SGMII_PHY_REG_ADDR 255 -#define E1000_I2CCMD_PHY_TIMEOUT 200 -#define E1000_IVAR_VALID 0x80 -#define E1000_GPIE_NSICR 0x00000001 -#define E1000_GPIE_MSIX_MODE 0x00000010 -#define E1000_GPIE_EIAME 0x40000000 -#define E1000_GPIE_PBA 0x80000000 - -/* Receive Descriptor bit definitions */ -#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ -#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ -#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ -#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ -#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */ -#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ -#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ -#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ -#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */ -#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */ -#define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */ -#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ -#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ -#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ -#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ -#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ -#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ -#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ -#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ - -#define E1000_RXDEXT_STATERR_TST 0x00000100 /* Time Stamp taken */ -#define E1000_RXDEXT_STATERR_LB 0x00040000 -#define E1000_RXDEXT_STATERR_CE 0x01000000 -#define E1000_RXDEXT_STATERR_SE 0x02000000 -#define E1000_RXDEXT_STATERR_SEQ 0x04000000 -#define E1000_RXDEXT_STATERR_CXE 0x10000000 -#define E1000_RXDEXT_STATERR_TCPE 0x20000000 -#define E1000_RXDEXT_STATERR_IPE 0x40000000 -#define E1000_RXDEXT_STATERR_RXE 0x80000000 - -/* mask to determine if packets should be dropped due to frame errors */ -#define E1000_RXD_ERR_FRAME_ERR_MASK ( \ - E1000_RXD_ERR_CE | \ - E1000_RXD_ERR_SE | \ - E1000_RXD_ERR_SEQ | \ - E1000_RXD_ERR_CXE | \ - E1000_RXD_ERR_RXE) - -/* Same mask, but for extended and packet split descriptors */ -#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ - E1000_RXDEXT_STATERR_CE | \ - E1000_RXDEXT_STATERR_SE | \ - E1000_RXDEXT_STATERR_SEQ | \ - E1000_RXDEXT_STATERR_CXE | \ - E1000_RXDEXT_STATERR_RXE) - -#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 -#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 -#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 -#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000 -#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 -#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000 - -#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000 - -/* Management Control */ -#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ -#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ -#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ -#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ -#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ -/* Enable MAC address filtering */ -#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 -/* Enable MNG packets to host memory */ -#define E1000_MANC_EN_MNG2HOST 0x00200000 - -#define E1000_MANC2H_PORT_623 0x00000020 /* Port 0x26f */ -#define E1000_MANC2H_PORT_664 0x00000040 /* Port 0x298 */ -#define E1000_MDEF_PORT_623 0x00000800 /* Port 0x26f */ -#define E1000_MDEF_PORT_664 0x00000400 /* Port 0x298 */ - -/* Receive Control */ -#define E1000_RCTL_RST 0x00000001 /* Software reset */ -#define E1000_RCTL_EN 0x00000002 /* enable */ -#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ -#define E1000_RCTL_UPE 0x00000008 /* unicast promisc enable */ -#define E1000_RCTL_MPE 0x00000010 /* multicast promisc enable */ -#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ -#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ -#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ -#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ -#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ -#define E1000_RCTL_RDMTS_HALF 0x00000000 /* Rx desc min thresh size */ -#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ -#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ -#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ -/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ -#define E1000_RCTL_SZ_2048 0x00000000 /* Rx buffer size 2048 */ -#define E1000_RCTL_SZ_1024 0x00010000 /* Rx buffer size 1024 */ -#define E1000_RCTL_SZ_512 0x00020000 /* Rx buffer size 512 */ -#define E1000_RCTL_SZ_256 0x00030000 /* Rx buffer size 256 */ -/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ -#define E1000_RCTL_SZ_16384 0x00010000 /* Rx buffer size 16384 */ -#define E1000_RCTL_SZ_8192 0x00020000 /* Rx buffer size 8192 */ -#define E1000_RCTL_SZ_4096 0x00030000 /* Rx buffer size 4096 */ -#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ -#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ -#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ -#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ -#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ -#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ -#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ - -/* Use byte values for the following shift parameters - * Usage: - * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & - * E1000_PSRCTL_BSIZE0_MASK) | - * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & - * E1000_PSRCTL_BSIZE1_MASK) | - * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & - * E1000_PSRCTL_BSIZE2_MASK) | - * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; - * E1000_PSRCTL_BSIZE3_MASK)) - * where value0 = [128..16256], default=256 - * value1 = [1024..64512], default=4096 - * value2 = [0..64512], default=4096 - * value3 = [0..64512], default=0 - */ - -#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F -#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 -#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 -#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 - -#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ -#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ -#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ -#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ - -/* SWFW_SYNC Definitions */ -#define E1000_SWFW_EEP_SM 0x01 -#define E1000_SWFW_PHY0_SM 0x02 -#define E1000_SWFW_PHY1_SM 0x04 -#define E1000_SWFW_CSR_SM 0x08 -#define E1000_SWFW_PHY2_SM 0x20 -#define E1000_SWFW_PHY3_SM 0x40 -#define E1000_SWFW_SW_MNG_SM 0x400 - -/* Device Control */ -#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ -#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ -#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master reqs */ -#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ -#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ -#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ -#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ -#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ -#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ -#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ -#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ -#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ -#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ -#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ -#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ -#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ -#define E1000_CTRL_ADVD3WUC 0x00100000 /* D3 WUC */ -#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ -#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ -#define E1000_CTRL_RST 0x04000000 /* Global reset */ -#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ -#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ -#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ -#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ -#define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */ - - -#define E1000_CONNSW_ENRGSRC 0x4 -#define E1000_CONNSW_PHYSD 0x400 -#define E1000_CONNSW_PHY_PDN 0x800 -#define E1000_CONNSW_SERDESD 0x200 -#define E1000_CONNSW_AUTOSENSE_CONF 0x2 -#define E1000_CONNSW_AUTOSENSE_EN 0x1 -#define E1000_PCS_CFG_PCS_EN 8 -#define E1000_PCS_LCTL_FLV_LINK_UP 1 -#define E1000_PCS_LCTL_FSV_10 0 -#define E1000_PCS_LCTL_FSV_100 2 -#define E1000_PCS_LCTL_FSV_1000 4 -#define E1000_PCS_LCTL_FDV_FULL 8 -#define E1000_PCS_LCTL_FSD 0x10 -#define E1000_PCS_LCTL_FORCE_LINK 0x20 -#define E1000_PCS_LCTL_FORCE_FCTRL 0x80 -#define E1000_PCS_LCTL_AN_ENABLE 0x10000 -#define E1000_PCS_LCTL_AN_RESTART 0x20000 -#define E1000_PCS_LCTL_AN_TIMEOUT 0x40000 -#define E1000_ENABLE_SERDES_LOOPBACK 0x0410 - -#define E1000_PCS_LSTS_LINK_OK 1 -#define E1000_PCS_LSTS_SPEED_100 2 -#define E1000_PCS_LSTS_SPEED_1000 4 -#define E1000_PCS_LSTS_DUPLEX_FULL 8 -#define E1000_PCS_LSTS_SYNK_OK 0x10 -#define E1000_PCS_LSTS_AN_COMPLETE 0x10000 - -/* Device Status */ -#define E1000_STATUS_FD 0x00000001 /* Duplex 0=half 1=full */ -#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ -#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ -#define E1000_STATUS_FUNC_SHIFT 2 -#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ -#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ -#define E1000_STATUS_SPEED_MASK 0x000000C0 -#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ -#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ -#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ -#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Compltn by NVM */ -#define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */ -#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Master request status */ -#define E1000_STATUS_2P5_SKU 0x00001000 /* Val of 2.5GBE SKU strap */ -#define E1000_STATUS_2P5_SKU_OVER 0x00002000 /* Val of 2.5GBE SKU Over */ - -#define SPEED_10 10 -#define SPEED_100 100 -#define SPEED_1000 1000 -#define SPEED_2500 2500 -#define HALF_DUPLEX 1 -#define FULL_DUPLEX 2 - - -#define ADVERTISE_10_HALF 0x0001 -#define ADVERTISE_10_FULL 0x0002 -#define ADVERTISE_100_HALF 0x0004 -#define ADVERTISE_100_FULL 0x0008 -#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */ -#define ADVERTISE_1000_FULL 0x0020 - -/* 1000/H is not supported, nor spec-compliant. */ -#define E1000_ALL_SPEED_DUPLEX ( \ - ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \ - ADVERTISE_100_FULL | ADVERTISE_1000_FULL) -#define E1000_ALL_NOT_GIG ( \ - ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \ - ADVERTISE_100_FULL) -#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL) -#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL) -#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF) - -#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX - -/* LED Control */ -#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F -#define E1000_LEDCTL_LED0_MODE_SHIFT 0 -#define E1000_LEDCTL_LED0_IVRT 0x00000040 -#define E1000_LEDCTL_LED0_BLINK 0x00000080 - -#define E1000_LEDCTL_MODE_LED_ON 0xE -#define E1000_LEDCTL_MODE_LED_OFF 0xF - -/* Transmit Descriptor bit definitions */ -#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ -#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ -#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ -#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ -#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ -#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ -#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ -#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ -#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ -#define E1000_TXD_CMD_DEXT 0x20000000 /* Desc extension (0 = legacy) */ -#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ -#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ -#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ -#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ -#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ -#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ -#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ -#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ -#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ -#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ -#define E1000_TXD_EXTCMD_TSTAMP 0x00000010 /* IEEE1588 Timestamp packet */ - -/* Transmit Control */ -#define E1000_TCTL_EN 0x00000002 /* enable Tx */ -#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ -#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ -#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ -#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ -#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ - -/* Transmit Arbitration Count */ -#define E1000_TARC0_ENABLE 0x00000400 /* Enable Tx Queue 0 */ - -/* SerDes Control */ -#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400 -#define E1000_SCTL_ENABLE_SERDES_LOOPBACK 0x0410 - -/* Receive Checksum Control */ -#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ -#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ -#define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */ -#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ -#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ - -/* Header split receive */ -#define E1000_RFCTL_NFSW_DIS 0x00000040 -#define E1000_RFCTL_NFSR_DIS 0x00000080 -#define E1000_RFCTL_ACK_DIS 0x00001000 -#define E1000_RFCTL_EXTEN 0x00008000 -#define E1000_RFCTL_IPV6_EX_DIS 0x00010000 -#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000 -#define E1000_RFCTL_LEF 0x00040000 - -/* Collision related configuration parameters */ -#define E1000_COLLISION_THRESHOLD 15 -#define E1000_CT_SHIFT 4 -#define E1000_COLLISION_DISTANCE 63 -#define E1000_COLD_SHIFT 12 - -/* Default values for the transmit IPG register */ -#define DEFAULT_82543_TIPG_IPGT_FIBER 9 -#define DEFAULT_82543_TIPG_IPGT_COPPER 8 - -#define E1000_TIPG_IPGT_MASK 0x000003FF - -#define DEFAULT_82543_TIPG_IPGR1 8 -#define E1000_TIPG_IPGR1_SHIFT 10 - -#define DEFAULT_82543_TIPG_IPGR2 6 -#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7 -#define E1000_TIPG_IPGR2_SHIFT 20 - -/* Ethertype field values */ -#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ - -#define ETHERNET_FCS_SIZE 4 -#define MAX_JUMBO_FRAME_SIZE 0x3F00 - -/* Extended Configuration Control and Size */ -#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 -#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001 -#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE 0x00000008 -#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020 -#define E1000_EXTCNF_CTRL_GATE_PHY_CFG 0x00000080 -#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000 -#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16 -#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000 -#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16 - -#define E1000_PHY_CTRL_D0A_LPLU 0x00000002 -#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 -#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 -#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 - -#define E1000_KABGTXD_BGSQLBIAS 0x00050000 - -/* PBA constants */ -#define E1000_PBA_8K 0x0008 /* 8KB */ -#define E1000_PBA_10K 0x000A /* 10KB */ -#define E1000_PBA_12K 0x000C /* 12KB */ -#define E1000_PBA_14K 0x000E /* 14KB */ -#define E1000_PBA_16K 0x0010 /* 16KB */ -#define E1000_PBA_18K 0x0012 -#define E1000_PBA_20K 0x0014 -#define E1000_PBA_22K 0x0016 -#define E1000_PBA_24K 0x0018 -#define E1000_PBA_26K 0x001A -#define E1000_PBA_30K 0x001E -#define E1000_PBA_32K 0x0020 -#define E1000_PBA_34K 0x0022 -#define E1000_PBA_35K 0x0023 -#define E1000_PBA_38K 0x0026 -#define E1000_PBA_40K 0x0028 -#define E1000_PBA_48K 0x0030 /* 48KB */ -#define E1000_PBA_64K 0x0040 /* 64KB */ - -#define E1000_PBA_RXA_MASK 0xFFFF - -#define E1000_PBS_16K E1000_PBA_16K - -#define IFS_MAX 80 -#define IFS_MIN 40 -#define IFS_RATIO 4 -#define IFS_STEP 10 -#define MIN_NUM_XMITS 1000 - -/* SW Semaphore Register */ -#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ -#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ -#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ - -#define E1000_SWSM2_LOCK 0x00000002 /* Secondary driver semaphore bit */ - -/* Interrupt Cause Read */ -#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ -#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ -#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ -#define E1000_ICR_RXSEQ 0x00000008 /* Rx sequence error */ -#define E1000_ICR_RXDMT0 0x00000010 /* Rx desc min. threshold (0) */ -#define E1000_ICR_RXO 0x00000040 /* Rx overrun */ -#define E1000_ICR_RXT0 0x00000080 /* Rx timer intr (ring 0) */ -#define E1000_ICR_VMMB 0x00000100 /* VM MB event */ -#define E1000_ICR_RXCFG 0x00000400 /* Rx /c/ ordered set */ -#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ -#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ -#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ -#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ -#define E1000_ICR_TXD_LOW 0x00008000 -#define E1000_ICR_MNG 0x00040000 /* Manageability event */ -#define E1000_ICR_TS 0x00080000 /* Time Sync Interrupt */ -#define E1000_ICR_DRSTA 0x40000000 /* Device Reset Asserted */ -/* If this bit asserted, the driver should claim the interrupt */ -#define E1000_ICR_INT_ASSERTED 0x80000000 -#define E1000_ICR_DOUTSYNC 0x10000000 /* NIC DMA out of sync */ -#define E1000_ICR_FER 0x00400000 /* Fatal Error */ - -#define E1000_ICR_THS 0x00800000 /* ICR.THS: Thermal Sensor Event*/ -#define E1000_ICR_MDDET 0x10000000 /* Malicious Driver Detect */ - - -/* Extended Interrupt Cause Read */ -#define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */ -#define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */ -#define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */ -#define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */ -#define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */ -#define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */ -#define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */ -#define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */ -#define E1000_EICR_TCP_TIMER 0x40000000 /* TCP Timer */ -#define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */ -/* TCP Timer */ -#define E1000_TCPTIMER_KS 0x00000100 /* KickStart */ -#define E1000_TCPTIMER_COUNT_ENABLE 0x00000200 /* Count Enable */ -#define E1000_TCPTIMER_COUNT_FINISH 0x00000400 /* Count finish */ -#define E1000_TCPTIMER_LOOP 0x00000800 /* Loop */ - -/* This defines the bits that are set in the Interrupt Mask - * Set/Read Register. Each bit is documented below: - * o RXT0 = Receiver Timer Interrupt (ring 0) - * o TXDW = Transmit Descriptor Written Back - * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) - * o RXSEQ = Receive Sequence Error - * o LSC = Link Status Change - */ -#define IMS_ENABLE_MASK ( \ - E1000_IMS_RXT0 | \ - E1000_IMS_TXDW | \ - E1000_IMS_RXDMT0 | \ - E1000_IMS_RXSEQ | \ - E1000_IMS_LSC) - -/* Interrupt Mask Set */ -#define E1000_IMS_TXDW E1000_ICR_TXDW /* Tx desc written back */ -#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_IMS_VMMB E1000_ICR_VMMB /* Mail box activity */ -#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */ -#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */ -#define E1000_IMS_RXO E1000_ICR_RXO /* Rx overrun */ -#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* Rx timer intr */ -#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW -#define E1000_IMS_TS E1000_ICR_TS /* Time Sync Interrupt */ -#define E1000_IMS_DRSTA E1000_ICR_DRSTA /* Device Reset Asserted */ -#define E1000_IMS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */ -#define E1000_IMS_FER E1000_ICR_FER /* Fatal Error */ - -#define E1000_IMS_THS E1000_ICR_THS /* ICR.TS: Thermal Sensor Event*/ -#define E1000_IMS_MDDET E1000_ICR_MDDET /* Malicious Driver Detect */ -/* Extended Interrupt Mask Set */ -#define E1000_EIMS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */ -#define E1000_EIMS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */ -#define E1000_EIMS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */ -#define E1000_EIMS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */ -#define E1000_EIMS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */ -#define E1000_EIMS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */ -#define E1000_EIMS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */ -#define E1000_EIMS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */ -#define E1000_EIMS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */ -#define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */ - -/* Interrupt Cause Set */ -#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */ -#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */ - -/* Extended Interrupt Cause Set */ -#define E1000_EICS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */ -#define E1000_EICS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */ -#define E1000_EICS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */ -#define E1000_EICS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */ -#define E1000_EICS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */ -#define E1000_EICS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */ -#define E1000_EICS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */ -#define E1000_EICS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */ -#define E1000_EICS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */ -#define E1000_EICS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */ - -#define E1000_EITR_ITR_INT_MASK 0x0000FFFF -/* E1000_EITR_CNT_IGNR is only for 82576 and newer */ -#define E1000_EITR_CNT_IGNR 0x80000000 /* Don't reset counters on write */ -#define E1000_EITR_INTERVAL 0x00007FFC - -/* Transmit Descriptor Control */ -#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */ -#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */ -#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */ -#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ -#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ -#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */ -/* Enable the counting of descriptors still to be processed. */ -#define E1000_TXDCTL_COUNT_DESC 0x00400000 - -/* Flow Control Constants */ -#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 -#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 -#define FLOW_CONTROL_TYPE 0x8808 - -/* 802.1q VLAN Packet Size */ -#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */ -#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ - -/* Receive Address - * Number of high/low register pairs in the RAR. The RAR (Receive Address - * Registers) holds the directed and multicast addresses that we monitor. - * Technically, we have 16 spots. However, we reserve one of these spots - * (RAR[15]) for our directed address used by controllers with - * manageability enabled, allowing us room for 15 multicast addresses. - */ -#define E1000_RAR_ENTRIES 15 -#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ -#define E1000_RAL_MAC_ADDR_LEN 4 -#define E1000_RAH_MAC_ADDR_LEN 2 -#define E1000_RAH_QUEUE_MASK_82575 0x000C0000 -#define E1000_RAH_POOL_1 0x00040000 - -/* Error Codes */ -#define E1000_SUCCESS 0 -#define E1000_ERR_NVM 1 -#define E1000_ERR_PHY 2 -#define E1000_ERR_CONFIG 3 -#define E1000_ERR_PARAM 4 -#define E1000_ERR_MAC_INIT 5 -#define E1000_ERR_PHY_TYPE 6 -#define E1000_ERR_RESET 9 -#define E1000_ERR_MASTER_REQUESTS_PENDING 10 -#define E1000_ERR_HOST_INTERFACE_COMMAND 11 -#define E1000_BLK_PHY_RESET 12 -#define E1000_ERR_SWFW_SYNC 13 -#define E1000_NOT_IMPLEMENTED 14 -#define E1000_ERR_MBX 15 -#define E1000_ERR_INVALID_ARGUMENT 16 -#define E1000_ERR_NO_SPACE 17 -#define E1000_ERR_NVM_PBA_SECTION 18 -#define E1000_ERR_I2C 19 -#define E1000_ERR_INVM_VALUE_NOT_FOUND 20 - -/* Loop limit on how long we wait for auto-negotiation to complete */ -#define FIBER_LINK_UP_LIMIT 50 -#define COPPER_LINK_UP_LIMIT 10 -#define PHY_AUTO_NEG_LIMIT 45 -#define PHY_FORCE_LIMIT 20 -/* Number of 100 microseconds we wait for PCI Express master disable */ -#define MASTER_DISABLE_TIMEOUT 800 -/* Number of milliseconds we wait for PHY configuration done after MAC reset */ -#define PHY_CFG_TIMEOUT 100 -/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */ -#define MDIO_OWNERSHIP_TIMEOUT 10 -/* Number of milliseconds for NVM auto read done after MAC reset. */ -#define AUTO_READ_DONE_TIMEOUT 10 - -/* Flow Control */ -#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ -#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ -#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ - -/* Transmit Configuration Word */ -#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ -#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ -#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ -#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ -#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ - -/* Receive Configuration Word */ -#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ -#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ -#define E1000_RXCW_C 0x20000000 /* Receive config */ -#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ - -#define E1000_TSYNCTXCTL_VALID 0x00000001 /* Tx timestamp valid */ -#define E1000_TSYNCTXCTL_ENABLED 0x00000010 /* enable Tx timestamping */ - -#define E1000_TSYNCRXCTL_VALID 0x00000001 /* Rx timestamp valid */ -#define E1000_TSYNCRXCTL_TYPE_MASK 0x0000000E /* Rx type mask */ -#define E1000_TSYNCRXCTL_TYPE_L2_V2 0x00 -#define E1000_TSYNCRXCTL_TYPE_L4_V1 0x02 -#define E1000_TSYNCRXCTL_TYPE_L2_L4_V2 0x04 -#define E1000_TSYNCRXCTL_TYPE_ALL 0x08 -#define E1000_TSYNCRXCTL_TYPE_EVENT_V2 0x0A -#define E1000_TSYNCRXCTL_ENABLED 0x00000010 /* enable Rx timestamping */ -#define E1000_TSYNCRXCTL_SYSCFI 0x00000020 /* Sys clock frequency */ - -#define E1000_TSYNCRXCFG_PTP_V1_CTRLT_MASK 0x000000FF -#define E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE 0x00 -#define E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE 0x01 -#define E1000_TSYNCRXCFG_PTP_V1_FOLLOWUP_MESSAGE 0x02 -#define E1000_TSYNCRXCFG_PTP_V1_DELAY_RESP_MESSAGE 0x03 -#define E1000_TSYNCRXCFG_PTP_V1_MANAGEMENT_MESSAGE 0x04 - -#define E1000_TSYNCRXCFG_PTP_V2_MSGID_MASK 0x00000F00 -#define E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE 0x0000 -#define E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE 0x0100 -#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_REQ_MESSAGE 0x0200 -#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_RESP_MESSAGE 0x0300 -#define E1000_TSYNCRXCFG_PTP_V2_FOLLOWUP_MESSAGE 0x0800 -#define E1000_TSYNCRXCFG_PTP_V2_DELAY_RESP_MESSAGE 0x0900 -#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_FOLLOWUP_MESSAGE 0x0A00 -#define E1000_TSYNCRXCFG_PTP_V2_ANNOUNCE_MESSAGE 0x0B00 -#define E1000_TSYNCRXCFG_PTP_V2_SIGNALLING_MESSAGE 0x0C00 -#define E1000_TSYNCRXCFG_PTP_V2_MANAGEMENT_MESSAGE 0x0D00 - -#define E1000_TIMINCA_16NS_SHIFT 24 -#define E1000_TIMINCA_INCPERIOD_SHIFT 24 -#define E1000_TIMINCA_INCVALUE_MASK 0x00FFFFFF - -#define E1000_TSICR_TXTS 0x00000002 -#define E1000_TSIM_TXTS 0x00000002 -/* TUPLE Filtering Configuration */ -#define E1000_TTQF_DISABLE_MASK 0xF0008000 /* TTQF Disable Mask */ -#define E1000_TTQF_QUEUE_ENABLE 0x100 /* TTQF Queue Enable Bit */ -#define E1000_TTQF_PROTOCOL_MASK 0xFF /* TTQF Protocol Mask */ -/* TTQF TCP Bit, shift with E1000_TTQF_PROTOCOL SHIFT */ -#define E1000_TTQF_PROTOCOL_TCP 0x0 -/* TTQF UDP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */ -#define E1000_TTQF_PROTOCOL_UDP 0x1 -/* TTQF SCTP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */ -#define E1000_TTQF_PROTOCOL_SCTP 0x2 -#define E1000_TTQF_PROTOCOL_SHIFT 5 /* TTQF Protocol Shift */ -#define E1000_TTQF_QUEUE_SHIFT 16 /* TTQF Queue Shfit */ -#define E1000_TTQF_RX_QUEUE_MASK 0x70000 /* TTQF Queue Mask */ -#define E1000_TTQF_MASK_ENABLE 0x10000000 /* TTQF Mask Enable Bit */ -#define E1000_IMIR_CLEAR_MASK 0xF001FFFF /* IMIR Reg Clear Mask */ -#define E1000_IMIR_PORT_BYPASS 0x20000 /* IMIR Port Bypass Bit */ -#define E1000_IMIR_PRIORITY_SHIFT 29 /* IMIR Priority Shift */ -#define E1000_IMIREXT_CLEAR_MASK 0x7FFFF /* IMIREXT Reg Clear Mask */ - -#define E1000_MDICNFG_EXT_MDIO 0x80000000 /* MDI ext/int destination */ -#define E1000_MDICNFG_COM_MDIO 0x40000000 /* MDI shared w/ lan 0 */ -#define E1000_MDICNFG_PHY_MASK 0x03E00000 -#define E1000_MDICNFG_PHY_SHIFT 21 - -#define E1000_MEDIA_PORT_COPPER 1 -#define E1000_MEDIA_PORT_OTHER 2 -#define E1000_M88E1112_AUTO_COPPER_SGMII 0x2 -#define E1000_M88E1112_AUTO_COPPER_BASEX 0x3 -#define E1000_M88E1112_STATUS_LINK 0x0004 /* Interface Link Bit */ -#define E1000_M88E1112_MAC_CTRL_1 0x10 -#define E1000_M88E1112_MAC_CTRL_1_MODE_MASK 0x0380 /* Mode Select */ -#define E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT 7 -#define E1000_M88E1112_PAGE_ADDR 0x16 -#define E1000_M88E1112_STATUS 0x01 - -#define E1000_THSTAT_LOW_EVENT 0x20000000 /* Low thermal threshold */ -#define E1000_THSTAT_MID_EVENT 0x00200000 /* Mid thermal threshold */ -#define E1000_THSTAT_HIGH_EVENT 0x00002000 /* High thermal threshold */ -#define E1000_THSTAT_PWR_DOWN 0x00000001 /* Power Down Event */ -#define E1000_THSTAT_LINK_THROTTLE 0x00000002 /* Link Spd Throttle Event */ - -/* I350 EEE defines */ -#define E1000_IPCNFG_EEE_1G_AN 0x00000008 /* IPCNFG EEE Ena 1G AN */ -#define E1000_IPCNFG_EEE_100M_AN 0x00000004 /* IPCNFG EEE Ena 100M AN */ -#define E1000_EEER_TX_LPI_EN 0x00010000 /* EEER Tx LPI Enable */ -#define E1000_EEER_RX_LPI_EN 0x00020000 /* EEER Rx LPI Enable */ -#define E1000_EEER_LPI_FC 0x00040000 /* EEER Ena on Flow Cntrl */ -/* EEE status */ -#define E1000_EEER_EEE_NEG 0x20000000 /* EEE capability nego */ -#define E1000_EEER_RX_LPI_STATUS 0x40000000 /* Rx in LPI state */ -#define E1000_EEER_TX_LPI_STATUS 0x80000000 /* Tx in LPI state */ -#define E1000_EEE_LP_ADV_ADDR_I350 0x040F /* EEE LP Advertisement */ -#define E1000_M88E1543_PAGE_ADDR 0x16 /* Page Offset Register */ -#define E1000_M88E1543_EEE_CTRL_1 0x0 -#define E1000_M88E1543_EEE_CTRL_1_MS 0x0001 /* EEE Master/Slave */ -#define E1000_EEE_ADV_DEV_I354 7 -#define E1000_EEE_ADV_ADDR_I354 60 -#define E1000_EEE_ADV_100_SUPPORTED (1 << 1) /* 100BaseTx EEE Supported */ -#define E1000_EEE_ADV_1000_SUPPORTED (1 << 2) /* 1000BaseT EEE Supported */ -#define E1000_PCS_STATUS_DEV_I354 3 -#define E1000_PCS_STATUS_ADDR_I354 1 -#define E1000_PCS_STATUS_RX_LPI_RCVD 0x0400 -#define E1000_PCS_STATUS_TX_LPI_RCVD 0x0800 -#define E1000_EEE_SU_LPI_CLK_STP 0x00800000 /* EEE LPI Clock Stop */ -#define E1000_EEE_LP_ADV_DEV_I210 7 /* EEE LP Adv Device */ -#define E1000_EEE_LP_ADV_ADDR_I210 61 /* EEE LP Adv Register */ -/* PCI Express Control */ -#define E1000_GCR_RXD_NO_SNOOP 0x00000001 -#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002 -#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004 -#define E1000_GCR_TXD_NO_SNOOP 0x00000008 -#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010 -#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020 -#define E1000_GCR_CMPL_TMOUT_MASK 0x0000F000 -#define E1000_GCR_CMPL_TMOUT_10ms 0x00001000 -#define E1000_GCR_CMPL_TMOUT_RESEND 0x00010000 -#define E1000_GCR_CAP_VER2 0x00040000 - -#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \ - E1000_GCR_RXDSCW_NO_SNOOP | \ - E1000_GCR_RXDSCR_NO_SNOOP | \ - E1000_GCR_TXD_NO_SNOOP | \ - E1000_GCR_TXDSCW_NO_SNOOP | \ - E1000_GCR_TXDSCR_NO_SNOOP) - -#define E1000_MMDAC_FUNC_DATA 0x4000 /* Data, no post increment */ - -/* mPHY address control and data registers */ -#define E1000_MPHY_ADDR_CTL 0x0024 /* Address Control Reg */ -#define E1000_MPHY_ADDR_CTL_OFFSET_MASK 0xFFFF0000 -#define E1000_MPHY_DATA 0x0E10 /* Data Register */ - -/* AFE CSR Offset for PCS CLK */ -#define E1000_MPHY_PCS_CLK_REG_OFFSET 0x0004 -/* Override for near end digital loopback. */ -#define E1000_MPHY_PCS_CLK_REG_DIGINELBEN 0x10 - -/* PHY Control Register */ -#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ -#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ -#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ -#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ -#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ -#define MII_CR_POWER_DOWN 0x0800 /* Power down */ -#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ -#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ -#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ -#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ -#define MII_CR_SPEED_1000 0x0040 -#define MII_CR_SPEED_100 0x2000 -#define MII_CR_SPEED_10 0x0000 - -/* PHY Status Register */ -#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ -#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ -#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ -#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ -#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ -#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ -#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ -#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ -#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ -#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ -#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ -#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ -#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ -#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ -#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ - -/* Autoneg Advertisement Register */ -#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ -#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ -#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ -#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ -#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ -#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ -#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ -#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ -#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ -#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ - -/* Link Partner Ability Register (Base Page) */ -#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ -#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP 10T Half Dplx Capable */ -#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP 10T Full Dplx Capable */ -#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP 100TX Half Dplx Capable */ -#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP 100TX Full Dplx Capable */ -#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ -#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ -#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asym Pause Direction bit */ -#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP detected Remote Fault */ -#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP rx'd link code word */ -#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ - -/* Autoneg Expansion Register */ -#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ -#define NWAY_ER_PAGE_RXD 0x0002 /* LP 10T Half Dplx Capable */ -#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP 10T Full Dplx Capable */ -#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP 100TX Half Dplx Capable */ -#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP 100TX Full Dplx Capable */ - -/* 1000BASE-T Control Register */ -#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ -#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ -#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ -/* 1=Repeater/switch device port 0=DTE device */ -#define CR_1000T_REPEATER_DTE 0x0400 -/* 1=Configure PHY as Master 0=Configure PHY as Slave */ -#define CR_1000T_MS_VALUE 0x0800 -/* 1=Master/Slave manual config value 0=Automatic Master/Slave config */ -#define CR_1000T_MS_ENABLE 0x1000 -#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ -#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ -#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ -#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ -#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ - -/* 1000BASE-T Status Register */ -#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle err since last rd */ -#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asym pause direction bit */ -#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ -#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ -#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ -#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ -#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local Tx Master, 0=Slave */ -#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ - -#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5 - -/* PHY 1000 MII Register/Bit Definitions */ -/* PHY Registers defined by IEEE */ -#define PHY_CONTROL 0x00 /* Control Register */ -#define PHY_STATUS 0x01 /* Status Register */ -#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ -#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ -#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ -#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ -#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ -#define PHY_NEXT_PAGE_TX 0x07 /* Next Page Tx */ -#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ -#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ -#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ -#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ - -#define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */ - -/* NVM Control */ -#define E1000_EECD_SK 0x00000001 /* NVM Clock */ -#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */ -#define E1000_EECD_DI 0x00000004 /* NVM Data In */ -#define E1000_EECD_DO 0x00000008 /* NVM Data Out */ -#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */ -#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */ -#define E1000_EECD_PRES 0x00000100 /* NVM Present */ -#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */ -#define E1000_EECD_BLOCKED 0x00008000 /* Bit banging access blocked flag */ -#define E1000_EECD_ABORT 0x00010000 /* NVM operation aborted flag */ -#define E1000_EECD_TIMEOUT 0x00020000 /* NVM read operation timeout flag */ -#define E1000_EECD_ERROR_CLR 0x00040000 /* NVM error status clear bit */ -/* NVM Addressing bits based on type 0=small, 1=large */ -#define E1000_EECD_ADDR_BITS 0x00000400 -#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */ -#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */ -#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */ -#define E1000_EECD_SIZE_EX_SHIFT 11 -#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ -#define E1000_EECD_AUPDEN 0x00100000 /* Ena Auto FLASH update */ -#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ -#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES) -#define E1000_EECD_FLUPD_I210 0x00800000 /* Update FLASH */ -#define E1000_EECD_FLUDONE_I210 0x04000000 /* Update FLASH done */ -#define E1000_EECD_FLASH_DETECTED_I210 0x00080000 /* FLASH detected */ -#define E1000_EECD_SEC1VAL_I210 0x02000000 /* Sector One Valid */ -#define E1000_FLUDONE_ATTEMPTS 20000 -#define E1000_EERD_EEWR_MAX_COUNT 512 /* buffered EEPROM words rw */ -#define E1000_I210_FIFO_SEL_RX 0x00 -#define E1000_I210_FIFO_SEL_TX_QAV(_i) (0x02 + (_i)) -#define E1000_I210_FIFO_SEL_TX_LEGACY E1000_I210_FIFO_SEL_TX_QAV(0) -#define E1000_I210_FIFO_SEL_BMC2OS_TX 0x06 -#define E1000_I210_FIFO_SEL_BMC2OS_RX 0x01 - -#define E1000_I210_FLASH_SECTOR_SIZE 0x1000 /* 4KB FLASH sector unit size */ -/* Secure FLASH mode requires removing MSb */ -#define E1000_I210_FW_PTR_MASK 0x7FFF -/* Firmware code revision field word offset*/ -#define E1000_I210_FW_VER_OFFSET 328 - -#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write regs */ -#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ -#define E1000_NVM_RW_REG_START 1 /* Start operation */ -#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ -#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */ -#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */ -#define E1000_FLASH_UPDATES 2000 - -/* NVM Word Offsets */ -#define NVM_COMPAT 0x0003 -#define NVM_ID_LED_SETTINGS 0x0004 -#define NVM_VERSION 0x0005 -#define E1000_I210_NVM_FW_MODULE_PTR 0x0010 -#define E1000_I350_NVM_FW_MODULE_PTR 0x0051 -#define NVM_FUTURE_INIT_WORD1 0x0019 -#define NVM_ETRACK_WORD 0x0042 -#define NVM_ETRACK_HIWORD 0x0043 -#define NVM_COMB_VER_OFF 0x0083 -#define NVM_COMB_VER_PTR 0x003d - -/* NVM version defines */ -#define NVM_MAJOR_MASK 0xF000 -#define NVM_MINOR_MASK 0x0FF0 -#define NVM_IMAGE_ID_MASK 0x000F -#define NVM_COMB_VER_MASK 0x00FF -#define NVM_MAJOR_SHIFT 12 -#define NVM_MINOR_SHIFT 4 -#define NVM_COMB_VER_SHFT 8 -#define NVM_VER_INVALID 0xFFFF -#define NVM_ETRACK_SHIFT 16 -#define NVM_ETRACK_VALID 0x8000 -#define NVM_NEW_DEC_MASK 0x0F00 -#define NVM_HEX_CONV 16 -#define NVM_HEX_TENS 10 - -/* FW version defines */ -/* Offset of "Loader patch ptr" in Firmware Header */ -#define E1000_I350_NVM_FW_LOADER_PATCH_PTR_OFFSET 0x01 -/* Patch generation hour & minutes */ -#define E1000_I350_NVM_FW_VER_WORD1_OFFSET 0x04 -/* Patch generation month & day */ -#define E1000_I350_NVM_FW_VER_WORD2_OFFSET 0x05 -/* Patch generation year */ -#define E1000_I350_NVM_FW_VER_WORD3_OFFSET 0x06 -/* Patch major & minor numbers */ -#define E1000_I350_NVM_FW_VER_WORD4_OFFSET 0x07 - -#define NVM_MAC_ADDR 0x0000 -#define NVM_SUB_DEV_ID 0x000B -#define NVM_SUB_VEN_ID 0x000C -#define NVM_DEV_ID 0x000D -#define NVM_VEN_ID 0x000E -#define NVM_INIT_CTRL_2 0x000F -#define NVM_INIT_CTRL_4 0x0013 -#define NVM_LED_1_CFG 0x001C -#define NVM_LED_0_2_CFG 0x001F - -#define NVM_COMPAT_VALID_CSUM 0x0001 -#define NVM_FUTURE_INIT_WORD1_VALID_CSUM 0x0040 - -#define NVM_ETS_CFG 0x003E -#define NVM_ETS_LTHRES_DELTA_MASK 0x07C0 -#define NVM_ETS_LTHRES_DELTA_SHIFT 6 -#define NVM_ETS_TYPE_MASK 0x0038 -#define NVM_ETS_TYPE_SHIFT 3 -#define NVM_ETS_TYPE_EMC 0x000 -#define NVM_ETS_NUM_SENSORS_MASK 0x0007 -#define NVM_ETS_DATA_LOC_MASK 0x3C00 -#define NVM_ETS_DATA_LOC_SHIFT 10 -#define NVM_ETS_DATA_INDEX_MASK 0x0300 -#define NVM_ETS_DATA_INDEX_SHIFT 8 -#define NVM_ETS_DATA_HTHRESH_MASK 0x00FF -#define NVM_INIT_CONTROL2_REG 0x000F -#define NVM_INIT_CONTROL3_PORT_B 0x0014 -#define NVM_INIT_3GIO_3 0x001A -#define NVM_SWDEF_PINS_CTRL_PORT_0 0x0020 -#define NVM_INIT_CONTROL3_PORT_A 0x0024 -#define NVM_CFG 0x0012 -#define NVM_ALT_MAC_ADDR_PTR 0x0037 -#define NVM_CHECKSUM_REG 0x003F -#define NVM_COMPATIBILITY_REG_3 0x0003 -#define NVM_COMPATIBILITY_BIT_MASK 0x8000 - -#define E1000_NVM_CFG_DONE_PORT_0 0x040000 /* MNG config cycle done */ -#define E1000_NVM_CFG_DONE_PORT_1 0x080000 /* ...for second port */ -#define E1000_NVM_CFG_DONE_PORT_2 0x100000 /* ...for third port */ -#define E1000_NVM_CFG_DONE_PORT_3 0x200000 /* ...for fourth port */ - -#define NVM_82580_LAN_FUNC_OFFSET(a) ((a) ? (0x40 + (0x40 * (a))) : 0) - -/* Mask bits for fields in Word 0x24 of the NVM */ -#define NVM_WORD24_COM_MDIO 0x0008 /* MDIO interface shared */ -#define NVM_WORD24_EXT_MDIO 0x0004 /* MDIO accesses routed extrnl */ -/* Offset of Link Mode bits for 82575/82576 */ -#define NVM_WORD24_LNK_MODE_OFFSET 8 -/* Offset of Link Mode bits for 82580 up */ -#define NVM_WORD24_82580_LNK_MODE_OFFSET 4 - - -/* Mask bits for fields in Word 0x0f of the NVM */ -#define NVM_WORD0F_PAUSE_MASK 0x3000 -#define NVM_WORD0F_PAUSE 0x1000 -#define NVM_WORD0F_ASM_DIR 0x2000 - -/* Mask bits for fields in Word 0x1a of the NVM */ -#define NVM_WORD1A_ASPM_MASK 0x000C - -/* Mask bits for fields in Word 0x03 of the EEPROM */ -#define NVM_COMPAT_LOM 0x0800 - -/* length of string needed to store PBA number */ -#define E1000_PBANUM_LENGTH 11 - -/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */ -#define NVM_SUM 0xBABA - -/* PBA (printed board assembly) number words */ -#define NVM_PBA_OFFSET_0 8 -#define NVM_PBA_OFFSET_1 9 -#define NVM_PBA_PTR_GUARD 0xFAFA -#define NVM_RESERVED_WORD 0xFFFF -#define NVM_WORD_SIZE_BASE_SHIFT 6 - -/* NVM Commands - SPI */ -#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ -#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */ -#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */ -#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ -#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */ -#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */ - -/* SPI NVM Status Register */ -#define NVM_STATUS_RDY_SPI 0x01 - -/* Word definitions for ID LED Settings */ -#define ID_LED_RESERVED_0000 0x0000 -#define ID_LED_RESERVED_FFFF 0xFFFF -#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ - (ID_LED_OFF1_OFF2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_DEF1_DEF2)) -#define ID_LED_DEF1_DEF2 0x1 -#define ID_LED_DEF1_ON2 0x2 -#define ID_LED_DEF1_OFF2 0x3 -#define ID_LED_ON1_DEF2 0x4 -#define ID_LED_ON1_ON2 0x5 -#define ID_LED_ON1_OFF2 0x6 -#define ID_LED_OFF1_DEF2 0x7 -#define ID_LED_OFF1_ON2 0x8 -#define ID_LED_OFF1_OFF2 0x9 - -#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF -#define IGP_ACTIVITY_LED_ENABLE 0x0300 -#define IGP_LED3_MODE 0x07000000 - -/* PCI/PCI-X/PCI-EX Config space */ -#define PCI_HEADER_TYPE_REGISTER 0x0E -#define PCIE_LINK_STATUS 0x12 -#define PCIE_DEVICE_CONTROL2 0x28 - -#define PCI_HEADER_TYPE_MULTIFUNC 0x80 -#define PCIE_LINK_WIDTH_MASK 0x3F0 -#define PCIE_LINK_WIDTH_SHIFT 4 -#define PCIE_LINK_SPEED_MASK 0x0F -#define PCIE_LINK_SPEED_2500 0x01 -#define PCIE_LINK_SPEED_5000 0x02 -#define PCIE_DEVICE_CONTROL2_16ms 0x0005 - -#ifndef ETH_ADDR_LEN -#define ETH_ADDR_LEN 6 -#endif - -#define PHY_REVISION_MASK 0xFFFFFFF0 -#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ -#define MAX_PHY_MULTI_PAGE_REG 0xF - -/* Bit definitions for valid PHY IDs. - * I = Integrated - * E = External - */ -#define M88E1000_E_PHY_ID 0x01410C50 -#define M88E1000_I_PHY_ID 0x01410C30 -#define M88E1011_I_PHY_ID 0x01410C20 -#define IGP01E1000_I_PHY_ID 0x02A80380 -#define M88E1111_I_PHY_ID 0x01410CC0 -#define M88E1543_E_PHY_ID 0x01410EA0 -#define M88E1112_E_PHY_ID 0x01410C90 -#define I347AT4_E_PHY_ID 0x01410DC0 -#define M88E1340M_E_PHY_ID 0x01410DF0 -#define GG82563_E_PHY_ID 0x01410CA0 -#define IGP03E1000_E_PHY_ID 0x02A80390 -#define IFE_E_PHY_ID 0x02A80330 -#define IFE_PLUS_E_PHY_ID 0x02A80320 -#define IFE_C_E_PHY_ID 0x02A80310 -#define I82580_I_PHY_ID 0x015403A0 -#define I350_I_PHY_ID 0x015403B0 -#define I210_I_PHY_ID 0x01410C00 -#define IGP04E1000_E_PHY_ID 0x02A80391 -#define M88_VENDOR 0x0141 - -/* M88E1000 Specific Registers */ -#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Reg */ -#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Reg */ -#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Cntrl */ -#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ - -#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for pg number setting */ -#define M88E1000_PHY_GEN_CONTROL 0x1E /* meaning depends on reg 29 */ - -/* M88E1000 PHY Specific Control Register */ -#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reverse enabled */ -/* MDI Crossover Mode bits 6:5 Manual MDI configuration */ -#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 -#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ -/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */ -#define M88E1000_PSCR_AUTO_X_1000T 0x0040 -/* Auto crossover enabled all speeds */ -#define M88E1000_PSCR_AUTO_X_MODE 0x0060 -#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Tx */ - -/* M88E1000 PHY Specific Status Register */ -#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ -#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ -#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ -/* 0 = <50M - * 1 = 50-80M - * 2 = 80-110M - * 3 = 110-140M - * 4 = >140M - */ -#define M88E1000_PSSR_CABLE_LENGTH 0x0380 -#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ -#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ -#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ -#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ - -#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 - -/* Number of times we will attempt to autonegotiate before downshifting if we - * are the master - */ -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 -/* Number of times we will attempt to autonegotiate before downshifting if we - * are the slave - */ -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 -#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ - -/* Intel I347AT4 Registers */ -#define I347AT4_PCDL 0x10 /* PHY Cable Diagnostics Length */ -#define I347AT4_PCDC 0x15 /* PHY Cable Diagnostics Control */ -#define I347AT4_PAGE_SELECT 0x16 - -/* I347AT4 Extended PHY Specific Control Register */ - -/* Number of times we will attempt to autonegotiate before downshifting if we - * are the master - */ -#define I347AT4_PSCR_DOWNSHIFT_ENABLE 0x0800 -#define I347AT4_PSCR_DOWNSHIFT_MASK 0x7000 -#define I347AT4_PSCR_DOWNSHIFT_1X 0x0000 -#define I347AT4_PSCR_DOWNSHIFT_2X 0x1000 -#define I347AT4_PSCR_DOWNSHIFT_3X 0x2000 -#define I347AT4_PSCR_DOWNSHIFT_4X 0x3000 -#define I347AT4_PSCR_DOWNSHIFT_5X 0x4000 -#define I347AT4_PSCR_DOWNSHIFT_6X 0x5000 -#define I347AT4_PSCR_DOWNSHIFT_7X 0x6000 -#define I347AT4_PSCR_DOWNSHIFT_8X 0x7000 - -/* I347AT4 PHY Cable Diagnostics Control */ -#define I347AT4_PCDC_CABLE_LENGTH_UNIT 0x0400 /* 0=cm 1=meters */ - -/* M88E1112 only registers */ -#define M88E1112_VCT_DSP_DISTANCE 0x001A - -/* M88EC018 Rev 2 specific DownShift settings */ -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 - -/* Bits... - * 15-5: page - * 4-0: register offset - */ -#define GG82563_PAGE_SHIFT 5 -#define GG82563_REG(page, reg) \ - (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) -#define GG82563_MIN_ALT_REG 30 - -/* GG82563 Specific Registers */ -#define GG82563_PHY_SPEC_CTRL GG82563_REG(0, 16) /* PHY Spec Cntrl */ -#define GG82563_PHY_PAGE_SELECT GG82563_REG(0, 22) /* Page Select */ -#define GG82563_PHY_SPEC_CTRL_2 GG82563_REG(0, 26) /* PHY Spec Cntrl2 */ -#define GG82563_PHY_PAGE_SELECT_ALT GG82563_REG(0, 29) /* Alt Page Select */ - -/* MAC Specific Control Register */ -#define GG82563_PHY_MAC_SPEC_CTRL GG82563_REG(2, 21) - -#define GG82563_PHY_DSP_DISTANCE GG82563_REG(5, 26) /* DSP Distance */ - -/* Page 193 - Port Control Registers */ -/* Kumeran Mode Control */ -#define GG82563_PHY_KMRN_MODE_CTRL GG82563_REG(193, 16) -#define GG82563_PHY_PWR_MGMT_CTRL GG82563_REG(193, 20) /* Pwr Mgt Ctrl */ - -/* Page 194 - KMRN Registers */ -#define GG82563_PHY_INBAND_CTRL GG82563_REG(194, 18) /* Inband Ctrl */ - -/* MDI Control */ -#define E1000_MDIC_REG_MASK 0x001F0000 -#define E1000_MDIC_REG_SHIFT 16 -#define E1000_MDIC_PHY_MASK 0x03E00000 -#define E1000_MDIC_PHY_SHIFT 21 -#define E1000_MDIC_OP_WRITE 0x04000000 -#define E1000_MDIC_OP_READ 0x08000000 -#define E1000_MDIC_READY 0x10000000 -#define E1000_MDIC_ERROR 0x40000000 -#define E1000_MDIC_DEST 0x80000000 - -/* SerDes Control */ -#define E1000_GEN_CTL_READY 0x80000000 -#define E1000_GEN_CTL_ADDRESS_SHIFT 8 -#define E1000_GEN_POLL_TIMEOUT 640 - -/* LinkSec register fields */ -#define E1000_LSECTXCAP_SUM_MASK 0x00FF0000 -#define E1000_LSECTXCAP_SUM_SHIFT 16 -#define E1000_LSECRXCAP_SUM_MASK 0x00FF0000 -#define E1000_LSECRXCAP_SUM_SHIFT 16 - -#define E1000_LSECTXCTRL_EN_MASK 0x00000003 -#define E1000_LSECTXCTRL_DISABLE 0x0 -#define E1000_LSECTXCTRL_AUTH 0x1 -#define E1000_LSECTXCTRL_AUTH_ENCRYPT 0x2 -#define E1000_LSECTXCTRL_AISCI 0x00000020 -#define E1000_LSECTXCTRL_PNTHRSH_MASK 0xFFFFFF00 -#define E1000_LSECTXCTRL_RSV_MASK 0x000000D8 - -#define E1000_LSECRXCTRL_EN_MASK 0x0000000C -#define E1000_LSECRXCTRL_EN_SHIFT 2 -#define E1000_LSECRXCTRL_DISABLE 0x0 -#define E1000_LSECRXCTRL_CHECK 0x1 -#define E1000_LSECRXCTRL_STRICT 0x2 -#define E1000_LSECRXCTRL_DROP 0x3 -#define E1000_LSECRXCTRL_PLSH 0x00000040 -#define E1000_LSECRXCTRL_RP 0x00000080 -#define E1000_LSECRXCTRL_RSV_MASK 0xFFFFFF33 - -/* Tx Rate-Scheduler Config fields */ -#define E1000_RTTBCNRC_RS_ENA 0x80000000 -#define E1000_RTTBCNRC_RF_DEC_MASK 0x00003FFF -#define E1000_RTTBCNRC_RF_INT_SHIFT 14 -#define E1000_RTTBCNRC_RF_INT_MASK \ - (E1000_RTTBCNRC_RF_DEC_MASK << E1000_RTTBCNRC_RF_INT_SHIFT) - -/* DMA Coalescing register fields */ -/* DMA Coalescing Watchdog Timer */ -#define E1000_DMACR_DMACWT_MASK 0x00003FFF -/* DMA Coalescing Rx Threshold */ -#define E1000_DMACR_DMACTHR_MASK 0x00FF0000 -#define E1000_DMACR_DMACTHR_SHIFT 16 -/* Lx when no PCIe transactions */ -#define E1000_DMACR_DMAC_LX_MASK 0x30000000 -#define E1000_DMACR_DMAC_LX_SHIFT 28 -#define E1000_DMACR_DMAC_EN 0x80000000 /* Enable DMA Coalescing */ -/* DMA Coalescing BMC-to-OS Watchdog Enable */ -#define E1000_DMACR_DC_BMC2OSW_EN 0x00008000 - -/* DMA Coalescing Transmit Threshold */ -#define E1000_DMCTXTH_DMCTTHR_MASK 0x00000FFF - -#define E1000_DMCTLX_TTLX_MASK 0x00000FFF /* Time to LX request */ - -/* Rx Traffic Rate Threshold */ -#define E1000_DMCRTRH_UTRESH_MASK 0x0007FFFF -/* Rx packet rate in current window */ -#define E1000_DMCRTRH_LRPRCW 0x80000000 - -/* DMA Coal Rx Traffic Current Count */ -#define E1000_DMCCNT_CCOUNT_MASK 0x01FFFFFF - -/* Flow ctrl Rx Threshold High val */ -#define E1000_FCRTC_RTH_COAL_MASK 0x0003FFF0 -#define E1000_FCRTC_RTH_COAL_SHIFT 4 -/* Lx power decision based on DMA coal */ -#define E1000_PCIEMISC_LX_DECISION 0x00000080 - -#define E1000_RXPBS_CFG_TS_EN 0x80000000 /* Timestamp in Rx buffer */ -#define E1000_RXPBS_SIZE_I210_MASK 0x0000003F /* Rx packet buffer size */ -#define E1000_TXPB0S_SIZE_I210_MASK 0x0000003F /* Tx packet buffer 0 size */ - -/* Proxy Filter Control */ -#define E1000_PROXYFC_D0 0x00000001 /* Enable offload in D0 */ -#define E1000_PROXYFC_EX 0x00000004 /* Directed exact proxy */ -#define E1000_PROXYFC_MC 0x00000008 /* Directed MC Proxy */ -#define E1000_PROXYFC_BC 0x00000010 /* Broadcast Proxy Enable */ -#define E1000_PROXYFC_ARP_DIRECTED 0x00000020 /* Directed ARP Proxy Ena */ -#define E1000_PROXYFC_IPV4 0x00000040 /* Directed IPv4 Enable */ -#define E1000_PROXYFC_IPV6 0x00000080 /* Directed IPv6 Enable */ -#define E1000_PROXYFC_NS 0x00000200 /* IPv6 Neighbor Solicitation */ -#define E1000_PROXYFC_ARP 0x00000800 /* ARP Request Proxy Ena */ -/* Proxy Status */ -#define E1000_PROXYS_CLEAR 0xFFFFFFFF /* Clear */ - -/* Firmware Status */ -#define E1000_FWSTS_FWRI 0x80000000 /* FW Reset Indication */ -/* VF Control */ -#define E1000_VTCTRL_RST 0x04000000 /* Reset VF */ - -#define E1000_STATUS_LAN_ID_MASK 0x00000000C /* Mask for Lan ID field */ -/* Lan ID bit field offset in status register */ -#define E1000_STATUS_LAN_ID_OFFSET 2 -#define E1000_VFTA_ENTRIES 128 -#ifndef E1000_UNUSEDARG -#define E1000_UNUSEDARG -#endif /* E1000_UNUSEDARG */ -#endif /* _E1000_DEFINES_H_ */ diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_hw.h b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_hw.h deleted file mode 100644 index ed43ef5a..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_hw.h +++ /dev/null @@ -1,778 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#ifndef _E1000_HW_H_ -#define _E1000_HW_H_ - -#include "e1000_osdep.h" -#include "e1000_regs.h" -#include "e1000_defines.h" - -struct e1000_hw; - -#define E1000_DEV_ID_82576 0x10C9 -#define E1000_DEV_ID_82576_FIBER 0x10E6 -#define E1000_DEV_ID_82576_SERDES 0x10E7 -#define E1000_DEV_ID_82576_QUAD_COPPER 0x10E8 -#define E1000_DEV_ID_82576_QUAD_COPPER_ET2 0x1526 -#define E1000_DEV_ID_82576_NS 0x150A -#define E1000_DEV_ID_82576_NS_SERDES 0x1518 -#define E1000_DEV_ID_82576_SERDES_QUAD 0x150D -#define E1000_DEV_ID_82575EB_COPPER 0x10A7 -#define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9 -#define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6 -#define E1000_DEV_ID_82580_COPPER 0x150E -#define E1000_DEV_ID_82580_FIBER 0x150F -#define E1000_DEV_ID_82580_SERDES 0x1510 -#define E1000_DEV_ID_82580_SGMII 0x1511 -#define E1000_DEV_ID_82580_COPPER_DUAL 0x1516 -#define E1000_DEV_ID_82580_QUAD_FIBER 0x1527 -#define E1000_DEV_ID_I350_COPPER 0x1521 -#define E1000_DEV_ID_I350_FIBER 0x1522 -#define E1000_DEV_ID_I350_SERDES 0x1523 -#define E1000_DEV_ID_I350_SGMII 0x1524 -#define E1000_DEV_ID_I350_DA4 0x1546 -#define E1000_DEV_ID_I210_COPPER 0x1533 -#define E1000_DEV_ID_I210_COPPER_OEM1 0x1534 -#define E1000_DEV_ID_I210_COPPER_IT 0x1535 -#define E1000_DEV_ID_I210_FIBER 0x1536 -#define E1000_DEV_ID_I210_SERDES 0x1537 -#define E1000_DEV_ID_I210_SGMII 0x1538 -#define E1000_DEV_ID_I210_COPPER_FLASHLESS 0x157B -#define E1000_DEV_ID_I210_SERDES_FLASHLESS 0x157C -#define E1000_DEV_ID_I211_COPPER 0x1539 -#define E1000_DEV_ID_I354_BACKPLANE_1GBPS 0x1F40 -#define E1000_DEV_ID_I354_SGMII 0x1F41 -#define E1000_DEV_ID_I354_BACKPLANE_2_5GBPS 0x1F45 -#define E1000_DEV_ID_DH89XXCC_SGMII 0x0438 -#define E1000_DEV_ID_DH89XXCC_SERDES 0x043A -#define E1000_DEV_ID_DH89XXCC_BACKPLANE 0x043C -#define E1000_DEV_ID_DH89XXCC_SFP 0x0440 - -#define E1000_REVISION_0 0 -#define E1000_REVISION_1 1 -#define E1000_REVISION_2 2 -#define E1000_REVISION_3 3 -#define E1000_REVISION_4 4 - -#define E1000_FUNC_0 0 -#define E1000_FUNC_1 1 -#define E1000_FUNC_2 2 -#define E1000_FUNC_3 3 - -#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0 -#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3 -#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN2 6 -#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN3 9 - -enum e1000_mac_type { - e1000_undefined = 0, - e1000_82575, - e1000_82576, - e1000_82580, - e1000_i350, - e1000_i354, - e1000_i210, - e1000_i211, - e1000_num_macs /* List is 1-based, so subtract 1 for true count. */ -}; - -enum e1000_media_type { - e1000_media_type_unknown = 0, - e1000_media_type_copper = 1, - e1000_media_type_fiber = 2, - e1000_media_type_internal_serdes = 3, - e1000_num_media_types -}; - -enum e1000_nvm_type { - e1000_nvm_unknown = 0, - e1000_nvm_none, - e1000_nvm_eeprom_spi, - e1000_nvm_flash_hw, - e1000_nvm_invm, - e1000_nvm_flash_sw -}; - -enum e1000_nvm_override { - e1000_nvm_override_none = 0, - e1000_nvm_override_spi_small, - e1000_nvm_override_spi_large, -}; - -enum e1000_phy_type { - e1000_phy_unknown = 0, - e1000_phy_none, - e1000_phy_m88, - e1000_phy_igp, - e1000_phy_igp_2, - e1000_phy_gg82563, - e1000_phy_igp_3, - e1000_phy_ife, - e1000_phy_82580, - e1000_phy_vf, - e1000_phy_i210, -}; - -enum e1000_bus_type { - e1000_bus_type_unknown = 0, - e1000_bus_type_pci, - e1000_bus_type_pcix, - e1000_bus_type_pci_express, - e1000_bus_type_reserved -}; - -enum e1000_bus_speed { - e1000_bus_speed_unknown = 0, - e1000_bus_speed_33, - e1000_bus_speed_66, - e1000_bus_speed_100, - e1000_bus_speed_120, - e1000_bus_speed_133, - e1000_bus_speed_2500, - e1000_bus_speed_5000, - e1000_bus_speed_reserved -}; - -enum e1000_bus_width { - e1000_bus_width_unknown = 0, - e1000_bus_width_pcie_x1, - e1000_bus_width_pcie_x2, - e1000_bus_width_pcie_x4 = 4, - e1000_bus_width_pcie_x8 = 8, - e1000_bus_width_32, - e1000_bus_width_64, - e1000_bus_width_reserved -}; - -enum e1000_1000t_rx_status { - e1000_1000t_rx_status_not_ok = 0, - e1000_1000t_rx_status_ok, - e1000_1000t_rx_status_undefined = 0xFF -}; - -enum e1000_rev_polarity { - e1000_rev_polarity_normal = 0, - e1000_rev_polarity_reversed, - e1000_rev_polarity_undefined = 0xFF -}; - -enum e1000_fc_mode { - e1000_fc_none = 0, - e1000_fc_rx_pause, - e1000_fc_tx_pause, - e1000_fc_full, - e1000_fc_default = 0xFF -}; - -enum e1000_ms_type { - e1000_ms_hw_default = 0, - e1000_ms_force_master, - e1000_ms_force_slave, - e1000_ms_auto -}; - -enum e1000_smart_speed { - e1000_smart_speed_default = 0, - e1000_smart_speed_on, - e1000_smart_speed_off -}; - -enum e1000_serdes_link_state { - e1000_serdes_link_down = 0, - e1000_serdes_link_autoneg_progress, - e1000_serdes_link_autoneg_complete, - e1000_serdes_link_forced_up -}; - -#ifndef __le16 -#define __le16 u16 -#endif -#ifndef __le32 -#define __le32 u32 -#endif -#ifndef __le64 -#define __le64 u64 -#endif -/* Receive Descriptor */ -struct e1000_rx_desc { - __le64 buffer_addr; /* Address of the descriptor's data buffer */ - __le16 length; /* Length of data DMAed into data buffer */ - __le16 csum; /* Packet checksum */ - u8 status; /* Descriptor status */ - u8 errors; /* Descriptor Errors */ - __le16 special; -}; - -/* Receive Descriptor - Extended */ -union e1000_rx_desc_extended { - struct { - __le64 buffer_addr; - __le64 reserved; - } read; - struct { - struct { - __le32 mrq; /* Multiple Rx Queues */ - union { - __le32 rss; /* RSS Hash */ - struct { - __le16 ip_id; /* IP id */ - __le16 csum; /* Packet Checksum */ - } csum_ip; - } hi_dword; - } lower; - struct { - __le32 status_error; /* ext status/error */ - __le16 length; - __le16 vlan; /* VLAN tag */ - } upper; - } wb; /* writeback */ -}; - -#define MAX_PS_BUFFERS 4 - -/* Number of packet split data buffers (not including the header buffer) */ -#define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1) - -/* Receive Descriptor - Packet Split */ -union e1000_rx_desc_packet_split { - struct { - /* one buffer for protocol header(s), three data buffers */ - __le64 buffer_addr[MAX_PS_BUFFERS]; - } read; - struct { - struct { - __le32 mrq; /* Multiple Rx Queues */ - union { - __le32 rss; /* RSS Hash */ - struct { - __le16 ip_id; /* IP id */ - __le16 csum; /* Packet Checksum */ - } csum_ip; - } hi_dword; - } lower; - struct { - __le32 status_error; /* ext status/error */ - __le16 length0; /* length of buffer 0 */ - __le16 vlan; /* VLAN tag */ - } middle; - struct { - __le16 header_status; - /* length of buffers 1-3 */ - __le16 length[PS_PAGE_BUFFERS]; - } upper; - __le64 reserved; - } wb; /* writeback */ -}; - -/* Transmit Descriptor */ -struct e1000_tx_desc { - __le64 buffer_addr; /* Address of the descriptor's data buffer */ - union { - __le32 data; - struct { - __le16 length; /* Data buffer length */ - u8 cso; /* Checksum offset */ - u8 cmd; /* Descriptor control */ - } flags; - } lower; - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 css; /* Checksum start */ - __le16 special; - } fields; - } upper; -}; - -/* Offload Context Descriptor */ -struct e1000_context_desc { - union { - __le32 ip_config; - struct { - u8 ipcss; /* IP checksum start */ - u8 ipcso; /* IP checksum offset */ - __le16 ipcse; /* IP checksum end */ - } ip_fields; - } lower_setup; - union { - __le32 tcp_config; - struct { - u8 tucss; /* TCP checksum start */ - u8 tucso; /* TCP checksum offset */ - __le16 tucse; /* TCP checksum end */ - } tcp_fields; - } upper_setup; - __le32 cmd_and_length; - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 hdr_len; /* Header length */ - __le16 mss; /* Maximum segment size */ - } fields; - } tcp_seg_setup; -}; - -/* Offload data descriptor */ -struct e1000_data_desc { - __le64 buffer_addr; /* Address of the descriptor's buffer address */ - union { - __le32 data; - struct { - __le16 length; /* Data buffer length */ - u8 typ_len_ext; - u8 cmd; - } flags; - } lower; - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 popts; /* Packet Options */ - __le16 special; - } fields; - } upper; -}; - -/* Statistics counters collected by the MAC */ -struct e1000_hw_stats { - u64 crcerrs; - u64 algnerrc; - u64 symerrs; - u64 rxerrc; - u64 mpc; - u64 scc; - u64 ecol; - u64 mcc; - u64 latecol; - u64 colc; - u64 dc; - u64 tncrs; - u64 sec; - u64 cexterr; - u64 rlec; - u64 xonrxc; - u64 xontxc; - u64 xoffrxc; - u64 xofftxc; - u64 fcruc; - u64 prc64; - u64 prc127; - u64 prc255; - u64 prc511; - u64 prc1023; - u64 prc1522; - u64 gprc; - u64 bprc; - u64 mprc; - u64 gptc; - u64 gorc; - u64 gotc; - u64 rnbc; - u64 ruc; - u64 rfc; - u64 roc; - u64 rjc; - u64 mgprc; - u64 mgpdc; - u64 mgptc; - u64 tor; - u64 tot; - u64 tpr; - u64 tpt; - u64 ptc64; - u64 ptc127; - u64 ptc255; - u64 ptc511; - u64 ptc1023; - u64 ptc1522; - u64 mptc; - u64 bptc; - u64 tsctc; - u64 tsctfc; - u64 iac; - u64 icrxptc; - u64 icrxatc; - u64 ictxptc; - u64 ictxatc; - u64 ictxqec; - u64 ictxqmtc; - u64 icrxdmtc; - u64 icrxoc; - u64 cbtmpc; - u64 htdpmc; - u64 cbrdpc; - u64 cbrmpc; - u64 rpthc; - u64 hgptc; - u64 htcbdpc; - u64 hgorc; - u64 hgotc; - u64 lenerrs; - u64 scvpc; - u64 hrmpc; - u64 doosync; - u64 o2bgptc; - u64 o2bspc; - u64 b2ospc; - u64 b2ogprc; -}; - - -struct e1000_phy_stats { - u32 idle_errors; - u32 receive_errors; -}; - -struct e1000_host_mng_dhcp_cookie { - u32 signature; - u8 status; - u8 reserved0; - u16 vlan_id; - u32 reserved1; - u16 reserved2; - u8 reserved3; - u8 checksum; -}; - -/* Host Interface "Rev 1" */ -struct e1000_host_command_header { - u8 command_id; - u8 command_length; - u8 command_options; - u8 checksum; -}; - -#define E1000_HI_MAX_DATA_LENGTH 252 -struct e1000_host_command_info { - struct e1000_host_command_header command_header; - u8 command_data[E1000_HI_MAX_DATA_LENGTH]; -}; - -/* Host Interface "Rev 2" */ -struct e1000_host_mng_command_header { - u8 command_id; - u8 checksum; - u16 reserved1; - u16 reserved2; - u16 command_length; -}; - -#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 -struct e1000_host_mng_command_info { - struct e1000_host_mng_command_header command_header; - u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; -}; - -#include "e1000_mac.h" -#include "e1000_phy.h" -#include "e1000_nvm.h" -#include "e1000_manage.h" -#include "e1000_mbx.h" - -/* Function pointers for the MAC. */ -struct e1000_mac_operations { - s32 (*init_params)(struct e1000_hw *); - s32 (*id_led_init)(struct e1000_hw *); - s32 (*blink_led)(struct e1000_hw *); - bool (*check_mng_mode)(struct e1000_hw *); - s32 (*check_for_link)(struct e1000_hw *); - s32 (*cleanup_led)(struct e1000_hw *); - void (*clear_hw_cntrs)(struct e1000_hw *); - void (*clear_vfta)(struct e1000_hw *); - s32 (*get_bus_info)(struct e1000_hw *); - void (*set_lan_id)(struct e1000_hw *); - s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *); - s32 (*led_on)(struct e1000_hw *); - s32 (*led_off)(struct e1000_hw *); - void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32); - s32 (*reset_hw)(struct e1000_hw *); - s32 (*init_hw)(struct e1000_hw *); - void (*shutdown_serdes)(struct e1000_hw *); - void (*power_up_serdes)(struct e1000_hw *); - s32 (*setup_link)(struct e1000_hw *); - s32 (*setup_physical_interface)(struct e1000_hw *); - s32 (*setup_led)(struct e1000_hw *); - void (*write_vfta)(struct e1000_hw *, u32, u32); - void (*config_collision_dist)(struct e1000_hw *); - void (*rar_set)(struct e1000_hw *, u8*, u32); - s32 (*read_mac_addr)(struct e1000_hw *); - s32 (*validate_mdi_setting)(struct e1000_hw *); - s32 (*get_thermal_sensor_data)(struct e1000_hw *); - s32 (*init_thermal_sensor_thresh)(struct e1000_hw *); - s32 (*acquire_swfw_sync)(struct e1000_hw *, u16); - void (*release_swfw_sync)(struct e1000_hw *, u16); -}; - -/* When to use various PHY register access functions: - * - * Func Caller - * Function Does Does When to use - * ~~~~~~~~~~~~ ~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - * X_reg L,P,A n/a for simple PHY reg accesses - * X_reg_locked P,A L for multiple accesses of different regs - * on different pages - * X_reg_page A L,P for multiple accesses of different regs - * on the same page - * - * Where X=[read|write], L=locking, P=sets page, A=register access - * - */ -struct e1000_phy_operations { - s32 (*init_params)(struct e1000_hw *); - s32 (*acquire)(struct e1000_hw *); - s32 (*check_polarity)(struct e1000_hw *); - s32 (*check_reset_block)(struct e1000_hw *); - s32 (*commit)(struct e1000_hw *); - s32 (*force_speed_duplex)(struct e1000_hw *); - s32 (*get_cfg_done)(struct e1000_hw *hw); - s32 (*get_cable_length)(struct e1000_hw *); - s32 (*get_info)(struct e1000_hw *); - s32 (*set_page)(struct e1000_hw *, u16); - s32 (*read_reg)(struct e1000_hw *, u32, u16 *); - s32 (*read_reg_locked)(struct e1000_hw *, u32, u16 *); - s32 (*read_reg_page)(struct e1000_hw *, u32, u16 *); - void (*release)(struct e1000_hw *); - s32 (*reset)(struct e1000_hw *); - s32 (*set_d0_lplu_state)(struct e1000_hw *, bool); - s32 (*set_d3_lplu_state)(struct e1000_hw *, bool); - s32 (*write_reg)(struct e1000_hw *, u32, u16); - s32 (*write_reg_locked)(struct e1000_hw *, u32, u16); - s32 (*write_reg_page)(struct e1000_hw *, u32, u16); - void (*power_up)(struct e1000_hw *); - void (*power_down)(struct e1000_hw *); - s32 (*read_i2c_byte)(struct e1000_hw *, u8, u8, u8 *); - s32 (*write_i2c_byte)(struct e1000_hw *, u8, u8, u8); -}; - -/* Function pointers for the NVM. */ -struct e1000_nvm_operations { - s32 (*init_params)(struct e1000_hw *); - s32 (*acquire)(struct e1000_hw *); - s32 (*read)(struct e1000_hw *, u16, u16, u16 *); - void (*release)(struct e1000_hw *); - void (*reload)(struct e1000_hw *); - s32 (*update)(struct e1000_hw *); - s32 (*valid_led_default)(struct e1000_hw *, u16 *); - s32 (*validate)(struct e1000_hw *); - s32 (*write)(struct e1000_hw *, u16, u16, u16 *); -}; - -#define E1000_MAX_SENSORS 3 - -struct e1000_thermal_diode_data { - u8 location; - u8 temp; - u8 caution_thresh; - u8 max_op_thresh; -}; - -struct e1000_thermal_sensor_data { - struct e1000_thermal_diode_data sensor[E1000_MAX_SENSORS]; -}; - -struct e1000_mac_info { - struct e1000_mac_operations ops; - u8 addr[ETH_ADDR_LEN]; - u8 perm_addr[ETH_ADDR_LEN]; - - enum e1000_mac_type type; - - u32 collision_delta; - u32 ledctl_default; - u32 ledctl_mode1; - u32 ledctl_mode2; - u32 mc_filter_type; - u32 tx_packet_delta; - u32 txcw; - - u16 current_ifs_val; - u16 ifs_max_val; - u16 ifs_min_val; - u16 ifs_ratio; - u16 ifs_step_size; - u16 mta_reg_count; - u16 uta_reg_count; - - /* Maximum size of the MTA register table in all supported adapters */ - #define MAX_MTA_REG 128 - u32 mta_shadow[MAX_MTA_REG]; - u16 rar_entry_count; - - u8 forced_speed_duplex; - - bool adaptive_ifs; - bool has_fwsm; - bool arc_subsystem_valid; - bool asf_firmware_present; - bool autoneg; - bool autoneg_failed; - bool get_link_status; - bool in_ifs_mode; - enum e1000_serdes_link_state serdes_link_state; - bool serdes_has_link; - bool tx_pkt_filtering; - struct e1000_thermal_sensor_data thermal_sensor_data; -}; - -struct e1000_phy_info { - struct e1000_phy_operations ops; - enum e1000_phy_type type; - - enum e1000_1000t_rx_status local_rx; - enum e1000_1000t_rx_status remote_rx; - enum e1000_ms_type ms_type; - enum e1000_ms_type original_ms_type; - enum e1000_rev_polarity cable_polarity; - enum e1000_smart_speed smart_speed; - - u32 addr; - u32 id; - u32 reset_delay_us; /* in usec */ - u32 revision; - - enum e1000_media_type media_type; - - u16 autoneg_advertised; - u16 autoneg_mask; - u16 cable_length; - u16 max_cable_length; - u16 min_cable_length; - - u8 mdix; - - bool disable_polarity_correction; - bool is_mdix; - bool polarity_correction; - bool reset_disable; - bool speed_downgraded; - bool autoneg_wait_to_complete; -}; - -struct e1000_nvm_info { - struct e1000_nvm_operations ops; - enum e1000_nvm_type type; - enum e1000_nvm_override override; - - u32 flash_bank_size; - u32 flash_base_addr; - - u16 word_size; - u16 delay_usec; - u16 address_bits; - u16 opcode_bits; - u16 page_size; -}; - -struct e1000_bus_info { - enum e1000_bus_type type; - enum e1000_bus_speed speed; - enum e1000_bus_width width; - - u16 func; - u16 pci_cmd_word; -}; - -struct e1000_fc_info { - u32 high_water; /* Flow control high-water mark */ - u32 low_water; /* Flow control low-water mark */ - u16 pause_time; /* Flow control pause timer */ - u16 refresh_time; /* Flow control refresh timer */ - bool send_xon; /* Flow control send XON */ - bool strict_ieee; /* Strict IEEE mode */ - enum e1000_fc_mode current_mode; /* FC mode in effect */ - enum e1000_fc_mode requested_mode; /* FC mode requested by caller */ -}; - -struct e1000_mbx_operations { - s32 (*init_params)(struct e1000_hw *hw); - s32 (*read)(struct e1000_hw *, u32 *, u16, u16); - s32 (*write)(struct e1000_hw *, u32 *, u16, u16); - s32 (*read_posted)(struct e1000_hw *, u32 *, u16, u16); - s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16); - s32 (*check_for_msg)(struct e1000_hw *, u16); - s32 (*check_for_ack)(struct e1000_hw *, u16); - s32 (*check_for_rst)(struct e1000_hw *, u16); -}; - -struct e1000_mbx_stats { - u32 msgs_tx; - u32 msgs_rx; - - u32 acks; - u32 reqs; - u32 rsts; -}; - -struct e1000_mbx_info { - struct e1000_mbx_operations ops; - struct e1000_mbx_stats stats; - u32 timeout; - u32 usec_delay; - u16 size; -}; - -struct e1000_dev_spec_82575 { - bool sgmii_active; - bool global_device_reset; - bool eee_disable; - bool module_plugged; - bool clear_semaphore_once; - u32 mtu; - struct sfp_e1000_flags eth_flags; - u8 media_port; - bool media_changed; -}; - -struct e1000_dev_spec_vf { - u32 vf_number; - u32 v2p_mailbox; -}; - -struct e1000_hw { - void *back; - - u8 __iomem *hw_addr; - u8 __iomem *flash_address; - unsigned long io_base; - - struct e1000_mac_info mac; - struct e1000_fc_info fc; - struct e1000_phy_info phy; - struct e1000_nvm_info nvm; - struct e1000_bus_info bus; - struct e1000_mbx_info mbx; - struct e1000_host_mng_dhcp_cookie mng_cookie; - - union { - struct e1000_dev_spec_82575 _82575; - struct e1000_dev_spec_vf vf; - } dev_spec; - - u16 device_id; - u16 subsystem_vendor_id; - u16 subsystem_device_id; - u16 vendor_id; - - u8 revision_id; -}; - -#include "e1000_82575.h" -#include "e1000_i210.h" - -/* These functions must be implemented by drivers */ -s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); -s32 e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); - -#endif diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_i210.c b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_i210.c deleted file mode 100644 index a4fabc3a..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_i210.c +++ /dev/null @@ -1,894 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#include "e1000_api.h" - - -static s32 e1000_acquire_nvm_i210(struct e1000_hw *hw); -static void e1000_release_nvm_i210(struct e1000_hw *hw); -static s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw); -static s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data); -static s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw); -static s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data); - -/** - * e1000_acquire_nvm_i210 - Request for access to EEPROM - * @hw: pointer to the HW structure - * - * Acquire the necessary semaphores for exclusive access to the EEPROM. - * Set the EEPROM access request bit and wait for EEPROM access grant bit. - * Return successful if access grant bit set, else clear the request for - * EEPROM access and return -E1000_ERR_NVM (-1). - **/ -static s32 e1000_acquire_nvm_i210(struct e1000_hw *hw) -{ - s32 ret_val; - - DEBUGFUNC("e1000_acquire_nvm_i210"); - - ret_val = e1000_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); - - return ret_val; -} - -/** - * e1000_release_nvm_i210 - Release exclusive access to EEPROM - * @hw: pointer to the HW structure - * - * Stop any current commands to the EEPROM and clear the EEPROM request bit, - * then release the semaphores acquired. - **/ -static void e1000_release_nvm_i210(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_release_nvm_i210"); - - e1000_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); -} - -/** - * e1000_acquire_swfw_sync_i210 - Acquire SW/FW semaphore - * @hw: pointer to the HW structure - * @mask: specifies which semaphore to acquire - * - * Acquire the SW/FW semaphore to access the PHY or NVM. The mask - * will also specify which port we're acquiring the lock for. - **/ -s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask) -{ - u32 swfw_sync; - u32 swmask = mask; - u32 fwmask = mask << 16; - s32 ret_val = E1000_SUCCESS; - s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ - - DEBUGFUNC("e1000_acquire_swfw_sync_i210"); - - while (i < timeout) { - if (e1000_get_hw_semaphore_i210(hw)) { - ret_val = -E1000_ERR_SWFW_SYNC; - goto out; - } - - swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); - if (!(swfw_sync & (fwmask | swmask))) - break; - - /* - * Firmware currently using resource (fwmask) - * or other software thread using resource (swmask) - */ - e1000_put_hw_semaphore_generic(hw); - msec_delay_irq(5); - i++; - } - - if (i == timeout) { - DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); - ret_val = -E1000_ERR_SWFW_SYNC; - goto out; - } - - swfw_sync |= swmask; - E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); - - e1000_put_hw_semaphore_generic(hw); - -out: - return ret_val; -} - -/** - * e1000_release_swfw_sync_i210 - Release SW/FW semaphore - * @hw: pointer to the HW structure - * @mask: specifies which semaphore to acquire - * - * Release the SW/FW semaphore used to access the PHY or NVM. The mask - * will also specify which port we're releasing the lock for. - **/ -void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask) -{ - u32 swfw_sync; - - DEBUGFUNC("e1000_release_swfw_sync_i210"); - - while (e1000_get_hw_semaphore_i210(hw) != E1000_SUCCESS) - ; /* Empty */ - - swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); - swfw_sync &= ~mask; - E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); - - e1000_put_hw_semaphore_generic(hw); -} - -/** - * e1000_get_hw_semaphore_i210 - Acquire hardware semaphore - * @hw: pointer to the HW structure - * - * Acquire the HW semaphore to access the PHY or NVM - **/ -static s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw) -{ - u32 swsm; - s32 timeout = hw->nvm.word_size + 1; - s32 i = 0; - - DEBUGFUNC("e1000_get_hw_semaphore_i210"); - - /* Get the SW semaphore */ - while (i < timeout) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - if (!(swsm & E1000_SWSM_SMBI)) - break; - - usec_delay(50); - i++; - } - - if (i == timeout) { - /* In rare circumstances, the SW semaphore may already be held - * unintentionally. Clear the semaphore once before giving up. - */ - if (hw->dev_spec._82575.clear_semaphore_once) { - hw->dev_spec._82575.clear_semaphore_once = false; - e1000_put_hw_semaphore_generic(hw); - for (i = 0; i < timeout; i++) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - if (!(swsm & E1000_SWSM_SMBI)) - break; - - usec_delay(50); - } - } - - /* If we do not have the semaphore here, we have to give up. */ - if (i == timeout) { - DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); - return -E1000_ERR_NVM; - } - } - - /* Get the FW semaphore. */ - for (i = 0; i < timeout; i++) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); - - /* Semaphore acquired if bit latched */ - if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) - break; - - usec_delay(50); - } - - if (i == timeout) { - /* Release semaphores */ - e1000_put_hw_semaphore_generic(hw); - DEBUGOUT("Driver can't access the NVM\n"); - return -E1000_ERR_NVM; - } - - return E1000_SUCCESS; -} - -/** - * e1000_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register - * @hw: pointer to the HW structure - * @offset: offset of word in the Shadow Ram to read - * @words: number of words to read - * @data: word read from the Shadow Ram - * - * Reads a 16 bit word from the Shadow Ram using the EERD register. - * Uses necessary synchronization semaphores. - **/ -s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - s32 status = E1000_SUCCESS; - u16 i, count; - - DEBUGFUNC("e1000_read_nvm_srrd_i210"); - - /* We cannot hold synchronization semaphores for too long, - * because of forceful takeover procedure. However it is more efficient - * to read in bursts than synchronizing access for each word. */ - for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) { - count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? - E1000_EERD_EEWR_MAX_COUNT : (words - i); - if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { - status = e1000_read_nvm_eerd(hw, offset, count, - data + i); - hw->nvm.ops.release(hw); - } else { - status = E1000_ERR_SWFW_SYNC; - } - - if (status != E1000_SUCCESS) - break; - } - - return status; -} - -/** - * e1000_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR - * @hw: pointer to the HW structure - * @offset: offset within the Shadow RAM to be written to - * @words: number of words to write - * @data: 16 bit word(s) to be written to the Shadow RAM - * - * Writes data to Shadow RAM at offset using EEWR register. - * - * If e1000_update_nvm_checksum is not called after this function , the - * data will not be committed to FLASH and also Shadow RAM will most likely - * contain an invalid checksum. - * - * If error code is returned, data and Shadow RAM may be inconsistent - buffer - * partially written. - **/ -s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - s32 status = E1000_SUCCESS; - u16 i, count; - - DEBUGFUNC("e1000_write_nvm_srwr_i210"); - - /* We cannot hold synchronization semaphores for too long, - * because of forceful takeover procedure. However it is more efficient - * to write in bursts than synchronizing access for each word. */ - for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) { - count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? - E1000_EERD_EEWR_MAX_COUNT : (words - i); - if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { - status = e1000_write_nvm_srwr(hw, offset, count, - data + i); - hw->nvm.ops.release(hw); - } else { - status = E1000_ERR_SWFW_SYNC; - } - - if (status != E1000_SUCCESS) - break; - } - - return status; -} - -/** - * e1000_write_nvm_srwr - Write to Shadow Ram using EEWR - * @hw: pointer to the HW structure - * @offset: offset within the Shadow Ram to be written to - * @words: number of words to write - * @data: 16 bit word(s) to be written to the Shadow Ram - * - * Writes data to Shadow Ram at offset using EEWR register. - * - * If e1000_update_nvm_checksum is not called after this function , the - * Shadow Ram will most likely contain an invalid checksum. - **/ -static s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 i, k, eewr = 0; - u32 attempts = 100000; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_write_nvm_srwr"); - - /* - * A check for invalid values: offset too large, too many words, - * too many words for the offset, and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - - for (i = 0; i < words; i++) { - eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | - (data[i] << E1000_NVM_RW_REG_DATA) | - E1000_NVM_RW_REG_START; - - E1000_WRITE_REG(hw, E1000_SRWR, eewr); - - for (k = 0; k < attempts; k++) { - if (E1000_NVM_RW_REG_DONE & - E1000_READ_REG(hw, E1000_SRWR)) { - ret_val = E1000_SUCCESS; - break; - } - usec_delay(5); - } - - if (ret_val != E1000_SUCCESS) { - DEBUGOUT("Shadow RAM write EEWR timed out\n"); - break; - } - } - -out: - return ret_val; -} - -/** e1000_read_invm_word_i210 - Reads OTP - * @hw: pointer to the HW structure - * @address: the word address (aka eeprom offset) to read - * @data: pointer to the data read - * - * Reads 16-bit words from the OTP. Return error when the word is not - * stored in OTP. - **/ -static s32 e1000_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data) -{ - s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND; - u32 invm_dword; - u16 i; - u8 record_type, word_address; - - DEBUGFUNC("e1000_read_invm_word_i210"); - - for (i = 0; i < E1000_INVM_SIZE; i++) { - invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i)); - /* Get record type */ - record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword); - if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE) - break; - if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE) - i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS; - if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE) - i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS; - if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) { - word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword); - if (word_address == address) { - *data = INVM_DWORD_TO_WORD_DATA(invm_dword); - DEBUGOUT2("Read INVM Word 0x%02x = %x", - address, *data); - status = E1000_SUCCESS; - break; - } - } - } - if (status != E1000_SUCCESS) - DEBUGOUT1("Requested word 0x%02x not found in OTP\n", address); - return status; -} - -/** e1000_read_invm_i210 - Read invm wrapper function for I210/I211 - * @hw: pointer to the HW structure - * @address: the word address (aka eeprom offset) to read - * @data: pointer to the data read - * - * Wrapper function to return data formerly found in the NVM. - **/ -static s32 e1000_read_invm_i210(struct e1000_hw *hw, u16 offset, - u16 E1000_UNUSEDARG words, u16 *data) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_read_invm_i210"); - - /* Only the MAC addr is required to be present in the iNVM */ - switch (offset) { - case NVM_MAC_ADDR: - ret_val = e1000_read_invm_word_i210(hw, (u8)offset, &data[0]); - ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+1, - &data[1]); - ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+2, - &data[2]); - if (ret_val != E1000_SUCCESS) - DEBUGOUT("MAC Addr not found in iNVM\n"); - break; - case NVM_INIT_CTRL_2: - ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); - if (ret_val != E1000_SUCCESS) { - *data = NVM_INIT_CTRL_2_DEFAULT_I211; - ret_val = E1000_SUCCESS; - } - break; - case NVM_INIT_CTRL_4: - ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); - if (ret_val != E1000_SUCCESS) { - *data = NVM_INIT_CTRL_4_DEFAULT_I211; - ret_val = E1000_SUCCESS; - } - break; - case NVM_LED_1_CFG: - ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); - if (ret_val != E1000_SUCCESS) { - *data = NVM_LED_1_CFG_DEFAULT_I211; - ret_val = E1000_SUCCESS; - } - break; - case NVM_LED_0_2_CFG: - ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); - if (ret_val != E1000_SUCCESS) { - *data = NVM_LED_0_2_CFG_DEFAULT_I211; - ret_val = E1000_SUCCESS; - } - break; - case NVM_ID_LED_SETTINGS: - ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); - if (ret_val != E1000_SUCCESS) { - *data = ID_LED_RESERVED_FFFF; - ret_val = E1000_SUCCESS; - } - break; - case NVM_SUB_DEV_ID: - *data = hw->subsystem_device_id; - break; - case NVM_SUB_VEN_ID: - *data = hw->subsystem_vendor_id; - break; - case NVM_DEV_ID: - *data = hw->device_id; - break; - case NVM_VEN_ID: - *data = hw->vendor_id; - break; - default: - DEBUGOUT1("NVM word 0x%02x is not mapped.\n", offset); - *data = NVM_RESERVED_WORD; - break; - } - return ret_val; -} - -/** - * e1000_read_invm_version - Reads iNVM version and image type - * @hw: pointer to the HW structure - * @invm_ver: version structure for the version read - * - * Reads iNVM version and image type. - **/ -s32 e1000_read_invm_version(struct e1000_hw *hw, - struct e1000_fw_version *invm_ver) -{ - u32 *record = NULL; - u32 *next_record = NULL; - u32 i = 0; - u32 invm_dword = 0; - u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE / - E1000_INVM_RECORD_SIZE_IN_BYTES); - u32 buffer[E1000_INVM_SIZE]; - s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND; - u16 version = 0; - - DEBUGFUNC("e1000_read_invm_version"); - - /* Read iNVM memory */ - for (i = 0; i < E1000_INVM_SIZE; i++) { - invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i)); - buffer[i] = invm_dword; - } - - /* Read version number */ - for (i = 1; i < invm_blocks; i++) { - record = &buffer[invm_blocks - i]; - next_record = &buffer[invm_blocks - i + 1]; - - /* Check if we have first version location used */ - if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) { - version = 0; - status = E1000_SUCCESS; - break; - } - /* Check if we have second version location used */ - else if ((i == 1) && - ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) { - version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3; - status = E1000_SUCCESS; - break; - } - /* - * Check if we have odd version location - * used and it is the last one used - */ - else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) && - ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) && - (i != 1))) { - version = (*next_record & E1000_INVM_VER_FIELD_TWO) - >> 13; - status = E1000_SUCCESS; - break; - } - /* - * Check if we have even version location - * used and it is the last one used - */ - else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) && - ((*record & 0x3) == 0)) { - version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3; - status = E1000_SUCCESS; - break; - } - } - - if (status == E1000_SUCCESS) { - invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK) - >> E1000_INVM_MAJOR_SHIFT; - invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK; - } - /* Read Image Type */ - for (i = 1; i < invm_blocks; i++) { - record = &buffer[invm_blocks - i]; - next_record = &buffer[invm_blocks - i + 1]; - - /* Check if we have image type in first location used */ - if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) { - invm_ver->invm_img_type = 0; - status = E1000_SUCCESS; - break; - } - /* Check if we have image type in first location used */ - else if ((((*record & 0x3) == 0) && - ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) || - ((((*record & 0x3) != 0) && (i != 1)))) { - invm_ver->invm_img_type = - (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23; - status = E1000_SUCCESS; - break; - } - } - return status; -} - -/** - * e1000_validate_nvm_checksum_i210 - Validate EEPROM checksum - * @hw: pointer to the HW structure - * - * Calculates the EEPROM checksum by reading/adding each word of the EEPROM - * and then verifies that the sum of the EEPROM is equal to 0xBABA. - **/ -s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw) -{ - s32 status = E1000_SUCCESS; - s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *); - - DEBUGFUNC("e1000_validate_nvm_checksum_i210"); - - if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { - - /* - * Replace the read function with semaphore grabbing with - * the one that skips this for a while. - * We have semaphore taken already here. - */ - read_op_ptr = hw->nvm.ops.read; - hw->nvm.ops.read = e1000_read_nvm_eerd; - - status = e1000_validate_nvm_checksum_generic(hw); - - /* Revert original read operation. */ - hw->nvm.ops.read = read_op_ptr; - - hw->nvm.ops.release(hw); - } else { - status = E1000_ERR_SWFW_SYNC; - } - - return status; -} - - -/** - * e1000_update_nvm_checksum_i210 - Update EEPROM checksum - * @hw: pointer to the HW structure - * - * Updates the EEPROM checksum by reading/adding each word of the EEPROM - * up to the checksum. Then calculates the EEPROM checksum and writes the - * value to the EEPROM. Next commit EEPROM data onto the Flash. - **/ -s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 checksum = 0; - u16 i, nvm_data; - - DEBUGFUNC("e1000_update_nvm_checksum_i210"); - - /* - * Read the first word from the EEPROM. If this times out or fails, do - * not continue or we could be in for a very long wait while every - * EEPROM read fails - */ - ret_val = e1000_read_nvm_eerd(hw, 0, 1, &nvm_data); - if (ret_val != E1000_SUCCESS) { - DEBUGOUT("EEPROM read failed\n"); - goto out; - } - - if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { - /* - * Do not use hw->nvm.ops.write, hw->nvm.ops.read - * because we do not want to take the synchronization - * semaphores twice here. - */ - - for (i = 0; i < NVM_CHECKSUM_REG; i++) { - ret_val = e1000_read_nvm_eerd(hw, i, 1, &nvm_data); - if (ret_val) { - hw->nvm.ops.release(hw); - DEBUGOUT("NVM Read Error while updating checksum.\n"); - goto out; - } - checksum += nvm_data; - } - checksum = (u16) NVM_SUM - checksum; - ret_val = e1000_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1, - &checksum); - if (ret_val != E1000_SUCCESS) { - hw->nvm.ops.release(hw); - DEBUGOUT("NVM Write Error while updating checksum.\n"); - goto out; - } - - hw->nvm.ops.release(hw); - - ret_val = e1000_update_flash_i210(hw); - } else { - ret_val = E1000_ERR_SWFW_SYNC; - } -out: - return ret_val; -} - -/** - * e1000_get_flash_presence_i210 - Check if flash device is detected. - * @hw: pointer to the HW structure - * - **/ -bool e1000_get_flash_presence_i210(struct e1000_hw *hw) -{ - u32 eec = 0; - bool ret_val = false; - - DEBUGFUNC("e1000_get_flash_presence_i210"); - - eec = E1000_READ_REG(hw, E1000_EECD); - - if (eec & E1000_EECD_FLASH_DETECTED_I210) - ret_val = true; - - return ret_val; -} - -/** - * e1000_update_flash_i210 - Commit EEPROM to the flash - * @hw: pointer to the HW structure - * - **/ -s32 e1000_update_flash_i210(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u32 flup; - - DEBUGFUNC("e1000_update_flash_i210"); - - ret_val = e1000_pool_flash_update_done_i210(hw); - if (ret_val == -E1000_ERR_NVM) { - DEBUGOUT("Flash update time out\n"); - goto out; - } - - flup = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD_I210; - E1000_WRITE_REG(hw, E1000_EECD, flup); - - ret_val = e1000_pool_flash_update_done_i210(hw); - if (ret_val == E1000_SUCCESS) - DEBUGOUT("Flash update complete\n"); - else - DEBUGOUT("Flash update time out\n"); - -out: - return ret_val; -} - -/** - * e1000_pool_flash_update_done_i210 - Pool FLUDONE status. - * @hw: pointer to the HW structure - * - **/ -s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw) -{ - s32 ret_val = -E1000_ERR_NVM; - u32 i, reg; - - DEBUGFUNC("e1000_pool_flash_update_done_i210"); - - for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) { - reg = E1000_READ_REG(hw, E1000_EECD); - if (reg & E1000_EECD_FLUDONE_I210) { - ret_val = E1000_SUCCESS; - break; - } - usec_delay(5); - } - - return ret_val; -} - -/** - * e1000_init_nvm_params_i210 - Initialize i210 NVM function pointers - * @hw: pointer to the HW structure - * - * Initialize the i210/i211 NVM parameters and function pointers. - **/ -static s32 e1000_init_nvm_params_i210(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - struct e1000_nvm_info *nvm = &hw->nvm; - - DEBUGFUNC("e1000_init_nvm_params_i210"); - - ret_val = e1000_init_nvm_params_82575(hw); - nvm->ops.acquire = e1000_acquire_nvm_i210; - nvm->ops.release = e1000_release_nvm_i210; - nvm->ops.valid_led_default = e1000_valid_led_default_i210; - if (e1000_get_flash_presence_i210(hw)) { - hw->nvm.type = e1000_nvm_flash_hw; - nvm->ops.read = e1000_read_nvm_srrd_i210; - nvm->ops.write = e1000_write_nvm_srwr_i210; - nvm->ops.validate = e1000_validate_nvm_checksum_i210; - nvm->ops.update = e1000_update_nvm_checksum_i210; - } else { - hw->nvm.type = e1000_nvm_invm; - nvm->ops.read = e1000_read_invm_i210; - nvm->ops.write = e1000_null_write_nvm; - nvm->ops.validate = e1000_null_ops_generic; - nvm->ops.update = e1000_null_ops_generic; - } - return ret_val; -} - -/** - * e1000_init_function_pointers_i210 - Init func ptrs. - * @hw: pointer to the HW structure - * - * Called to initialize all function pointers and parameters. - **/ -void e1000_init_function_pointers_i210(struct e1000_hw *hw) -{ - e1000_init_function_pointers_82575(hw); - hw->nvm.ops.init_params = e1000_init_nvm_params_i210; - - return; -} - -/** - * e1000_valid_led_default_i210 - Verify a valid default LED config - * @hw: pointer to the HW structure - * @data: pointer to the NVM (EEPROM) - * - * Read the EEPROM for the current default LED configuration. If the - * LED configuration is not valid, set to a valid LED configuration. - **/ -static s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_valid_led_default_i210"); - - ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - - if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { - switch (hw->phy.media_type) { - case e1000_media_type_internal_serdes: - *data = ID_LED_DEFAULT_I210_SERDES; - break; - case e1000_media_type_copper: - default: - *data = ID_LED_DEFAULT_I210; - break; - } - } -out: - return ret_val; -} - -/** - * __e1000_access_xmdio_reg - Read/write XMDIO register - * @hw: pointer to the HW structure - * @address: XMDIO address to program - * @dev_addr: device address to program - * @data: pointer to value to read/write from/to the XMDIO address - * @read: boolean flag to indicate read or write - **/ -static s32 __e1000_access_xmdio_reg(struct e1000_hw *hw, u16 address, - u8 dev_addr, u16 *data, bool read) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("__e1000_access_xmdio_reg"); - - ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr); - if (ret_val) - return ret_val; - - ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address); - if (ret_val) - return ret_val; - - ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA | - dev_addr); - if (ret_val) - return ret_val; - - if (read) - ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data); - else - ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data); - if (ret_val) - return ret_val; - - /* Recalibrate the device back to 0 */ - ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0); - if (ret_val) - return ret_val; - - return ret_val; -} - -/** - * e1000_read_xmdio_reg - Read XMDIO register - * @hw: pointer to the HW structure - * @addr: XMDIO address to program - * @dev_addr: device address to program - * @data: value to be read from the EMI address - **/ -s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data) -{ - DEBUGFUNC("e1000_read_xmdio_reg"); - - return __e1000_access_xmdio_reg(hw, addr, dev_addr, data, true); -} - -/** - * e1000_write_xmdio_reg - Write XMDIO register - * @hw: pointer to the HW structure - * @addr: XMDIO address to program - * @dev_addr: device address to program - * @data: value to be written to the XMDIO address - **/ -s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data) -{ - DEBUGFUNC("e1000_read_xmdio_reg"); - - return __e1000_access_xmdio_reg(hw, addr, dev_addr, &data, false); -} diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_i210.h b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_i210.h deleted file mode 100644 index 9df7c203..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_i210.h +++ /dev/null @@ -1,76 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#ifndef _E1000_I210_H_ -#define _E1000_I210_H_ - -bool e1000_get_flash_presence_i210(struct e1000_hw *hw); -s32 e1000_update_flash_i210(struct e1000_hw *hw); -s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw); -s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw); -s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -s32 e1000_read_invm_version(struct e1000_hw *hw, - struct e1000_fw_version *invm_ver); -s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask); -void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask); -s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, - u16 *data); -s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, - u16 data); - -#define E1000_STM_OPCODE 0xDB00 -#define E1000_EEPROM_FLASH_SIZE_WORD 0x11 - -#define INVM_DWORD_TO_RECORD_TYPE(invm_dword) \ - (u8)((invm_dword) & 0x7) -#define INVM_DWORD_TO_WORD_ADDRESS(invm_dword) \ - (u8)(((invm_dword) & 0x0000FE00) >> 9) -#define INVM_DWORD_TO_WORD_DATA(invm_dword) \ - (u16)(((invm_dword) & 0xFFFF0000) >> 16) - -enum E1000_INVM_STRUCTURE_TYPE { - E1000_INVM_UNINITIALIZED_STRUCTURE = 0x00, - E1000_INVM_WORD_AUTOLOAD_STRUCTURE = 0x01, - E1000_INVM_CSR_AUTOLOAD_STRUCTURE = 0x02, - E1000_INVM_PHY_REGISTER_AUTOLOAD_STRUCTURE = 0x03, - E1000_INVM_RSA_KEY_SHA256_STRUCTURE = 0x04, - E1000_INVM_INVALIDATED_STRUCTURE = 0x0F, -}; - -#define E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS 8 -#define E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS 1 -#define E1000_INVM_ULT_BYTES_SIZE 8 -#define E1000_INVM_RECORD_SIZE_IN_BYTES 4 -#define E1000_INVM_VER_FIELD_ONE 0x1FF8 -#define E1000_INVM_VER_FIELD_TWO 0x7FE000 -#define E1000_INVM_IMGTYPE_FIELD 0x1F800000 - -#define E1000_INVM_MAJOR_MASK 0x3F0 -#define E1000_INVM_MINOR_MASK 0xF -#define E1000_INVM_MAJOR_SHIFT 4 - -#define ID_LED_DEFAULT_I210 ((ID_LED_OFF1_ON2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_OFF1_OFF2)) -#define ID_LED_DEFAULT_I210_SERDES ((ID_LED_DEF1_DEF2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_OFF1_ON2)) - -/* NVM offset defaults for I211 devices */ -#define NVM_INIT_CTRL_2_DEFAULT_I211 0X7243 -#define NVM_INIT_CTRL_4_DEFAULT_I211 0x00C1 -#define NVM_LED_1_CFG_DEFAULT_I211 0x0184 -#define NVM_LED_0_2_CFG_DEFAULT_I211 0x200C -#endif diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_mac.c b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_mac.c deleted file mode 100644 index 13a42267..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_mac.c +++ /dev/null @@ -1,2081 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#include "e1000_api.h" - -static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw); -static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw); -static void e1000_config_collision_dist_generic(struct e1000_hw *hw); -static void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index); - -/** - * e1000_init_mac_ops_generic - Initialize MAC function pointers - * @hw: pointer to the HW structure - * - * Setups up the function pointers to no-op functions - **/ -void e1000_init_mac_ops_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - DEBUGFUNC("e1000_init_mac_ops_generic"); - - /* General Setup */ - mac->ops.init_params = e1000_null_ops_generic; - mac->ops.init_hw = e1000_null_ops_generic; - mac->ops.reset_hw = e1000_null_ops_generic; - mac->ops.setup_physical_interface = e1000_null_ops_generic; - mac->ops.get_bus_info = e1000_null_ops_generic; - mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie; - mac->ops.read_mac_addr = e1000_read_mac_addr_generic; - mac->ops.config_collision_dist = e1000_config_collision_dist_generic; - mac->ops.clear_hw_cntrs = e1000_null_mac_generic; - /* LED */ - mac->ops.cleanup_led = e1000_null_ops_generic; - mac->ops.setup_led = e1000_null_ops_generic; - mac->ops.blink_led = e1000_null_ops_generic; - mac->ops.led_on = e1000_null_ops_generic; - mac->ops.led_off = e1000_null_ops_generic; - /* LINK */ - mac->ops.setup_link = e1000_null_ops_generic; - mac->ops.get_link_up_info = e1000_null_link_info; - mac->ops.check_for_link = e1000_null_ops_generic; - /* Management */ - mac->ops.check_mng_mode = e1000_null_mng_mode; - /* VLAN, MC, etc. */ - mac->ops.update_mc_addr_list = e1000_null_update_mc; - mac->ops.clear_vfta = e1000_null_mac_generic; - mac->ops.write_vfta = e1000_null_write_vfta; - mac->ops.rar_set = e1000_rar_set_generic; - mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic; -} - -/** - * e1000_null_ops_generic - No-op function, returns 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_ops_generic(struct e1000_hw E1000_UNUSEDARG *hw) -{ - DEBUGFUNC("e1000_null_ops_generic"); - return E1000_SUCCESS; -} - -/** - * e1000_null_mac_generic - No-op function, return void - * @hw: pointer to the HW structure - **/ -void e1000_null_mac_generic(struct e1000_hw E1000_UNUSEDARG *hw) -{ - DEBUGFUNC("e1000_null_mac_generic"); - return; -} - -/** - * e1000_null_link_info - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_link_info(struct e1000_hw E1000_UNUSEDARG *hw, - u16 E1000_UNUSEDARG *s, u16 E1000_UNUSEDARG *d) -{ - DEBUGFUNC("e1000_null_link_info"); - return E1000_SUCCESS; -} - -/** - * e1000_null_mng_mode - No-op function, return false - * @hw: pointer to the HW structure - **/ -bool e1000_null_mng_mode(struct e1000_hw E1000_UNUSEDARG *hw) -{ - DEBUGFUNC("e1000_null_mng_mode"); - return false; -} - -/** - * e1000_null_update_mc - No-op function, return void - * @hw: pointer to the HW structure - **/ -void e1000_null_update_mc(struct e1000_hw E1000_UNUSEDARG *hw, - u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a) -{ - DEBUGFUNC("e1000_null_update_mc"); - return; -} - -/** - * e1000_null_write_vfta - No-op function, return void - * @hw: pointer to the HW structure - **/ -void e1000_null_write_vfta(struct e1000_hw E1000_UNUSEDARG *hw, - u32 E1000_UNUSEDARG a, u32 E1000_UNUSEDARG b) -{ - DEBUGFUNC("e1000_null_write_vfta"); - return; -} - -/** - * e1000_null_rar_set - No-op function, return void - * @hw: pointer to the HW structure - **/ -void e1000_null_rar_set(struct e1000_hw E1000_UNUSEDARG *hw, - u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a) -{ - DEBUGFUNC("e1000_null_rar_set"); - return; -} - -/** - * e1000_get_bus_info_pcie_generic - Get PCIe bus information - * @hw: pointer to the HW structure - * - * Determines and stores the system bus information for a particular - * network interface. The following bus information is determined and stored: - * bus speed, bus width, type (PCIe), and PCIe function. - **/ -s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - struct e1000_bus_info *bus = &hw->bus; - s32 ret_val; - u16 pcie_link_status; - - DEBUGFUNC("e1000_get_bus_info_pcie_generic"); - - bus->type = e1000_bus_type_pci_express; - - ret_val = e1000_read_pcie_cap_reg(hw, PCIE_LINK_STATUS, - &pcie_link_status); - if (ret_val) { - bus->width = e1000_bus_width_unknown; - bus->speed = e1000_bus_speed_unknown; - } else { - switch (pcie_link_status & PCIE_LINK_SPEED_MASK) { - case PCIE_LINK_SPEED_2500: - bus->speed = e1000_bus_speed_2500; - break; - case PCIE_LINK_SPEED_5000: - bus->speed = e1000_bus_speed_5000; - break; - default: - bus->speed = e1000_bus_speed_unknown; - break; - } - - bus->width = (enum e1000_bus_width)((pcie_link_status & - PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT); - } - - mac->ops.set_lan_id(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices - * - * @hw: pointer to the HW structure - * - * Determines the LAN function id by reading memory-mapped registers - * and swaps the port value if requested. - **/ -static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - u32 reg; - - /* The status register reports the correct function number - * for the device regardless of function swap state. - */ - reg = E1000_READ_REG(hw, E1000_STATUS); - bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; -} - -/** - * e1000_set_lan_id_single_port - Set LAN id for a single port device - * @hw: pointer to the HW structure - * - * Sets the LAN function id to zero for a single port device. - **/ -void e1000_set_lan_id_single_port(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - - bus->func = 0; -} - -/** - * e1000_clear_vfta_generic - Clear VLAN filter table - * @hw: pointer to the HW structure - * - * Clears the register array which contains the VLAN filter table by - * setting all the values to 0. - **/ -void e1000_clear_vfta_generic(struct e1000_hw *hw) -{ - u32 offset; - - DEBUGFUNC("e1000_clear_vfta_generic"); - - for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); - E1000_WRITE_FLUSH(hw); - } -} - -/** - * e1000_write_vfta_generic - Write value to VLAN filter table - * @hw: pointer to the HW structure - * @offset: register offset in VLAN filter table - * @value: register value written to VLAN filter table - * - * Writes value at the given offset in the register array which stores - * the VLAN filter table. - **/ -void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) -{ - DEBUGFUNC("e1000_write_vfta_generic"); - - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); - E1000_WRITE_FLUSH(hw); -} - -/** - * e1000_init_rx_addrs_generic - Initialize receive address's - * @hw: pointer to the HW structure - * @rar_count: receive address registers - * - * Setup the receive address registers by setting the base receive address - * register to the devices MAC address and clearing all the other receive - * address registers to 0. - **/ -void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count) -{ - u32 i; - u8 mac_addr[ETH_ADDR_LEN] = {0}; - - DEBUGFUNC("e1000_init_rx_addrs_generic"); - - /* Setup the receive address */ - DEBUGOUT("Programming MAC Address into RAR[0]\n"); - - hw->mac.ops.rar_set(hw, hw->mac.addr, 0); - - /* Zero out the other (rar_entry_count - 1) receive addresses */ - DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1); - for (i = 1; i < rar_count; i++) - hw->mac.ops.rar_set(hw, mac_addr, i); -} - -/** - * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr - * @hw: pointer to the HW structure - * - * Checks the nvm for an alternate MAC address. An alternate MAC address - * can be setup by pre-boot software and must be treated like a permanent - * address and must override the actual permanent MAC address. If an - * alternate MAC address is found it is programmed into RAR0, replacing - * the permanent address that was installed into RAR0 by the Si on reset. - * This function will return SUCCESS unless it encounters an error while - * reading the EEPROM. - **/ -s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) -{ - u32 i; - s32 ret_val; - u16 offset, nvm_alt_mac_addr_offset, nvm_data; - u8 alt_mac_addr[ETH_ADDR_LEN]; - - DEBUGFUNC("e1000_check_alt_mac_addr_generic"); - - ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data); - if (ret_val) - return ret_val; - - - /* Alternate MAC address is handled by the option ROM for 82580 - * and newer. SW support not required. - */ - if (hw->mac.type >= e1000_82580) - return E1000_SUCCESS; - - ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, - &nvm_alt_mac_addr_offset); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - if ((nvm_alt_mac_addr_offset == 0xFFFF) || - (nvm_alt_mac_addr_offset == 0x0000)) - /* There is no Alternate MAC Address */ - return E1000_SUCCESS; - - if (hw->bus.func == E1000_FUNC_1) - nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; - if (hw->bus.func == E1000_FUNC_2) - nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2; - - if (hw->bus.func == E1000_FUNC_3) - nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3; - for (i = 0; i < ETH_ADDR_LEN; i += 2) { - offset = nvm_alt_mac_addr_offset + (i >> 1); - ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - alt_mac_addr[i] = (u8)(nvm_data & 0xFF); - alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); - } - - /* if multicast bit is set, the alternate address will not be used */ - if (alt_mac_addr[0] & 0x01) { - DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n"); - return E1000_SUCCESS; - } - - /* We have a valid alternate MAC address, and we want to treat it the - * same as the normal permanent MAC address stored by the HW into the - * RAR. Do this by mapping this address into RAR0. - */ - hw->mac.ops.rar_set(hw, alt_mac_addr, 0); - - return E1000_SUCCESS; -} - -/** - * e1000_rar_set_generic - Set receive address register - * @hw: pointer to the HW structure - * @addr: pointer to the receive address - * @index: receive address array register - * - * Sets the receive address array register at index to the address passed - * in by addr. - **/ -static void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index) -{ - u32 rar_low, rar_high; - - DEBUGFUNC("e1000_rar_set_generic"); - - /* HW expects these in little endian so we reverse the byte order - * from network order (big endian) to little endian - */ - rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | - ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); - - rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); - - /* If MAC address zero, no need to set the AV bit */ - if (rar_low || rar_high) - rar_high |= E1000_RAH_AV; - - /* Some bridges will combine consecutive 32-bit writes into - * a single burst write, which will malfunction on some parts. - * The flushes avoid this. - */ - E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); - E1000_WRITE_FLUSH(hw); -} - -/** - * e1000_hash_mc_addr_generic - Generate a multicast hash value - * @hw: pointer to the HW structure - * @mc_addr: pointer to a multicast address - * - * Generates a multicast address hash value which is used to determine - * the multicast filter table array address and new table value. - **/ -u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr) -{ - u32 hash_value, hash_mask; - u8 bit_shift = 0; - - DEBUGFUNC("e1000_hash_mc_addr_generic"); - - /* Register count multiplied by bits per register */ - hash_mask = (hw->mac.mta_reg_count * 32) - 1; - - /* For a mc_filter_type of 0, bit_shift is the number of left-shifts - * where 0xFF would still fall within the hash mask. - */ - while (hash_mask >> bit_shift != 0xFF) - bit_shift++; - - /* The portion of the address that is used for the hash table - * is determined by the mc_filter_type setting. - * The algorithm is such that there is a total of 8 bits of shifting. - * The bit_shift for a mc_filter_type of 0 represents the number of - * left-shifts where the MSB of mc_addr[5] would still fall within - * the hash_mask. Case 0 does this exactly. Since there are a total - * of 8 bits of shifting, then mc_addr[4] will shift right the - * remaining number of bits. Thus 8 - bit_shift. The rest of the - * cases are a variation of this algorithm...essentially raising the - * number of bits to shift mc_addr[5] left, while still keeping the - * 8-bit shifting total. - * - * For example, given the following Destination MAC Address and an - * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), - * we can see that the bit_shift for case 0 is 4. These are the hash - * values resulting from each mc_filter_type... - * [0] [1] [2] [3] [4] [5] - * 01 AA 00 12 34 56 - * LSB MSB - * - * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 - * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 - * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 - * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 - */ - switch (hw->mac.mc_filter_type) { - default: - case 0: - break; - case 1: - bit_shift += 1; - break; - case 2: - bit_shift += 2; - break; - case 3: - bit_shift += 4; - break; - } - - hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | - (((u16) mc_addr[5]) << bit_shift))); - - return hash_value; -} - -/** - * e1000_update_mc_addr_list_generic - Update Multicast addresses - * @hw: pointer to the HW structure - * @mc_addr_list: array of multicast addresses to program - * @mc_addr_count: number of multicast addresses to program - * - * Updates entire Multicast Table Array. - * The caller must have a packed mc_addr_list of multicast addresses. - **/ -void e1000_update_mc_addr_list_generic(struct e1000_hw *hw, - u8 *mc_addr_list, u32 mc_addr_count) -{ - u32 hash_value, hash_bit, hash_reg; - int i; - - DEBUGFUNC("e1000_update_mc_addr_list_generic"); - - /* clear mta_shadow */ - memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); - - /* update mta_shadow from mc_addr_list */ - for (i = 0; (u32) i < mc_addr_count; i++) { - hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list); - - hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); - hash_bit = hash_value & 0x1F; - - hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); - mc_addr_list += (ETH_ADDR_LEN); - } - - /* replace the entire MTA table */ - for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); - E1000_WRITE_FLUSH(hw); -} - -/** - * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters - * @hw: pointer to the HW structure - * - * Clears the base hardware counters by reading the counter registers. - **/ -void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_clear_hw_cntrs_base_generic"); - - E1000_READ_REG(hw, E1000_CRCERRS); - E1000_READ_REG(hw, E1000_SYMERRS); - E1000_READ_REG(hw, E1000_MPC); - E1000_READ_REG(hw, E1000_SCC); - E1000_READ_REG(hw, E1000_ECOL); - E1000_READ_REG(hw, E1000_MCC); - E1000_READ_REG(hw, E1000_LATECOL); - E1000_READ_REG(hw, E1000_COLC); - E1000_READ_REG(hw, E1000_DC); - E1000_READ_REG(hw, E1000_SEC); - E1000_READ_REG(hw, E1000_RLEC); - E1000_READ_REG(hw, E1000_XONRXC); - E1000_READ_REG(hw, E1000_XONTXC); - E1000_READ_REG(hw, E1000_XOFFRXC); - E1000_READ_REG(hw, E1000_XOFFTXC); - E1000_READ_REG(hw, E1000_FCRUC); - E1000_READ_REG(hw, E1000_GPRC); - E1000_READ_REG(hw, E1000_BPRC); - E1000_READ_REG(hw, E1000_MPRC); - E1000_READ_REG(hw, E1000_GPTC); - E1000_READ_REG(hw, E1000_GORCL); - E1000_READ_REG(hw, E1000_GORCH); - E1000_READ_REG(hw, E1000_GOTCL); - E1000_READ_REG(hw, E1000_GOTCH); - E1000_READ_REG(hw, E1000_RNBC); - E1000_READ_REG(hw, E1000_RUC); - E1000_READ_REG(hw, E1000_RFC); - E1000_READ_REG(hw, E1000_ROC); - E1000_READ_REG(hw, E1000_RJC); - E1000_READ_REG(hw, E1000_TORL); - E1000_READ_REG(hw, E1000_TORH); - E1000_READ_REG(hw, E1000_TOTL); - E1000_READ_REG(hw, E1000_TOTH); - E1000_READ_REG(hw, E1000_TPR); - E1000_READ_REG(hw, E1000_TPT); - E1000_READ_REG(hw, E1000_MPTC); - E1000_READ_REG(hw, E1000_BPTC); -} - -/** - * e1000_check_for_copper_link_generic - Check for link (Copper) - * @hw: pointer to the HW structure - * - * Checks to see of the link status of the hardware has changed. If a - * change in link status has been detected, then we read the PHY registers - * to get the current speed/duplex if link exists. - **/ -s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - bool link; - - DEBUGFUNC("e1000_check_for_copper_link"); - - /* We only want to go out to the PHY registers to see if Auto-Neg - * has completed and/or if our link status has changed. The - * get_link_status flag is set upon receiving a Link Status - * Change or Rx Sequence Error interrupt. - */ - if (!mac->get_link_status) - return E1000_SUCCESS; - - /* First we want to see if the MII Status Register reports - * link. If so, then we want to get the current speed/duplex - * of the PHY. - */ - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - return ret_val; - - if (!link) - return E1000_SUCCESS; /* No link detected */ - - mac->get_link_status = false; - - /* Check if there was DownShift, must be checked - * immediately after link-up - */ - e1000_check_downshift_generic(hw); - - /* If we are forcing speed/duplex, then we simply return since - * we have already determined whether we have link or not. - */ - if (!mac->autoneg) - return -E1000_ERR_CONFIG; - - /* Auto-Neg is enabled. Auto Speed Detection takes care - * of MAC speed/duplex configuration. So we only need to - * configure Collision Distance in the MAC. - */ - mac->ops.config_collision_dist(hw); - - /* Configure Flow Control now that Auto-Neg has completed. - * First, we need to restore the desired flow control - * settings because we may have had to re-autoneg with a - * different link partner. - */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) - DEBUGOUT("Error configuring flow control\n"); - - return ret_val; -} - -/** - * e1000_check_for_fiber_link_generic - Check for link (Fiber) - * @hw: pointer to the HW structure - * - * Checks for link up on the hardware. If link is not up and we have - * a signal, then we need to force link up. - **/ -s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 rxcw; - u32 ctrl; - u32 status; - s32 ret_val; - - DEBUGFUNC("e1000_check_for_fiber_link_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - status = E1000_READ_REG(hw, E1000_STATUS); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - - /* If we don't have link (auto-negotiation failed or link partner - * cannot auto-negotiate), the cable is plugged in (we have signal), - * and our link partner is not trying to auto-negotiate with us (we - * are receiving idles or data), we need to force link up. We also - * need to give auto-negotiation time to complete, in case the cable - * was just plugged in. The autoneg_failed flag does this. - */ - /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ - if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) && - !(rxcw & E1000_RXCW_C)) { - if (!mac->autoneg_failed) { - mac->autoneg_failed = true; - return E1000_SUCCESS; - } - DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); - - /* Disable auto-negotiation in the TXCW register */ - E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); - - /* Force link-up and also force full-duplex. */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* Configure Flow Control after forcing link up. */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) { - DEBUGOUT("Error configuring flow control\n"); - return ret_val; - } - } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { - /* If we are forcing link and we are receiving /C/ ordered - * sets, re-enable auto-negotiation in the TXCW register - * and disable forced link in the Device Control register - * in an attempt to auto-negotiate with our link partner. - */ - DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); - E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); - E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); - - mac->serdes_has_link = true; - } - - return E1000_SUCCESS; -} - -/** - * e1000_check_for_serdes_link_generic - Check for link (Serdes) - * @hw: pointer to the HW structure - * - * Checks for link up on the hardware. If link is not up and we have - * a signal, then we need to force link up. - **/ -s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 rxcw; - u32 ctrl; - u32 status; - s32 ret_val; - - DEBUGFUNC("e1000_check_for_serdes_link_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - status = E1000_READ_REG(hw, E1000_STATUS); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - - /* If we don't have link (auto-negotiation failed or link partner - * cannot auto-negotiate), and our link partner is not trying to - * auto-negotiate with us (we are receiving idles or data), - * we need to force link up. We also need to give auto-negotiation - * time to complete. - */ - /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ - if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) { - if (!mac->autoneg_failed) { - mac->autoneg_failed = true; - return E1000_SUCCESS; - } - DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); - - /* Disable auto-negotiation in the TXCW register */ - E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); - - /* Force link-up and also force full-duplex. */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* Configure Flow Control after forcing link up. */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) { - DEBUGOUT("Error configuring flow control\n"); - return ret_val; - } - } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { - /* If we are forcing link and we are receiving /C/ ordered - * sets, re-enable auto-negotiation in the TXCW register - * and disable forced link in the Device Control register - * in an attempt to auto-negotiate with our link partner. - */ - DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); - E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); - E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); - - mac->serdes_has_link = true; - } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) { - /* If we force link for non-auto-negotiation switch, check - * link status based on MAC synchronization for internal - * serdes media type. - */ - /* SYNCH bit and IV bit are sticky. */ - usec_delay(10); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - if (rxcw & E1000_RXCW_SYNCH) { - if (!(rxcw & E1000_RXCW_IV)) { - mac->serdes_has_link = true; - DEBUGOUT("SERDES: Link up - forced.\n"); - } - } else { - mac->serdes_has_link = false; - DEBUGOUT("SERDES: Link down - force failed.\n"); - } - } - - if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) { - status = E1000_READ_REG(hw, E1000_STATUS); - if (status & E1000_STATUS_LU) { - /* SYNCH bit and IV bit are sticky, so reread rxcw. */ - usec_delay(10); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - if (rxcw & E1000_RXCW_SYNCH) { - if (!(rxcw & E1000_RXCW_IV)) { - mac->serdes_has_link = true; - DEBUGOUT("SERDES: Link up - autoneg completed successfully.\n"); - } else { - mac->serdes_has_link = false; - DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg.\n"); - } - } else { - mac->serdes_has_link = false; - DEBUGOUT("SERDES: Link down - no sync.\n"); - } - } else { - mac->serdes_has_link = false; - DEBUGOUT("SERDES: Link down - autoneg failed\n"); - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_set_default_fc_generic - Set flow control default values - * @hw: pointer to the HW structure - * - * Read the EEPROM for the default values for flow control and store the - * values. - **/ -static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) -{ - s32 ret_val; - u16 nvm_data; - - DEBUGFUNC("e1000_set_default_fc_generic"); - - /* Read and store word 0x0F of the EEPROM. This word contains bits - * that determine the hardware's default PAUSE (flow control) mode, - * a bit that determines whether the HW defaults to enabling or - * disabling auto-negotiation, and the direction of the - * SW defined pins. If there is no SW over-ride of the flow - * control setting, then the variable hw->fc will - * be initialized based on a value in the EEPROM. - */ - ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); - - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - if (!(nvm_data & NVM_WORD0F_PAUSE_MASK)) - hw->fc.requested_mode = e1000_fc_none; - else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == - NVM_WORD0F_ASM_DIR) - hw->fc.requested_mode = e1000_fc_tx_pause; - else - hw->fc.requested_mode = e1000_fc_full; - - return E1000_SUCCESS; -} - -/** - * e1000_setup_link_generic - Setup flow control and link settings - * @hw: pointer to the HW structure - * - * Determines which flow control settings to use, then configures flow - * control. Calls the appropriate media-specific link configuration - * function. Assuming the adapter has a valid link partner, a valid link - * should be established. Assumes the hardware has previously been reset - * and the transmitter and receiver are not enabled. - **/ -s32 e1000_setup_link_generic(struct e1000_hw *hw) -{ - s32 ret_val; - - DEBUGFUNC("e1000_setup_link_generic"); - - /* In the case of the phy reset being blocked, we already have a link. - * We do not need to set it up again. - */ - if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) - return E1000_SUCCESS; - - /* If requested flow control is set to default, set flow control - * based on the EEPROM flow control settings. - */ - if (hw->fc.requested_mode == e1000_fc_default) { - ret_val = e1000_set_default_fc_generic(hw); - if (ret_val) - return ret_val; - } - - /* Save off the requested flow control mode for use later. Depending - * on the link partner's capabilities, we may or may not use this mode. - */ - hw->fc.current_mode = hw->fc.requested_mode; - - DEBUGOUT1("After fix-ups FlowControl is now = %x\n", - hw->fc.current_mode); - - /* Call the necessary media_type subroutine to configure the link. */ - ret_val = hw->mac.ops.setup_physical_interface(hw); - if (ret_val) - return ret_val; - - /* Initialize the flow control address, type, and PAUSE timer - * registers to their default values. This is done even if flow - * control is disabled, because it does not hurt anything to - * initialize these registers. - */ - DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); - E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE); - E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); - E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); - - E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); - - return e1000_set_fc_watermarks_generic(hw); -} - -/** - * e1000_commit_fc_settings_generic - Configure flow control - * @hw: pointer to the HW structure - * - * Write the flow control settings to the Transmit Config Word Register (TXCW) - * base on the flow control settings in e1000_mac_info. - **/ -static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 txcw; - - DEBUGFUNC("e1000_commit_fc_settings_generic"); - - /* Check for a software override of the flow control settings, and - * setup the device accordingly. If auto-negotiation is enabled, then - * software will have to set the "PAUSE" bits to the correct value in - * the Transmit Config Word Register (TXCW) and re-start auto- - * negotiation. However, if auto-negotiation is disabled, then - * software will have to manually configure the two flow control enable - * bits in the CTRL register. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames, - * but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames but we - * do not support receiving pause frames). - * 3: Both Rx and Tx flow control (symmetric) are enabled. - */ - switch (hw->fc.current_mode) { - case e1000_fc_none: - /* Flow control completely disabled by a software over-ride. */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); - break; - case e1000_fc_rx_pause: - /* Rx Flow control is enabled and Tx Flow control is disabled - * by a software over-ride. Since there really isn't a way to - * advertise that we are capable of Rx Pause ONLY, we will - * advertise that we support both symmetric and asymmetric Rx - * PAUSE. Later, we will disable the adapter's ability to send - * PAUSE frames. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - case e1000_fc_tx_pause: - /* Tx Flow control is enabled, and Rx Flow control is disabled, - * by a software over-ride. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); - break; - case e1000_fc_full: - /* Flow control (both Rx and Tx) is enabled by a software - * over-ride. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - break; - } - - E1000_WRITE_REG(hw, E1000_TXCW, txcw); - mac->txcw = txcw; - - return E1000_SUCCESS; -} - -/** - * e1000_poll_fiber_serdes_link_generic - Poll for link up - * @hw: pointer to the HW structure - * - * Polls for link up by reading the status register, if link fails to come - * up with auto-negotiation, then the link is forced if a signal is detected. - **/ -static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 i, status; - s32 ret_val; - - DEBUGFUNC("e1000_poll_fiber_serdes_link_generic"); - - /* If we have a signal (the cable is plugged in, or assumed true for - * serdes media) then poll for a "Link-Up" indication in the Device - * Status Register. Time-out if a link isn't seen in 500 milliseconds - * seconds (Auto-negotiation should complete in less than 500 - * milliseconds even if the other end is doing it in SW). - */ - for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { - msec_delay(10); - status = E1000_READ_REG(hw, E1000_STATUS); - if (status & E1000_STATUS_LU) - break; - } - if (i == FIBER_LINK_UP_LIMIT) { - DEBUGOUT("Never got a valid link from auto-neg!!!\n"); - mac->autoneg_failed = true; - /* AutoNeg failed to achieve a link, so we'll call - * mac->check_for_link. This routine will force the - * link up if we detect a signal. This will allow us to - * communicate with non-autonegotiating link partners. - */ - ret_val = mac->ops.check_for_link(hw); - if (ret_val) { - DEBUGOUT("Error while checking for link\n"); - return ret_val; - } - mac->autoneg_failed = false; - } else { - mac->autoneg_failed = false; - DEBUGOUT("Valid Link Found\n"); - } - - return E1000_SUCCESS; -} - -/** - * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes - * @hw: pointer to the HW structure - * - * Configures collision distance and flow control for fiber and serdes - * links. Upon successful setup, poll for link. - **/ -s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - - DEBUGFUNC("e1000_setup_fiber_serdes_link_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - /* Take the link out of reset */ - ctrl &= ~E1000_CTRL_LRST; - - hw->mac.ops.config_collision_dist(hw); - - ret_val = e1000_commit_fc_settings_generic(hw); - if (ret_val) - return ret_val; - - /* Since auto-negotiation is enabled, take the link out of reset (the - * link will be in reset, because we previously reset the chip). This - * will restart auto-negotiation. If auto-negotiation is successful - * then the link-up status bit will be set and the flow control enable - * bits (RFCE and TFCE) will be set according to their negotiated value. - */ - DEBUGOUT("Auto-negotiation enabled\n"); - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - msec_delay(1); - - /* For these adapters, the SW definable pin 1 is set when the optics - * detect a signal. If we have a signal, then poll for a "Link-Up" - * indication. - */ - if (hw->phy.media_type == e1000_media_type_internal_serdes || - (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) { - ret_val = e1000_poll_fiber_serdes_link_generic(hw); - } else { - DEBUGOUT("No signal detected\n"); - } - - return ret_val; -} - -/** - * e1000_config_collision_dist_generic - Configure collision distance - * @hw: pointer to the HW structure - * - * Configures the collision distance to the default value and is used - * during link setup. - **/ -static void e1000_config_collision_dist_generic(struct e1000_hw *hw) -{ - u32 tctl; - - DEBUGFUNC("e1000_config_collision_dist_generic"); - - tctl = E1000_READ_REG(hw, E1000_TCTL); - - tctl &= ~E1000_TCTL_COLD; - tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; - - E1000_WRITE_REG(hw, E1000_TCTL, tctl); - E1000_WRITE_FLUSH(hw); -} - -/** - * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks - * @hw: pointer to the HW structure - * - * Sets the flow control high/low threshold (watermark) registers. If - * flow control XON frame transmission is enabled, then set XON frame - * transmission as well. - **/ -s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw) -{ - u32 fcrtl = 0, fcrth = 0; - - DEBUGFUNC("e1000_set_fc_watermarks_generic"); - - /* Set the flow control receive threshold registers. Normally, - * these registers will be set to a default threshold that may be - * adjusted later by the driver's runtime code. However, if the - * ability to transmit pause frames is not enabled, then these - * registers will be set to 0. - */ - if (hw->fc.current_mode & e1000_fc_tx_pause) { - /* We need to set up the Receive Threshold high and low water - * marks as well as (optionally) enabling the transmission of - * XON frames. - */ - fcrtl = hw->fc.low_water; - if (hw->fc.send_xon) - fcrtl |= E1000_FCRTL_XONE; - - fcrth = hw->fc.high_water; - } - E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl); - E1000_WRITE_REG(hw, E1000_FCRTH, fcrth); - - return E1000_SUCCESS; -} - -/** - * e1000_force_mac_fc_generic - Force the MAC's flow control settings - * @hw: pointer to the HW structure - * - * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the - * device control register to reflect the adapter settings. TFCE and RFCE - * need to be explicitly set by software when a copper PHY is used because - * autonegotiation is managed by the PHY rather than the MAC. Software must - * also configure these bits when link is forced on a fiber connection. - **/ -s32 e1000_force_mac_fc_generic(struct e1000_hw *hw) -{ - u32 ctrl; - - DEBUGFUNC("e1000_force_mac_fc_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - /* Because we didn't get link via the internal auto-negotiation - * mechanism (we either forced link or we got link via PHY - * auto-neg), we have to manually enable/disable transmit an - * receive flow control. - * - * The "Case" statement below enables/disable flow control - * according to the "hw->fc.current_mode" parameter. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause - * frames but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * frames but we do not receive pause frames). - * 3: Both Rx and Tx flow control (symmetric) is enabled. - * other: No other values should be possible at this point. - */ - DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode); - - switch (hw->fc.current_mode) { - case e1000_fc_none: - ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); - break; - case e1000_fc_rx_pause: - ctrl &= (~E1000_CTRL_TFCE); - ctrl |= E1000_CTRL_RFCE; - break; - case e1000_fc_tx_pause: - ctrl &= (~E1000_CTRL_RFCE); - ctrl |= E1000_CTRL_TFCE; - break; - case e1000_fc_full: - ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - } - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - return E1000_SUCCESS; -} - -/** - * e1000_config_fc_after_link_up_generic - Configures flow control after link - * @hw: pointer to the HW structure - * - * Checks the status of auto-negotiation after link up to ensure that the - * speed and duplex were not forced. If the link needed to be forced, then - * flow control needs to be forced also. If auto-negotiation is enabled - * and did not fail, then we configure flow control based on our link - * partner. - **/ -s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val = E1000_SUCCESS; - u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg; - u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; - u16 speed, duplex; - - DEBUGFUNC("e1000_config_fc_after_link_up_generic"); - - /* Check for the case where we have fiber media and auto-neg failed - * so we had to force link. In this case, we need to force the - * configuration of the MAC to match the "fc" parameter. - */ - if (mac->autoneg_failed) { - if (hw->phy.media_type == e1000_media_type_fiber || - hw->phy.media_type == e1000_media_type_internal_serdes) - ret_val = e1000_force_mac_fc_generic(hw); - } else { - if (hw->phy.media_type == e1000_media_type_copper) - ret_val = e1000_force_mac_fc_generic(hw); - } - - if (ret_val) { - DEBUGOUT("Error forcing flow control settings\n"); - return ret_val; - } - - /* Check for the case where we have copper media and auto-neg is - * enabled. In this case, we need to check and see if Auto-Neg - * has completed, and if so, how the PHY and link partner has - * flow control configured. - */ - if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { - /* Read the MII Status Register and check to see if AutoNeg - * has completed. We read this twice because this reg has - * some "sticky" (latched) bits. - */ - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { - DEBUGOUT("Copper PHY and Auto Neg has not completed.\n"); - return ret_val; - } - - /* The AutoNeg process has completed, so we now need to - * read both the Auto Negotiation Advertisement - * Register (Address 4) and the Auto_Negotiation Base - * Page Ability Register (Address 5) to determine how - * flow control was negotiated. - */ - ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, - &mii_nway_adv_reg); - if (ret_val) - return ret_val; - ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, - &mii_nway_lp_ability_reg); - if (ret_val) - return ret_val; - - /* Two bits in the Auto Negotiation Advertisement Register - * (Address 4) and two bits in the Auto Negotiation Base - * Page Ability Register (Address 5) determine flow control - * for both the PHY and the link partner. The following - * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, - * 1999, describes these PAUSE resolution bits and how flow - * control is determined based upon these settings. - * NOTE: DC = Don't Care - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution - *-------|---------|-------|---------|-------------------- - * 0 | 0 | DC | DC | e1000_fc_none - * 0 | 1 | 0 | DC | e1000_fc_none - * 0 | 1 | 1 | 0 | e1000_fc_none - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - * 1 | 0 | 0 | DC | e1000_fc_none - * 1 | DC | 1 | DC | e1000_fc_full - * 1 | 1 | 0 | 0 | e1000_fc_none - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - * - * Are both PAUSE bits set to 1? If so, this implies - * Symmetric Flow Control is enabled at both ends. The - * ASM_DIR bits are irrelevant per the spec. - * - * For Symmetric Flow Control: - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | DC | 1 | DC | E1000_fc_full - * - */ - if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { - /* Now we need to check if the user selected Rx ONLY - * of pause frames. In this case, we had to advertise - * FULL flow control because we could not advertise Rx - * ONLY. Hence, we must now check to see if we need to - * turn OFF the TRANSMISSION of PAUSE frames. - */ - if (hw->fc.requested_mode == e1000_fc_full) { - hw->fc.current_mode = e1000_fc_full; - DEBUGOUT("Flow Control = FULL.\n"); - } else { - hw->fc.current_mode = e1000_fc_rx_pause; - DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); - } - } - /* For receiving PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - */ - else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc.current_mode = e1000_fc_tx_pause; - DEBUGOUT("Flow Control = Tx PAUSE frames only.\n"); - } - /* For transmitting PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - */ - else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc.current_mode = e1000_fc_rx_pause; - DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); - } else { - /* Per the IEEE spec, at this point flow control - * should be disabled. - */ - hw->fc.current_mode = e1000_fc_none; - DEBUGOUT("Flow Control = NONE.\n"); - } - - /* Now we need to do one last check... If we auto- - * negotiated to HALF DUPLEX, flow control should not be - * enabled per IEEE 802.3 spec. - */ - ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); - if (ret_val) { - DEBUGOUT("Error getting link speed and duplex\n"); - return ret_val; - } - - if (duplex == HALF_DUPLEX) - hw->fc.current_mode = e1000_fc_none; - - /* Now we call a subroutine to actually force the MAC - * controller to use the correct flow control settings. - */ - ret_val = e1000_force_mac_fc_generic(hw); - if (ret_val) { - DEBUGOUT("Error forcing flow control settings\n"); - return ret_val; - } - } - - /* Check for the case where we have SerDes media and auto-neg is - * enabled. In this case, we need to check and see if Auto-Neg - * has completed, and if so, how the PHY and link partner has - * flow control configured. - */ - if ((hw->phy.media_type == e1000_media_type_internal_serdes) && - mac->autoneg) { - /* Read the PCS_LSTS and check to see if AutoNeg - * has completed. - */ - pcs_status_reg = E1000_READ_REG(hw, E1000_PCS_LSTAT); - - if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) { - DEBUGOUT("PCS Auto Neg has not completed.\n"); - return ret_val; - } - - /* The AutoNeg process has completed, so we now need to - * read both the Auto Negotiation Advertisement - * Register (PCS_ANADV) and the Auto_Negotiation Base - * Page Ability Register (PCS_LPAB) to determine how - * flow control was negotiated. - */ - pcs_adv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV); - pcs_lp_ability_reg = E1000_READ_REG(hw, E1000_PCS_LPAB); - - /* Two bits in the Auto Negotiation Advertisement Register - * (PCS_ANADV) and two bits in the Auto Negotiation Base - * Page Ability Register (PCS_LPAB) determine flow control - * for both the PHY and the link partner. The following - * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, - * 1999, describes these PAUSE resolution bits and how flow - * control is determined based upon these settings. - * NOTE: DC = Don't Care - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution - *-------|---------|-------|---------|-------------------- - * 0 | 0 | DC | DC | e1000_fc_none - * 0 | 1 | 0 | DC | e1000_fc_none - * 0 | 1 | 1 | 0 | e1000_fc_none - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - * 1 | 0 | 0 | DC | e1000_fc_none - * 1 | DC | 1 | DC | e1000_fc_full - * 1 | 1 | 0 | 0 | e1000_fc_none - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - * - * Are both PAUSE bits set to 1? If so, this implies - * Symmetric Flow Control is enabled at both ends. The - * ASM_DIR bits are irrelevant per the spec. - * - * For Symmetric Flow Control: - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | DC | 1 | DC | e1000_fc_full - * - */ - if ((pcs_adv_reg & E1000_TXCW_PAUSE) && - (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) { - /* Now we need to check if the user selected Rx ONLY - * of pause frames. In this case, we had to advertise - * FULL flow control because we could not advertise Rx - * ONLY. Hence, we must now check to see if we need to - * turn OFF the TRANSMISSION of PAUSE frames. - */ - if (hw->fc.requested_mode == e1000_fc_full) { - hw->fc.current_mode = e1000_fc_full; - DEBUGOUT("Flow Control = FULL.\n"); - } else { - hw->fc.current_mode = e1000_fc_rx_pause; - DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); - } - } - /* For receiving PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - */ - else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) && - (pcs_adv_reg & E1000_TXCW_ASM_DIR) && - (pcs_lp_ability_reg & E1000_TXCW_PAUSE) && - (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { - hw->fc.current_mode = e1000_fc_tx_pause; - DEBUGOUT("Flow Control = Tx PAUSE frames only.\n"); - } - /* For transmitting PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - */ - else if ((pcs_adv_reg & E1000_TXCW_PAUSE) && - (pcs_adv_reg & E1000_TXCW_ASM_DIR) && - !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) && - (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { - hw->fc.current_mode = e1000_fc_rx_pause; - DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); - } else { - /* Per the IEEE spec, at this point flow control - * should be disabled. - */ - hw->fc.current_mode = e1000_fc_none; - DEBUGOUT("Flow Control = NONE.\n"); - } - - /* Now we call a subroutine to actually force the MAC - * controller to use the correct flow control settings. - */ - pcs_ctrl_reg = E1000_READ_REG(hw, E1000_PCS_LCTL); - pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL; - E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_ctrl_reg); - - ret_val = e1000_force_mac_fc_generic(hw); - if (ret_val) { - DEBUGOUT("Error forcing flow control settings\n"); - return ret_val; - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex - * @hw: pointer to the HW structure - * @speed: stores the current speed - * @duplex: stores the current duplex - * - * Read the status register for the current speed/duplex and store the current - * speed and duplex for copper connections. - **/ -s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed, - u16 *duplex) -{ - u32 status; - - DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic"); - - status = E1000_READ_REG(hw, E1000_STATUS); - if (status & E1000_STATUS_SPEED_1000) { - *speed = SPEED_1000; - DEBUGOUT("1000 Mbs, "); - } else if (status & E1000_STATUS_SPEED_100) { - *speed = SPEED_100; - DEBUGOUT("100 Mbs, "); - } else { - *speed = SPEED_10; - DEBUGOUT("10 Mbs, "); - } - - if (status & E1000_STATUS_FD) { - *duplex = FULL_DUPLEX; - DEBUGOUT("Full Duplex\n"); - } else { - *duplex = HALF_DUPLEX; - DEBUGOUT("Half Duplex\n"); - } - - return E1000_SUCCESS; -} - -/** - * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex - * @hw: pointer to the HW structure - * @speed: stores the current speed - * @duplex: stores the current duplex - * - * Sets the speed and duplex to gigabit full duplex (the only possible option) - * for fiber/serdes links. - **/ -s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw E1000_UNUSEDARG *hw, - u16 *speed, u16 *duplex) -{ - DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic"); - - *speed = SPEED_1000; - *duplex = FULL_DUPLEX; - - return E1000_SUCCESS; -} - -/** - * e1000_get_hw_semaphore_generic - Acquire hardware semaphore - * @hw: pointer to the HW structure - * - * Acquire the HW semaphore to access the PHY or NVM - **/ -s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw) -{ - u32 swsm; - s32 timeout = hw->nvm.word_size + 1; - s32 i = 0; - - DEBUGFUNC("e1000_get_hw_semaphore_generic"); - - /* Get the SW semaphore */ - while (i < timeout) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - if (!(swsm & E1000_SWSM_SMBI)) - break; - - usec_delay(50); - i++; - } - - if (i == timeout) { - DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); - return -E1000_ERR_NVM; - } - - /* Get the FW semaphore. */ - for (i = 0; i < timeout; i++) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); - - /* Semaphore acquired if bit latched */ - if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) - break; - - usec_delay(50); - } - - if (i == timeout) { - /* Release semaphores */ - e1000_put_hw_semaphore_generic(hw); - DEBUGOUT("Driver can't access the NVM\n"); - return -E1000_ERR_NVM; - } - - return E1000_SUCCESS; -} - -/** - * e1000_put_hw_semaphore_generic - Release hardware semaphore - * @hw: pointer to the HW structure - * - * Release hardware semaphore used to access the PHY or NVM - **/ -void e1000_put_hw_semaphore_generic(struct e1000_hw *hw) -{ - u32 swsm; - - DEBUGFUNC("e1000_put_hw_semaphore_generic"); - - swsm = E1000_READ_REG(hw, E1000_SWSM); - - swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); - - E1000_WRITE_REG(hw, E1000_SWSM, swsm); -} - -/** - * e1000_get_auto_rd_done_generic - Check for auto read completion - * @hw: pointer to the HW structure - * - * Check EEPROM for Auto Read done bit. - **/ -s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw) -{ - s32 i = 0; - - DEBUGFUNC("e1000_get_auto_rd_done_generic"); - - while (i < AUTO_READ_DONE_TIMEOUT) { - if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD) - break; - msec_delay(1); - i++; - } - - if (i == AUTO_READ_DONE_TIMEOUT) { - DEBUGOUT("Auto read by HW from NVM has not completed.\n"); - return -E1000_ERR_RESET; - } - - return E1000_SUCCESS; -} - -/** - * e1000_valid_led_default_generic - Verify a valid default LED config - * @hw: pointer to the HW structure - * @data: pointer to the NVM (EEPROM) - * - * Read the EEPROM for the current default LED configuration. If the - * LED configuration is not valid, set to a valid LED configuration. - **/ -s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_valid_led_default_generic"); - - ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) - *data = ID_LED_DEFAULT; - - return E1000_SUCCESS; -} - -/** - * e1000_id_led_init_generic - - * @hw: pointer to the HW structure - * - **/ -s32 e1000_id_led_init_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - const u32 ledctl_mask = 0x000000FF; - const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; - const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; - u16 data, i, temp; - const u16 led_mask = 0x0F; - - DEBUGFUNC("e1000_id_led_init_generic"); - - ret_val = hw->nvm.ops.valid_led_default(hw, &data); - if (ret_val) - return ret_val; - - mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); - mac->ledctl_mode1 = mac->ledctl_default; - mac->ledctl_mode2 = mac->ledctl_default; - - for (i = 0; i < 4; i++) { - temp = (data >> (i << 2)) & led_mask; - switch (temp) { - case ID_LED_ON1_DEF2: - case ID_LED_ON1_ON2: - case ID_LED_ON1_OFF2: - mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode1 |= ledctl_on << (i << 3); - break; - case ID_LED_OFF1_DEF2: - case ID_LED_OFF1_ON2: - case ID_LED_OFF1_OFF2: - mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode1 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - switch (temp) { - case ID_LED_DEF1_ON2: - case ID_LED_ON1_ON2: - case ID_LED_OFF1_ON2: - mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode2 |= ledctl_on << (i << 3); - break; - case ID_LED_DEF1_OFF2: - case ID_LED_ON1_OFF2: - case ID_LED_OFF1_OFF2: - mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode2 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_setup_led_generic - Configures SW controllable LED - * @hw: pointer to the HW structure - * - * This prepares the SW controllable LED for use and saves the current state - * of the LED so it can be later restored. - **/ -s32 e1000_setup_led_generic(struct e1000_hw *hw) -{ - u32 ledctl; - - DEBUGFUNC("e1000_setup_led_generic"); - - if (hw->mac.ops.setup_led != e1000_setup_led_generic) - return -E1000_ERR_CONFIG; - - if (hw->phy.media_type == e1000_media_type_fiber) { - ledctl = E1000_READ_REG(hw, E1000_LEDCTL); - hw->mac.ledctl_default = ledctl; - /* Turn off LED0 */ - ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK | - E1000_LEDCTL_LED0_MODE_MASK); - ledctl |= (E1000_LEDCTL_MODE_LED_OFF << - E1000_LEDCTL_LED0_MODE_SHIFT); - E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); - } else if (hw->phy.media_type == e1000_media_type_copper) { - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); - } - - return E1000_SUCCESS; -} - -/** - * e1000_cleanup_led_generic - Set LED config to default operation - * @hw: pointer to the HW structure - * - * Remove the current LED configuration and set the LED configuration - * to the default value, saved from the EEPROM. - **/ -s32 e1000_cleanup_led_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_cleanup_led_generic"); - - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); - return E1000_SUCCESS; -} - -/** - * e1000_blink_led_generic - Blink LED - * @hw: pointer to the HW structure - * - * Blink the LEDs which are set to be on. - **/ -s32 e1000_blink_led_generic(struct e1000_hw *hw) -{ - u32 ledctl_blink = 0; - u32 i; - - DEBUGFUNC("e1000_blink_led_generic"); - - if (hw->phy.media_type == e1000_media_type_fiber) { - /* always blink LED0 for PCI-E fiber */ - ledctl_blink = E1000_LEDCTL_LED0_BLINK | - (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); - } else { - /* Set the blink bit for each LED that's "on" (0x0E) - * (or "off" if inverted) in ledctl_mode2. The blink - * logic in hardware only works when mode is set to "on" - * so it must be changed accordingly when the mode is - * "off" and inverted. - */ - ledctl_blink = hw->mac.ledctl_mode2; - for (i = 0; i < 32; i += 8) { - u32 mode = (hw->mac.ledctl_mode2 >> i) & - E1000_LEDCTL_LED0_MODE_MASK; - u32 led_default = hw->mac.ledctl_default >> i; - - if ((!(led_default & E1000_LEDCTL_LED0_IVRT) && - (mode == E1000_LEDCTL_MODE_LED_ON)) || - ((led_default & E1000_LEDCTL_LED0_IVRT) && - (mode == E1000_LEDCTL_MODE_LED_OFF))) { - ledctl_blink &= - ~(E1000_LEDCTL_LED0_MODE_MASK << i); - ledctl_blink |= (E1000_LEDCTL_LED0_BLINK | - E1000_LEDCTL_MODE_LED_ON) << i; - } - } - } - - E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink); - - return E1000_SUCCESS; -} - -/** - * e1000_led_on_generic - Turn LED on - * @hw: pointer to the HW structure - * - * Turn LED on. - **/ -s32 e1000_led_on_generic(struct e1000_hw *hw) -{ - u32 ctrl; - - DEBUGFUNC("e1000_led_on_generic"); - - switch (hw->phy.media_type) { - case e1000_media_type_fiber: - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - break; - case e1000_media_type_copper: - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); - break; - default: - break; - } - - return E1000_SUCCESS; -} - -/** - * e1000_led_off_generic - Turn LED off - * @hw: pointer to the HW structure - * - * Turn LED off. - **/ -s32 e1000_led_off_generic(struct e1000_hw *hw) -{ - u32 ctrl; - - DEBUGFUNC("e1000_led_off_generic"); - - switch (hw->phy.media_type) { - case e1000_media_type_fiber: - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - break; - case e1000_media_type_copper: - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); - break; - default: - break; - } - - return E1000_SUCCESS; -} - -/** - * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities - * @hw: pointer to the HW structure - * @no_snoop: bitmap of snoop events - * - * Set the PCI-express register to snoop for events enabled in 'no_snoop'. - **/ -void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop) -{ - u32 gcr; - - DEBUGFUNC("e1000_set_pcie_no_snoop_generic"); - - if (no_snoop) { - gcr = E1000_READ_REG(hw, E1000_GCR); - gcr &= ~(PCIE_NO_SNOOP_ALL); - gcr |= no_snoop; - E1000_WRITE_REG(hw, E1000_GCR, gcr); - } -} - -/** - * e1000_disable_pcie_master_generic - Disables PCI-express master access - * @hw: pointer to the HW structure - * - * Returns E1000_SUCCESS if successful, else returns -10 - * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused - * the master requests to be disabled. - * - * Disables PCI-Express master access and verifies there are no pending - * requests. - **/ -s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw) -{ - u32 ctrl; - s32 timeout = MASTER_DISABLE_TIMEOUT; - - DEBUGFUNC("e1000_disable_pcie_master_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - while (timeout) { - if (!(E1000_READ_REG(hw, E1000_STATUS) & - E1000_STATUS_GIO_MASTER_ENABLE)) - break; - usec_delay(100); - timeout--; - } - - if (!timeout) { - DEBUGOUT("Master requests are pending.\n"); - return -E1000_ERR_MASTER_REQUESTS_PENDING; - } - - return E1000_SUCCESS; -} - -/** - * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing - * @hw: pointer to the HW structure - * - * Reset the Adaptive Interframe Spacing throttle to default values. - **/ -void e1000_reset_adaptive_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - - DEBUGFUNC("e1000_reset_adaptive_generic"); - - if (!mac->adaptive_ifs) { - DEBUGOUT("Not in Adaptive IFS mode!\n"); - return; - } - - mac->current_ifs_val = 0; - mac->ifs_min_val = IFS_MIN; - mac->ifs_max_val = IFS_MAX; - mac->ifs_step_size = IFS_STEP; - mac->ifs_ratio = IFS_RATIO; - - mac->in_ifs_mode = false; - E1000_WRITE_REG(hw, E1000_AIT, 0); -} - -/** - * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing - * @hw: pointer to the HW structure - * - * Update the Adaptive Interframe Spacing Throttle value based on the - * time between transmitted packets and time between collisions. - **/ -void e1000_update_adaptive_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - - DEBUGFUNC("e1000_update_adaptive_generic"); - - if (!mac->adaptive_ifs) { - DEBUGOUT("Not in Adaptive IFS mode!\n"); - return; - } - - if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { - if (mac->tx_packet_delta > MIN_NUM_XMITS) { - mac->in_ifs_mode = true; - if (mac->current_ifs_val < mac->ifs_max_val) { - if (!mac->current_ifs_val) - mac->current_ifs_val = mac->ifs_min_val; - else - mac->current_ifs_val += - mac->ifs_step_size; - E1000_WRITE_REG(hw, E1000_AIT, - mac->current_ifs_val); - } - } - } else { - if (mac->in_ifs_mode && - (mac->tx_packet_delta <= MIN_NUM_XMITS)) { - mac->current_ifs_val = 0; - mac->in_ifs_mode = false; - E1000_WRITE_REG(hw, E1000_AIT, 0); - } - } -} - -/** - * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings - * @hw: pointer to the HW structure - * - * Verify that when not using auto-negotiation that MDI/MDIx is correctly - * set, which is forced to MDI mode only. - **/ -static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_validate_mdi_setting_generic"); - - if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { - DEBUGOUT("Invalid MDI setting detected\n"); - hw->phy.mdix = 1; - return -E1000_ERR_CONFIG; - } - - return E1000_SUCCESS; -} - -/** - * e1000_validate_mdi_setting_crossover_generic - Verify MDI/MDIx settings - * @hw: pointer to the HW structure - * - * Validate the MDI/MDIx setting, allowing for auto-crossover during forced - * operation. - **/ -s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw E1000_UNUSEDARG *hw) -{ - DEBUGFUNC("e1000_validate_mdi_setting_crossover_generic"); - - return E1000_SUCCESS; -} - -/** - * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register - * @hw: pointer to the HW structure - * @reg: 32bit register offset such as E1000_SCTL - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes an address/data control type register. There are several of these - * and they all have the format address << 8 | data and bit 31 is polled for - * completion. - **/ -s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg, - u32 offset, u8 data) -{ - u32 i, regvalue = 0; - - DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic"); - - /* Set up the address and data */ - regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); - E1000_WRITE_REG(hw, reg, regvalue); - - /* Poll the ready bit to see if the MDI read completed */ - for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { - usec_delay(5); - regvalue = E1000_READ_REG(hw, reg); - if (regvalue & E1000_GEN_CTL_READY) - break; - } - if (!(regvalue & E1000_GEN_CTL_READY)) { - DEBUGOUT1("Reg %08x did not indicate ready\n", reg); - return -E1000_ERR_PHY; - } - - return E1000_SUCCESS; -} diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_mac.h b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_mac.h deleted file mode 100644 index a3e78498..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_mac.h +++ /dev/null @@ -1,65 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#ifndef _E1000_MAC_H_ -#define _E1000_MAC_H_ - -void e1000_init_mac_ops_generic(struct e1000_hw *hw); -void e1000_null_mac_generic(struct e1000_hw *hw); -s32 e1000_null_ops_generic(struct e1000_hw *hw); -s32 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d); -bool e1000_null_mng_mode(struct e1000_hw *hw); -void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a); -void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b); -void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a); -s32 e1000_blink_led_generic(struct e1000_hw *hw); -s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw); -s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw); -s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw); -s32 e1000_cleanup_led_generic(struct e1000_hw *hw); -s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw); -s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw); -s32 e1000_force_mac_fc_generic(struct e1000_hw *hw); -s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw); -s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw); -void e1000_set_lan_id_single_port(struct e1000_hw *hw); -s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw); -s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed, - u16 *duplex); -s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw, - u16 *speed, u16 *duplex); -s32 e1000_id_led_init_generic(struct e1000_hw *hw); -s32 e1000_led_on_generic(struct e1000_hw *hw); -s32 e1000_led_off_generic(struct e1000_hw *hw); -void e1000_update_mc_addr_list_generic(struct e1000_hw *hw, - u8 *mc_addr_list, u32 mc_addr_count); -s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw); -s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw); -s32 e1000_setup_led_generic(struct e1000_hw *hw); -s32 e1000_setup_link_generic(struct e1000_hw *hw); -s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw *hw); -s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg, - u32 offset, u8 data); - -u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr); - -void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw); -void e1000_clear_vfta_generic(struct e1000_hw *hw); -void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count); -void e1000_put_hw_semaphore_generic(struct e1000_hw *hw); -s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw); -void e1000_reset_adaptive_generic(struct e1000_hw *hw); -void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop); -void e1000_update_adaptive_generic(struct e1000_hw *hw); -void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value); - -#endif diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_manage.c b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_manage.c deleted file mode 100644 index 2f75bc35..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_manage.c +++ /dev/null @@ -1,539 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#include "e1000_api.h" - -/** - * e1000_calculate_checksum - Calculate checksum for buffer - * @buffer: pointer to EEPROM - * @length: size of EEPROM to calculate a checksum for - * - * Calculates the checksum for some buffer on a specified length. The - * checksum calculated is returned. - **/ -u8 e1000_calculate_checksum(u8 *buffer, u32 length) -{ - u32 i; - u8 sum = 0; - - DEBUGFUNC("e1000_calculate_checksum"); - - if (!buffer) - return 0; - - for (i = 0; i < length; i++) - sum += buffer[i]; - - return (u8) (0 - sum); -} - -/** - * e1000_mng_enable_host_if_generic - Checks host interface is enabled - * @hw: pointer to the HW structure - * - * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND - * - * This function checks whether the HOST IF is enabled for command operation - * and also checks whether the previous command is completed. It busy waits - * in case of previous command is not completed. - **/ -s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw) -{ - u32 hicr; - u8 i; - - DEBUGFUNC("e1000_mng_enable_host_if_generic"); - - if (!hw->mac.arc_subsystem_valid) { - DEBUGOUT("ARC subsystem not valid.\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - - /* Check that the host interface is enabled. */ - hicr = E1000_READ_REG(hw, E1000_HICR); - if (!(hicr & E1000_HICR_EN)) { - DEBUGOUT("E1000_HOST_EN bit disabled.\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - /* check the previous command is completed */ - for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { - hicr = E1000_READ_REG(hw, E1000_HICR); - if (!(hicr & E1000_HICR_C)) - break; - msec_delay_irq(1); - } - - if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { - DEBUGOUT("Previous command timeout failed .\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - - return E1000_SUCCESS; -} - -/** - * e1000_check_mng_mode_generic - Generic check management mode - * @hw: pointer to the HW structure - * - * Reads the firmware semaphore register and returns true (>0) if - * manageability is enabled, else false (0). - **/ -bool e1000_check_mng_mode_generic(struct e1000_hw *hw) -{ - u32 fwsm = E1000_READ_REG(hw, E1000_FWSM); - - DEBUGFUNC("e1000_check_mng_mode_generic"); - - - return (fwsm & E1000_FWSM_MODE_MASK) == - (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT); -} - -/** - * e1000_enable_tx_pkt_filtering_generic - Enable packet filtering on Tx - * @hw: pointer to the HW structure - * - * Enables packet filtering on transmit packets if manageability is enabled - * and host interface is enabled. - **/ -bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw) -{ - struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; - u32 *buffer = (u32 *)&hw->mng_cookie; - u32 offset; - s32 ret_val, hdr_csum, csum; - u8 i, len; - - DEBUGFUNC("e1000_enable_tx_pkt_filtering_generic"); - - hw->mac.tx_pkt_filtering = true; - - /* No manageability, no filtering */ - if (!hw->mac.ops.check_mng_mode(hw)) { - hw->mac.tx_pkt_filtering = false; - return hw->mac.tx_pkt_filtering; - } - - /* If we can't read from the host interface for whatever - * reason, disable filtering. - */ - ret_val = e1000_mng_enable_host_if_generic(hw); - if (ret_val != E1000_SUCCESS) { - hw->mac.tx_pkt_filtering = false; - return hw->mac.tx_pkt_filtering; - } - - /* Read in the header. Length and offset are in dwords. */ - len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; - offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; - for (i = 0; i < len; i++) - *(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, - offset + i); - hdr_csum = hdr->checksum; - hdr->checksum = 0; - csum = e1000_calculate_checksum((u8 *)hdr, - E1000_MNG_DHCP_COOKIE_LENGTH); - /* If either the checksums or signature don't match, then - * the cookie area isn't considered valid, in which case we - * take the safe route of assuming Tx filtering is enabled. - */ - if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) { - hw->mac.tx_pkt_filtering = true; - return hw->mac.tx_pkt_filtering; - } - - /* Cookie area is valid, make the final check for filtering. */ - if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) - hw->mac.tx_pkt_filtering = false; - - return hw->mac.tx_pkt_filtering; -} - -/** - * e1000_mng_write_cmd_header_generic - Writes manageability command header - * @hw: pointer to the HW structure - * @hdr: pointer to the host interface command header - * - * Writes the command header after does the checksum calculation. - **/ -s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw, - struct e1000_host_mng_command_header *hdr) -{ - u16 i, length = sizeof(struct e1000_host_mng_command_header); - - DEBUGFUNC("e1000_mng_write_cmd_header_generic"); - - /* Write the whole command header structure with new checksum. */ - - hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); - - length >>= 2; - /* Write the relevant command block into the ram area. */ - for (i = 0; i < length; i++) { - E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i, - *((u32 *) hdr + i)); - E1000_WRITE_FLUSH(hw); - } - - return E1000_SUCCESS; -} - -/** - * e1000_mng_host_if_write_generic - Write to the manageability host interface - * @hw: pointer to the HW structure - * @buffer: pointer to the host interface buffer - * @length: size of the buffer - * @offset: location in the buffer to write to - * @sum: sum of the data (not checksum) - * - * This function writes the buffer content at the offset given on the host if. - * It also does alignment considerations to do the writes in most efficient - * way. Also fills up the sum of the buffer in *buffer parameter. - **/ -s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer, - u16 length, u16 offset, u8 *sum) -{ - u8 *tmp; - u8 *bufptr = buffer; - u32 data = 0; - u16 remaining, i, j, prev_bytes; - - DEBUGFUNC("e1000_mng_host_if_write_generic"); - - /* sum = only sum of the data and it is not checksum */ - - if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) - return -E1000_ERR_PARAM; - - tmp = (u8 *)&data; - prev_bytes = offset & 0x3; - offset >>= 2; - - if (prev_bytes) { - data = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset); - for (j = prev_bytes; j < sizeof(u32); j++) { - *(tmp + j) = *bufptr++; - *sum += *(tmp + j); - } - E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset, data); - length -= j - prev_bytes; - offset++; - } - - remaining = length & 0x3; - length -= remaining; - - /* Calculate length in DWORDs */ - length >>= 2; - - /* The device driver writes the relevant command block into the - * ram area. - */ - for (i = 0; i < length; i++) { - for (j = 0; j < sizeof(u32); j++) { - *(tmp + j) = *bufptr++; - *sum += *(tmp + j); - } - - E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, - data); - } - if (remaining) { - for (j = 0; j < sizeof(u32); j++) { - if (j < remaining) - *(tmp + j) = *bufptr++; - else - *(tmp + j) = 0; - - *sum += *(tmp + j); - } - E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, - data); - } - - return E1000_SUCCESS; -} - -/** - * e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface - * @hw: pointer to the HW structure - * @buffer: pointer to the host interface - * @length: size of the buffer - * - * Writes the DHCP information to the host interface. - **/ -s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, u8 *buffer, - u16 length) -{ - struct e1000_host_mng_command_header hdr; - s32 ret_val; - u32 hicr; - - DEBUGFUNC("e1000_mng_write_dhcp_info_generic"); - - hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; - hdr.command_length = length; - hdr.reserved1 = 0; - hdr.reserved2 = 0; - hdr.checksum = 0; - - /* Enable the host interface */ - ret_val = e1000_mng_enable_host_if_generic(hw); - if (ret_val) - return ret_val; - - /* Populate the host interface with the contents of "buffer". */ - ret_val = e1000_mng_host_if_write_generic(hw, buffer, length, - sizeof(hdr), &(hdr.checksum)); - if (ret_val) - return ret_val; - - /* Write the manageability command header */ - ret_val = e1000_mng_write_cmd_header_generic(hw, &hdr); - if (ret_val) - return ret_val; - - /* Tell the ARC a new command is pending. */ - hicr = E1000_READ_REG(hw, E1000_HICR); - E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C); - - return E1000_SUCCESS; -} - -/** - * e1000_enable_mng_pass_thru - Check if management passthrough is needed - * @hw: pointer to the HW structure - * - * Verifies the hardware needs to leave interface enabled so that frames can - * be directed to and from the management interface. - **/ -bool e1000_enable_mng_pass_thru(struct e1000_hw *hw) -{ - u32 manc; - u32 fwsm, factps; - - DEBUGFUNC("e1000_enable_mng_pass_thru"); - - if (!hw->mac.asf_firmware_present) - return false; - - manc = E1000_READ_REG(hw, E1000_MANC); - - if (!(manc & E1000_MANC_RCV_TCO_EN)) - return false; - - if (hw->mac.has_fwsm) { - fwsm = E1000_READ_REG(hw, E1000_FWSM); - factps = E1000_READ_REG(hw, E1000_FACTPS); - - if (!(factps & E1000_FACTPS_MNGCG) && - ((fwsm & E1000_FWSM_MODE_MASK) == - (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) - return true; - } else if ((manc & E1000_MANC_SMBUS_EN) && - !(manc & E1000_MANC_ASF_EN)) { - return true; - } - - return false; -} - -/** - * e1000_host_interface_command - Writes buffer to host interface - * @hw: pointer to the HW structure - * @buffer: contains a command to write - * @length: the byte length of the buffer, must be multiple of 4 bytes - * - * Writes a buffer to the Host Interface. Upon success, returns E1000_SUCCESS - * else returns E1000_ERR_HOST_INTERFACE_COMMAND. - **/ -s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length) -{ - u32 hicr, i; - - DEBUGFUNC("e1000_host_interface_command"); - - if (!(hw->mac.arc_subsystem_valid)) { - DEBUGOUT("Hardware doesn't support host interface command.\n"); - return E1000_SUCCESS; - } - - if (!hw->mac.asf_firmware_present) { - DEBUGOUT("Firmware is not present.\n"); - return E1000_SUCCESS; - } - - if (length == 0 || length & 0x3 || - length > E1000_HI_MAX_BLOCK_BYTE_LENGTH) { - DEBUGOUT("Buffer length failure.\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - - /* Check that the host interface is enabled. */ - hicr = E1000_READ_REG(hw, E1000_HICR); - if (!(hicr & E1000_HICR_EN)) { - DEBUGOUT("E1000_HOST_EN bit disabled.\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - - /* Calculate length in DWORDs */ - length >>= 2; - - /* The device driver writes the relevant command block - * into the ram area. - */ - for (i = 0; i < length; i++) - E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i, - *((u32 *)buffer + i)); - - /* Setting this bit tells the ARC that a new command is pending. */ - E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C); - - for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) { - hicr = E1000_READ_REG(hw, E1000_HICR); - if (!(hicr & E1000_HICR_C)) - break; - msec_delay(1); - } - - /* Check command successful completion. */ - if (i == E1000_HI_COMMAND_TIMEOUT || - (!(E1000_READ_REG(hw, E1000_HICR) & E1000_HICR_SV))) { - DEBUGOUT("Command has failed with no status valid.\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - - for (i = 0; i < length; i++) - *((u32 *)buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, - E1000_HOST_IF, - i); - - return E1000_SUCCESS; -} -/** - * e1000_load_firmware - Writes proxy FW code buffer to host interface - * and execute. - * @hw: pointer to the HW structure - * @buffer: contains a firmware to write - * @length: the byte length of the buffer, must be multiple of 4 bytes - * - * Upon success returns E1000_SUCCESS, returns E1000_ERR_CONFIG if not enabled - * in HW else returns E1000_ERR_HOST_INTERFACE_COMMAND. - **/ -s32 e1000_load_firmware(struct e1000_hw *hw, u8 *buffer, u32 length) -{ - u32 hicr, hibba, fwsm, icr, i; - - DEBUGFUNC("e1000_load_firmware"); - - if (hw->mac.type < e1000_i210) { - DEBUGOUT("Hardware doesn't support loading FW by the driver\n"); - return -E1000_ERR_CONFIG; - } - - /* Check that the host interface is enabled. */ - hicr = E1000_READ_REG(hw, E1000_HICR); - if (!(hicr & E1000_HICR_EN)) { - DEBUGOUT("E1000_HOST_EN bit disabled.\n"); - return -E1000_ERR_CONFIG; - } - if (!(hicr & E1000_HICR_MEMORY_BASE_EN)) { - DEBUGOUT("E1000_HICR_MEMORY_BASE_EN bit disabled.\n"); - return -E1000_ERR_CONFIG; - } - - if (length == 0 || length & 0x3 || length > E1000_HI_FW_MAX_LENGTH) { - DEBUGOUT("Buffer length failure.\n"); - return -E1000_ERR_INVALID_ARGUMENT; - } - - /* Clear notification from ROM-FW by reading ICR register */ - icr = E1000_READ_REG(hw, E1000_ICR_V2); - - /* Reset ROM-FW */ - hicr = E1000_READ_REG(hw, E1000_HICR); - hicr |= E1000_HICR_FW_RESET_ENABLE; - E1000_WRITE_REG(hw, E1000_HICR, hicr); - hicr |= E1000_HICR_FW_RESET; - E1000_WRITE_REG(hw, E1000_HICR, hicr); - E1000_WRITE_FLUSH(hw); - - /* Wait till MAC notifies about its readiness after ROM-FW reset */ - for (i = 0; i < (E1000_HI_COMMAND_TIMEOUT * 2); i++) { - icr = E1000_READ_REG(hw, E1000_ICR_V2); - if (icr & E1000_ICR_MNG) - break; - msec_delay(1); - } - - /* Check for timeout */ - if (i == E1000_HI_COMMAND_TIMEOUT) { - DEBUGOUT("FW reset failed.\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - - /* Wait till MAC is ready to accept new FW code */ - for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) { - fwsm = E1000_READ_REG(hw, E1000_FWSM); - if ((fwsm & E1000_FWSM_FW_VALID) && - ((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT == - E1000_FWSM_HI_EN_ONLY_MODE)) - break; - msec_delay(1); - } - - /* Check for timeout */ - if (i == E1000_HI_COMMAND_TIMEOUT) { - DEBUGOUT("FW reset failed.\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - - /* Calculate length in DWORDs */ - length >>= 2; - - /* The device driver writes the relevant FW code block - * into the ram area in DWORDs via 1kB ram addressing window. - */ - for (i = 0; i < length; i++) { - if (!(i % E1000_HI_FW_BLOCK_DWORD_LENGTH)) { - /* Point to correct 1kB ram window */ - hibba = E1000_HI_FW_BASE_ADDRESS + - ((E1000_HI_FW_BLOCK_DWORD_LENGTH << 2) * - (i / E1000_HI_FW_BLOCK_DWORD_LENGTH)); - - E1000_WRITE_REG(hw, E1000_HIBBA, hibba); - } - - E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, - i % E1000_HI_FW_BLOCK_DWORD_LENGTH, - *((u32 *)buffer + i)); - } - - /* Setting this bit tells the ARC that a new FW is ready to execute. */ - hicr = E1000_READ_REG(hw, E1000_HICR); - E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C); - - for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) { - hicr = E1000_READ_REG(hw, E1000_HICR); - if (!(hicr & E1000_HICR_C)) - break; - msec_delay(1); - } - - /* Check for successful FW start. */ - if (i == E1000_HI_COMMAND_TIMEOUT) { - DEBUGOUT("New FW did not start within timeout period.\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - - return E1000_SUCCESS; -} diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_manage.h b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_manage.h deleted file mode 100644 index 9f27b934..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_manage.h +++ /dev/null @@ -1,74 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#ifndef _E1000_MANAGE_H_ -#define _E1000_MANAGE_H_ - -bool e1000_check_mng_mode_generic(struct e1000_hw *hw); -bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw); -s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw); -s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer, - u16 length, u16 offset, u8 *sum); -s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw, - struct e1000_host_mng_command_header *hdr); -s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, - u8 *buffer, u16 length); -bool e1000_enable_mng_pass_thru(struct e1000_hw *hw); -u8 e1000_calculate_checksum(u8 *buffer, u32 length); -s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length); -s32 e1000_load_firmware(struct e1000_hw *hw, u8 *buffer, u32 length); - -enum e1000_mng_mode { - e1000_mng_mode_none = 0, - e1000_mng_mode_asf, - e1000_mng_mode_pt, - e1000_mng_mode_ipmi, - e1000_mng_mode_host_if_only -}; - -#define E1000_FACTPS_MNGCG 0x20000000 - -#define E1000_FWSM_MODE_MASK 0xE -#define E1000_FWSM_MODE_SHIFT 1 -#define E1000_FWSM_FW_VALID 0x00008000 -#define E1000_FWSM_HI_EN_ONLY_MODE 0x4 - -#define E1000_MNG_IAMT_MODE 0x3 -#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 -#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 -#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 -#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64 -#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1 -#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2 - -#define E1000_VFTA_ENTRY_SHIFT 5 -#define E1000_VFTA_ENTRY_MASK 0x7F -#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F - -#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Num of bytes in range */ -#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Num of dwords in range */ -#define E1000_HI_COMMAND_TIMEOUT 500 /* Process HI cmd limit */ -#define E1000_HI_FW_BASE_ADDRESS 0x10000 -#define E1000_HI_FW_MAX_LENGTH (64 * 1024) /* Num of bytes */ -#define E1000_HI_FW_BLOCK_DWORD_LENGTH 256 /* Num of DWORDs per page */ -#define E1000_HICR_MEMORY_BASE_EN 0x200 /* MB Enable bit - RO */ -#define E1000_HICR_EN 0x01 /* Enable bit - RO */ -/* Driver sets this bit when done to put command in RAM */ -#define E1000_HICR_C 0x02 -#define E1000_HICR_SV 0x04 /* Status Validity */ -#define E1000_HICR_FW_RESET_ENABLE 0x40 -#define E1000_HICR_FW_RESET 0x80 - -/* Intel(R) Active Management Technology signature */ -#define E1000_IAMT_SIGNATURE 0x544D4149 - -#endif diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_mbx.c b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_mbx.c deleted file mode 100644 index 1be44349..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_mbx.c +++ /dev/null @@ -1,510 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#include "e1000_mbx.h" - -/** - * e1000_null_mbx_check_for_flag - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -static s32 e1000_null_mbx_check_for_flag(struct e1000_hw E1000_UNUSEDARG *hw, - u16 E1000_UNUSEDARG mbx_id) -{ - DEBUGFUNC("e1000_null_mbx_check_flag"); - - return E1000_SUCCESS; -} - -/** - * e1000_null_mbx_transact - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -static s32 e1000_null_mbx_transact(struct e1000_hw E1000_UNUSEDARG *hw, - u32 E1000_UNUSEDARG *msg, - u16 E1000_UNUSEDARG size, - u16 E1000_UNUSEDARG mbx_id) -{ - DEBUGFUNC("e1000_null_mbx_rw_msg"); - - return E1000_SUCCESS; -} - -/** - * e1000_read_mbx - Reads a message from the mailbox - * @hw: pointer to the HW structure - * @msg: The message buffer - * @size: Length of buffer - * @mbx_id: id of mailbox to read - * - * returns SUCCESS if it successfully read message from buffer - **/ -s32 e1000_read_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - s32 ret_val = -E1000_ERR_MBX; - - DEBUGFUNC("e1000_read_mbx"); - - /* limit read to size of mailbox */ - if (size > mbx->size) - size = mbx->size; - - if (mbx->ops.read) - ret_val = mbx->ops.read(hw, msg, size, mbx_id); - - return ret_val; -} - -/** - * e1000_write_mbx - Write a message to the mailbox - * @hw: pointer to the HW structure - * @msg: The message buffer - * @size: Length of buffer - * @mbx_id: id of mailbox to write - * - * returns SUCCESS if it successfully copied message into the buffer - **/ -s32 e1000_write_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_write_mbx"); - - if (size > mbx->size) - ret_val = -E1000_ERR_MBX; - - else if (mbx->ops.write) - ret_val = mbx->ops.write(hw, msg, size, mbx_id); - - return ret_val; -} - -/** - * e1000_check_for_msg - checks to see if someone sent us mail - * @hw: pointer to the HW structure - * @mbx_id: id of mailbox to check - * - * returns SUCCESS if the Status bit was found or else ERR_MBX - **/ -s32 e1000_check_for_msg(struct e1000_hw *hw, u16 mbx_id) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - s32 ret_val = -E1000_ERR_MBX; - - DEBUGFUNC("e1000_check_for_msg"); - - if (mbx->ops.check_for_msg) - ret_val = mbx->ops.check_for_msg(hw, mbx_id); - - return ret_val; -} - -/** - * e1000_check_for_ack - checks to see if someone sent us ACK - * @hw: pointer to the HW structure - * @mbx_id: id of mailbox to check - * - * returns SUCCESS if the Status bit was found or else ERR_MBX - **/ -s32 e1000_check_for_ack(struct e1000_hw *hw, u16 mbx_id) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - s32 ret_val = -E1000_ERR_MBX; - - DEBUGFUNC("e1000_check_for_ack"); - - if (mbx->ops.check_for_ack) - ret_val = mbx->ops.check_for_ack(hw, mbx_id); - - return ret_val; -} - -/** - * e1000_check_for_rst - checks to see if other side has reset - * @hw: pointer to the HW structure - * @mbx_id: id of mailbox to check - * - * returns SUCCESS if the Status bit was found or else ERR_MBX - **/ -s32 e1000_check_for_rst(struct e1000_hw *hw, u16 mbx_id) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - s32 ret_val = -E1000_ERR_MBX; - - DEBUGFUNC("e1000_check_for_rst"); - - if (mbx->ops.check_for_rst) - ret_val = mbx->ops.check_for_rst(hw, mbx_id); - - return ret_val; -} - -/** - * e1000_poll_for_msg - Wait for message notification - * @hw: pointer to the HW structure - * @mbx_id: id of mailbox to write - * - * returns SUCCESS if it successfully received a message notification - **/ -static s32 e1000_poll_for_msg(struct e1000_hw *hw, u16 mbx_id) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - int countdown = mbx->timeout; - - DEBUGFUNC("e1000_poll_for_msg"); - - if (!countdown || !mbx->ops.check_for_msg) - goto out; - - while (countdown && mbx->ops.check_for_msg(hw, mbx_id)) { - countdown--; - if (!countdown) - break; - usec_delay(mbx->usec_delay); - } - - /* if we failed, all future posted messages fail until reset */ - if (!countdown) - mbx->timeout = 0; -out: - return countdown ? E1000_SUCCESS : -E1000_ERR_MBX; -} - -/** - * e1000_poll_for_ack - Wait for message acknowledgement - * @hw: pointer to the HW structure - * @mbx_id: id of mailbox to write - * - * returns SUCCESS if it successfully received a message acknowledgement - **/ -static s32 e1000_poll_for_ack(struct e1000_hw *hw, u16 mbx_id) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - int countdown = mbx->timeout; - - DEBUGFUNC("e1000_poll_for_ack"); - - if (!countdown || !mbx->ops.check_for_ack) - goto out; - - while (countdown && mbx->ops.check_for_ack(hw, mbx_id)) { - countdown--; - if (!countdown) - break; - usec_delay(mbx->usec_delay); - } - - /* if we failed, all future posted messages fail until reset */ - if (!countdown) - mbx->timeout = 0; -out: - return countdown ? E1000_SUCCESS : -E1000_ERR_MBX; -} - -/** - * e1000_read_posted_mbx - Wait for message notification and receive message - * @hw: pointer to the HW structure - * @msg: The message buffer - * @size: Length of buffer - * @mbx_id: id of mailbox to write - * - * returns SUCCESS if it successfully received a message notification and - * copied it into the receive buffer. - **/ -s32 e1000_read_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - s32 ret_val = -E1000_ERR_MBX; - - DEBUGFUNC("e1000_read_posted_mbx"); - - if (!mbx->ops.read) - goto out; - - ret_val = e1000_poll_for_msg(hw, mbx_id); - - /* if ack received read message, otherwise we timed out */ - if (!ret_val) - ret_val = mbx->ops.read(hw, msg, size, mbx_id); -out: - return ret_val; -} - -/** - * e1000_write_posted_mbx - Write a message to the mailbox, wait for ack - * @hw: pointer to the HW structure - * @msg: The message buffer - * @size: Length of buffer - * @mbx_id: id of mailbox to write - * - * returns SUCCESS if it successfully copied message into the buffer and - * received an ack to that message within delay * timeout period - **/ -s32 e1000_write_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - s32 ret_val = -E1000_ERR_MBX; - - DEBUGFUNC("e1000_write_posted_mbx"); - - /* exit if either we can't write or there isn't a defined timeout */ - if (!mbx->ops.write || !mbx->timeout) - goto out; - - /* send msg */ - ret_val = mbx->ops.write(hw, msg, size, mbx_id); - - /* if msg sent wait until we receive an ack */ - if (!ret_val) - ret_val = e1000_poll_for_ack(hw, mbx_id); -out: - return ret_val; -} - -/** - * e1000_init_mbx_ops_generic - Initialize mbx function pointers - * @hw: pointer to the HW structure - * - * Sets the function pointers to no-op functions - **/ -void e1000_init_mbx_ops_generic(struct e1000_hw *hw) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - mbx->ops.init_params = e1000_null_ops_generic; - mbx->ops.read = e1000_null_mbx_transact; - mbx->ops.write = e1000_null_mbx_transact; - mbx->ops.check_for_msg = e1000_null_mbx_check_for_flag; - mbx->ops.check_for_ack = e1000_null_mbx_check_for_flag; - mbx->ops.check_for_rst = e1000_null_mbx_check_for_flag; - mbx->ops.read_posted = e1000_read_posted_mbx; - mbx->ops.write_posted = e1000_write_posted_mbx; -} - -static s32 e1000_check_for_bit_pf(struct e1000_hw *hw, u32 mask) -{ - u32 mbvficr = E1000_READ_REG(hw, E1000_MBVFICR); - s32 ret_val = -E1000_ERR_MBX; - - if (mbvficr & mask) { - ret_val = E1000_SUCCESS; - E1000_WRITE_REG(hw, E1000_MBVFICR, mask); - } - - return ret_val; -} - -/** - * e1000_check_for_msg_pf - checks to see if the VF has sent mail - * @hw: pointer to the HW structure - * @vf_number: the VF index - * - * returns SUCCESS if the VF has set the Status bit or else ERR_MBX - **/ -static s32 e1000_check_for_msg_pf(struct e1000_hw *hw, u16 vf_number) -{ - s32 ret_val = -E1000_ERR_MBX; - - DEBUGFUNC("e1000_check_for_msg_pf"); - - if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFREQ_VF1 << vf_number)) { - ret_val = E1000_SUCCESS; - hw->mbx.stats.reqs++; - } - - return ret_val; -} - -/** - * e1000_check_for_ack_pf - checks to see if the VF has ACKed - * @hw: pointer to the HW structure - * @vf_number: the VF index - * - * returns SUCCESS if the VF has set the Status bit or else ERR_MBX - **/ -static s32 e1000_check_for_ack_pf(struct e1000_hw *hw, u16 vf_number) -{ - s32 ret_val = -E1000_ERR_MBX; - - DEBUGFUNC("e1000_check_for_ack_pf"); - - if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFACK_VF1 << vf_number)) { - ret_val = E1000_SUCCESS; - hw->mbx.stats.acks++; - } - - return ret_val; -} - -/** - * e1000_check_for_rst_pf - checks to see if the VF has reset - * @hw: pointer to the HW structure - * @vf_number: the VF index - * - * returns SUCCESS if the VF has set the Status bit or else ERR_MBX - **/ -static s32 e1000_check_for_rst_pf(struct e1000_hw *hw, u16 vf_number) -{ - u32 vflre = E1000_READ_REG(hw, E1000_VFLRE); - s32 ret_val = -E1000_ERR_MBX; - - DEBUGFUNC("e1000_check_for_rst_pf"); - - if (vflre & (1 << vf_number)) { - ret_val = E1000_SUCCESS; - E1000_WRITE_REG(hw, E1000_VFLRE, (1 << vf_number)); - hw->mbx.stats.rsts++; - } - - return ret_val; -} - -/** - * e1000_obtain_mbx_lock_pf - obtain mailbox lock - * @hw: pointer to the HW structure - * @vf_number: the VF index - * - * return SUCCESS if we obtained the mailbox lock - **/ -static s32 e1000_obtain_mbx_lock_pf(struct e1000_hw *hw, u16 vf_number) -{ - s32 ret_val = -E1000_ERR_MBX; - u32 p2v_mailbox; - - DEBUGFUNC("e1000_obtain_mbx_lock_pf"); - - /* Take ownership of the buffer */ - E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_PFU); - - /* reserve mailbox for vf use */ - p2v_mailbox = E1000_READ_REG(hw, E1000_P2VMAILBOX(vf_number)); - if (p2v_mailbox & E1000_P2VMAILBOX_PFU) - ret_val = E1000_SUCCESS; - - return ret_val; -} - -/** - * e1000_write_mbx_pf - Places a message in the mailbox - * @hw: pointer to the HW structure - * @msg: The message buffer - * @size: Length of buffer - * @vf_number: the VF index - * - * returns SUCCESS if it successfully copied message into the buffer - **/ -static s32 e1000_write_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size, - u16 vf_number) -{ - s32 ret_val; - u16 i; - - DEBUGFUNC("e1000_write_mbx_pf"); - - /* lock the mailbox to prevent pf/vf race condition */ - ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number); - if (ret_val) - goto out_no_write; - - /* flush msg and acks as we are overwriting the message buffer */ - e1000_check_for_msg_pf(hw, vf_number); - e1000_check_for_ack_pf(hw, vf_number); - - /* copy the caller specified message to the mailbox memory buffer */ - for (i = 0; i < size; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i, msg[i]); - - /* Interrupt VF to tell it a message has been sent and release buffer*/ - E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_STS); - - /* update stats */ - hw->mbx.stats.msgs_tx++; - -out_no_write: - return ret_val; - -} - -/** - * e1000_read_mbx_pf - Read a message from the mailbox - * @hw: pointer to the HW structure - * @msg: The message buffer - * @size: Length of buffer - * @vf_number: the VF index - * - * This function copies a message from the mailbox buffer to the caller's - * memory buffer. The presumption is that the caller knows that there was - * a message due to a VF request so no polling for message is needed. - **/ -static s32 e1000_read_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size, - u16 vf_number) -{ - s32 ret_val; - u16 i; - - DEBUGFUNC("e1000_read_mbx_pf"); - - /* lock the mailbox to prevent pf/vf race condition */ - ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number); - if (ret_val) - goto out_no_read; - - /* copy the message to the mailbox memory buffer */ - for (i = 0; i < size; i++) - msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i); - - /* Acknowledge the message and release buffer */ - E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_ACK); - - /* update stats */ - hw->mbx.stats.msgs_rx++; - -out_no_read: - return ret_val; -} - -/** - * e1000_init_mbx_params_pf - set initial values for pf mailbox - * @hw: pointer to the HW structure - * - * Initializes the hw->mbx struct to correct values for pf mailbox - */ -s32 e1000_init_mbx_params_pf(struct e1000_hw *hw) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - - switch (hw->mac.type) { - case e1000_82576: - case e1000_i350: - case e1000_i354: - mbx->timeout = 0; - mbx->usec_delay = 0; - - mbx->size = E1000_VFMAILBOX_SIZE; - - mbx->ops.read = e1000_read_mbx_pf; - mbx->ops.write = e1000_write_mbx_pf; - mbx->ops.read_posted = e1000_read_posted_mbx; - mbx->ops.write_posted = e1000_write_posted_mbx; - mbx->ops.check_for_msg = e1000_check_for_msg_pf; - mbx->ops.check_for_ack = e1000_check_for_ack_pf; - mbx->ops.check_for_rst = e1000_check_for_rst_pf; - - mbx->stats.msgs_tx = 0; - mbx->stats.msgs_rx = 0; - mbx->stats.reqs = 0; - mbx->stats.acks = 0; - mbx->stats.rsts = 0; - default: - return E1000_SUCCESS; - } -} diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_mbx.h b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_mbx.h deleted file mode 100644 index 5951f18f..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_mbx.h +++ /dev/null @@ -1,72 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#ifndef _E1000_MBX_H_ -#define _E1000_MBX_H_ - -#include "e1000_api.h" - -#define E1000_P2VMAILBOX_STS 0x00000001 /* Initiate message send to VF */ -#define E1000_P2VMAILBOX_ACK 0x00000002 /* Ack message recv'd from VF */ -#define E1000_P2VMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */ -#define E1000_P2VMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */ -#define E1000_P2VMAILBOX_RVFU 0x00000010 /* Reset VFU - used when VF stuck */ - -#define E1000_MBVFICR_VFREQ_MASK 0x000000FF /* bits for VF messages */ -#define E1000_MBVFICR_VFREQ_VF1 0x00000001 /* bit for VF 1 message */ -#define E1000_MBVFICR_VFACK_MASK 0x00FF0000 /* bits for VF acks */ -#define E1000_MBVFICR_VFACK_VF1 0x00010000 /* bit for VF 1 ack */ - -#define E1000_VFMAILBOX_SIZE 16 /* 16 32 bit words - 64 bytes */ - -/* If it's a E1000_VF_* msg then it originates in the VF and is sent to the - * PF. The reverse is true if it is E1000_PF_*. - * Message ACK's are the value or'd with 0xF0000000 - */ -/* Msgs below or'd with this are the ACK */ -#define E1000_VT_MSGTYPE_ACK 0x80000000 -/* Msgs below or'd with this are the NACK */ -#define E1000_VT_MSGTYPE_NACK 0x40000000 -/* Indicates that VF is still clear to send requests */ -#define E1000_VT_MSGTYPE_CTS 0x20000000 -#define E1000_VT_MSGINFO_SHIFT 16 -/* bits 23:16 are used for extra info for certain messages */ -#define E1000_VT_MSGINFO_MASK (0xFF << E1000_VT_MSGINFO_SHIFT) - -#define E1000_VF_RESET 0x01 /* VF requests reset */ -#define E1000_VF_SET_MAC_ADDR 0x02 /* VF requests to set MAC addr */ -#define E1000_VF_SET_MULTICAST 0x03 /* VF requests to set MC addr */ -#define E1000_VF_SET_MULTICAST_COUNT_MASK (0x1F << E1000_VT_MSGINFO_SHIFT) -#define E1000_VF_SET_MULTICAST_OVERFLOW (0x80 << E1000_VT_MSGINFO_SHIFT) -#define E1000_VF_SET_VLAN 0x04 /* VF requests to set VLAN */ -#define E1000_VF_SET_VLAN_ADD (0x01 << E1000_VT_MSGINFO_SHIFT) -#define E1000_VF_SET_LPE 0x05 /* reqs to set VMOLR.LPE */ -#define E1000_VF_SET_PROMISC 0x06 /* reqs to clear VMOLR.ROPE/MPME*/ -#define E1000_VF_SET_PROMISC_UNICAST (0x01 << E1000_VT_MSGINFO_SHIFT) -#define E1000_VF_SET_PROMISC_MULTICAST (0x02 << E1000_VT_MSGINFO_SHIFT) - -#define E1000_PF_CONTROL_MSG 0x0100 /* PF control message */ - -#define E1000_VF_MBX_INIT_TIMEOUT 2000 /* number of retries on mailbox */ -#define E1000_VF_MBX_INIT_DELAY 500 /* microseconds between retries */ - -s32 e1000_read_mbx(struct e1000_hw *, u32 *, u16, u16); -s32 e1000_write_mbx(struct e1000_hw *, u32 *, u16, u16); -s32 e1000_read_posted_mbx(struct e1000_hw *, u32 *, u16, u16); -s32 e1000_write_posted_mbx(struct e1000_hw *, u32 *, u16, u16); -s32 e1000_check_for_msg(struct e1000_hw *, u16); -s32 e1000_check_for_ack(struct e1000_hw *, u16); -s32 e1000_check_for_rst(struct e1000_hw *, u16); -void e1000_init_mbx_ops_generic(struct e1000_hw *hw); -s32 e1000_init_mbx_params_pf(struct e1000_hw *); - -#endif /* _E1000_MBX_H_ */ diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_nvm.c b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_nvm.c deleted file mode 100644 index 78c3fc0e..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_nvm.c +++ /dev/null @@ -1,950 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#include "e1000_api.h" - -static void e1000_reload_nvm_generic(struct e1000_hw *hw); - -/** - * e1000_init_nvm_ops_generic - Initialize NVM function pointers - * @hw: pointer to the HW structure - * - * Setups up the function pointers to no-op functions - **/ -void e1000_init_nvm_ops_generic(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - DEBUGFUNC("e1000_init_nvm_ops_generic"); - - /* Initialize function pointers */ - nvm->ops.init_params = e1000_null_ops_generic; - nvm->ops.acquire = e1000_null_ops_generic; - nvm->ops.read = e1000_null_read_nvm; - nvm->ops.release = e1000_null_nvm_generic; - nvm->ops.reload = e1000_reload_nvm_generic; - nvm->ops.update = e1000_null_ops_generic; - nvm->ops.valid_led_default = e1000_null_led_default; - nvm->ops.validate = e1000_null_ops_generic; - nvm->ops.write = e1000_null_write_nvm; -} - -/** - * e1000_null_nvm_read - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_read_nvm(struct e1000_hw E1000_UNUSEDARG *hw, - u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b, - u16 E1000_UNUSEDARG *c) -{ - DEBUGFUNC("e1000_null_read_nvm"); - return E1000_SUCCESS; -} - -/** - * e1000_null_nvm_generic - No-op function, return void - * @hw: pointer to the HW structure - **/ -void e1000_null_nvm_generic(struct e1000_hw E1000_UNUSEDARG *hw) -{ - DEBUGFUNC("e1000_null_nvm_generic"); - return; -} - -/** - * e1000_null_led_default - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_led_default(struct e1000_hw E1000_UNUSEDARG *hw, - u16 E1000_UNUSEDARG *data) -{ - DEBUGFUNC("e1000_null_led_default"); - return E1000_SUCCESS; -} - -/** - * e1000_null_write_nvm - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_write_nvm(struct e1000_hw E1000_UNUSEDARG *hw, - u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b, - u16 E1000_UNUSEDARG *c) -{ - DEBUGFUNC("e1000_null_write_nvm"); - return E1000_SUCCESS; -} - -/** - * e1000_raise_eec_clk - Raise EEPROM clock - * @hw: pointer to the HW structure - * @eecd: pointer to the EEPROM - * - * Enable/Raise the EEPROM clock bit. - **/ -static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) -{ - *eecd = *eecd | E1000_EECD_SK; - E1000_WRITE_REG(hw, E1000_EECD, *eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(hw->nvm.delay_usec); -} - -/** - * e1000_lower_eec_clk - Lower EEPROM clock - * @hw: pointer to the HW structure - * @eecd: pointer to the EEPROM - * - * Clear/Lower the EEPROM clock bit. - **/ -static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) -{ - *eecd = *eecd & ~E1000_EECD_SK; - E1000_WRITE_REG(hw, E1000_EECD, *eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(hw->nvm.delay_usec); -} - -/** - * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM - * @hw: pointer to the HW structure - * @data: data to send to the EEPROM - * @count: number of bits to shift out - * - * We need to shift 'count' bits out to the EEPROM. So, the value in the - * "data" parameter will be shifted out to the EEPROM one bit at a time. - * In order to do this, "data" must be broken down into bits. - **/ -static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - u32 mask; - - DEBUGFUNC("e1000_shift_out_eec_bits"); - - mask = 0x01 << (count - 1); - if (nvm->type == e1000_nvm_eeprom_spi) - eecd |= E1000_EECD_DO; - - do { - eecd &= ~E1000_EECD_DI; - - if (data & mask) - eecd |= E1000_EECD_DI; - - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - - usec_delay(nvm->delay_usec); - - e1000_raise_eec_clk(hw, &eecd); - e1000_lower_eec_clk(hw, &eecd); - - mask >>= 1; - } while (mask); - - eecd &= ~E1000_EECD_DI; - E1000_WRITE_REG(hw, E1000_EECD, eecd); -} - -/** - * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM - * @hw: pointer to the HW structure - * @count: number of bits to shift in - * - * In order to read a register from the EEPROM, we need to shift 'count' bits - * in from the EEPROM. Bits are "shifted in" by raising the clock input to - * the EEPROM (setting the SK bit), and then reading the value of the data out - * "DO" bit. During this "shifting in" process the data in "DI" bit should - * always be clear. - **/ -static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) -{ - u32 eecd; - u32 i; - u16 data; - - DEBUGFUNC("e1000_shift_in_eec_bits"); - - eecd = E1000_READ_REG(hw, E1000_EECD); - - eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); - data = 0; - - for (i = 0; i < count; i++) { - data <<= 1; - e1000_raise_eec_clk(hw, &eecd); - - eecd = E1000_READ_REG(hw, E1000_EECD); - - eecd &= ~E1000_EECD_DI; - if (eecd & E1000_EECD_DO) - data |= 1; - - e1000_lower_eec_clk(hw, &eecd); - } - - return data; -} - -/** - * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion - * @hw: pointer to the HW structure - * @ee_reg: EEPROM flag for polling - * - * Polls the EEPROM status bit for either read or write completion based - * upon the value of 'ee_reg'. - **/ -s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) -{ - u32 attempts = 100000; - u32 i, reg = 0; - - DEBUGFUNC("e1000_poll_eerd_eewr_done"); - - for (i = 0; i < attempts; i++) { - if (ee_reg == E1000_NVM_POLL_READ) - reg = E1000_READ_REG(hw, E1000_EERD); - else - reg = E1000_READ_REG(hw, E1000_EEWR); - - if (reg & E1000_NVM_RW_REG_DONE) - return E1000_SUCCESS; - - usec_delay(5); - } - - return -E1000_ERR_NVM; -} - -/** - * e1000_acquire_nvm_generic - Generic request for access to EEPROM - * @hw: pointer to the HW structure - * - * Set the EEPROM access request bit and wait for EEPROM access grant bit. - * Return successful if access grant bit set, else clear the request for - * EEPROM access and return -E1000_ERR_NVM (-1). - **/ -s32 e1000_acquire_nvm_generic(struct e1000_hw *hw) -{ - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - s32 timeout = E1000_NVM_GRANT_ATTEMPTS; - - DEBUGFUNC("e1000_acquire_nvm_generic"); - - E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ); - eecd = E1000_READ_REG(hw, E1000_EECD); - - while (timeout) { - if (eecd & E1000_EECD_GNT) - break; - usec_delay(5); - eecd = E1000_READ_REG(hw, E1000_EECD); - timeout--; - } - - if (!timeout) { - eecd &= ~E1000_EECD_REQ; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - DEBUGOUT("Could not acquire NVM grant\n"); - return -E1000_ERR_NVM; - } - - return E1000_SUCCESS; -} - -/** - * e1000_standby_nvm - Return EEPROM to standby state - * @hw: pointer to the HW structure - * - * Return the EEPROM to a standby state. - **/ -static void e1000_standby_nvm(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - - DEBUGFUNC("e1000_standby_nvm"); - - if (nvm->type == e1000_nvm_eeprom_spi) { - /* Toggle CS to flush commands */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(nvm->delay_usec); - eecd &= ~E1000_EECD_CS; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(nvm->delay_usec); - } -} - -/** - * e1000_stop_nvm - Terminate EEPROM command - * @hw: pointer to the HW structure - * - * Terminates the current command by inverting the EEPROM's chip select pin. - **/ -static void e1000_stop_nvm(struct e1000_hw *hw) -{ - u32 eecd; - - DEBUGFUNC("e1000_stop_nvm"); - - eecd = E1000_READ_REG(hw, E1000_EECD); - if (hw->nvm.type == e1000_nvm_eeprom_spi) { - /* Pull CS high */ - eecd |= E1000_EECD_CS; - e1000_lower_eec_clk(hw, &eecd); - } -} - -/** - * e1000_release_nvm_generic - Release exclusive access to EEPROM - * @hw: pointer to the HW structure - * - * Stop any current commands to the EEPROM and clear the EEPROM request bit. - **/ -void e1000_release_nvm_generic(struct e1000_hw *hw) -{ - u32 eecd; - - DEBUGFUNC("e1000_release_nvm_generic"); - - e1000_stop_nvm(hw); - - eecd = E1000_READ_REG(hw, E1000_EECD); - eecd &= ~E1000_EECD_REQ; - E1000_WRITE_REG(hw, E1000_EECD, eecd); -} - -/** - * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write - * @hw: pointer to the HW structure - * - * Setups the EEPROM for reading and writing. - **/ -static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - u8 spi_stat_reg; - - DEBUGFUNC("e1000_ready_nvm_eeprom"); - - if (nvm->type == e1000_nvm_eeprom_spi) { - u16 timeout = NVM_MAX_RETRY_SPI; - - /* Clear SK and CS */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(1); - - /* Read "Status Register" repeatedly until the LSB is cleared. - * The EEPROM will signal that the command has been completed - * by clearing bit 0 of the internal status register. If it's - * not cleared within 'timeout', then error out. - */ - while (timeout) { - e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, - hw->nvm.opcode_bits); - spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); - if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) - break; - - usec_delay(5); - e1000_standby_nvm(hw); - timeout--; - } - - if (!timeout) { - DEBUGOUT("SPI NVM Status error\n"); - return -E1000_ERR_NVM; - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_read_nvm_spi - Read EEPROM's using SPI - * @hw: pointer to the HW structure - * @offset: offset of word in the EEPROM to read - * @words: number of words to read - * @data: word read from the EEPROM - * - * Reads a 16 bit word from the EEPROM. - **/ -s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 i = 0; - s32 ret_val; - u16 word_in; - u8 read_opcode = NVM_READ_OPCODE_SPI; - - DEBUGFUNC("e1000_read_nvm_spi"); - - /* A check for invalid values: offset too large, too many words, - * and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - return -E1000_ERR_NVM; - } - - ret_val = nvm->ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000_ready_nvm_eeprom(hw); - if (ret_val) - goto release; - - e1000_standby_nvm(hw); - - if ((nvm->address_bits == 8) && (offset >= 128)) - read_opcode |= NVM_A8_OPCODE_SPI; - - /* Send the READ command (opcode + addr) */ - e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); - e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); - - /* Read the data. SPI NVMs increment the address with each byte - * read and will roll over if reading beyond the end. This allows - * us to read the whole NVM from any offset - */ - for (i = 0; i < words; i++) { - word_in = e1000_shift_in_eec_bits(hw, 16); - data[i] = (word_in >> 8) | (word_in << 8); - } - -release: - nvm->ops.release(hw); - - return ret_val; -} - -/** - * e1000_read_nvm_eerd - Reads EEPROM using EERD register - * @hw: pointer to the HW structure - * @offset: offset of word in the EEPROM to read - * @words: number of words to read - * @data: word read from the EEPROM - * - * Reads a 16 bit word from the EEPROM using the EERD register. - **/ -s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 i, eerd = 0; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_read_nvm_eerd"); - - /* A check for invalid values: offset too large, too many words, - * too many words for the offset, and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - return -E1000_ERR_NVM; - } - - for (i = 0; i < words; i++) { - eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + - E1000_NVM_RW_REG_START; - - E1000_WRITE_REG(hw, E1000_EERD, eerd); - ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); - if (ret_val) - break; - - data[i] = (E1000_READ_REG(hw, E1000_EERD) >> - E1000_NVM_RW_REG_DATA); - } - - return ret_val; -} - -/** - * e1000_write_nvm_spi - Write to EEPROM using SPI - * @hw: pointer to the HW structure - * @offset: offset within the EEPROM to be written to - * @words: number of words to write - * @data: 16 bit word(s) to be written to the EEPROM - * - * Writes data to EEPROM at offset using SPI interface. - * - * If e1000_update_nvm_checksum is not called after this function , the - * EEPROM will most likely contain an invalid checksum. - **/ -s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - s32 ret_val = -E1000_ERR_NVM; - u16 widx = 0; - - DEBUGFUNC("e1000_write_nvm_spi"); - - /* A check for invalid values: offset too large, too many words, - * and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - return -E1000_ERR_NVM; - } - - while (widx < words) { - u8 write_opcode = NVM_WRITE_OPCODE_SPI; - - ret_val = nvm->ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000_ready_nvm_eeprom(hw); - if (ret_val) { - nvm->ops.release(hw); - return ret_val; - } - - e1000_standby_nvm(hw); - - /* Send the WRITE ENABLE command (8 bit opcode) */ - e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, - nvm->opcode_bits); - - e1000_standby_nvm(hw); - - /* Some SPI eeproms use the 8th address bit embedded in the - * opcode - */ - if ((nvm->address_bits == 8) && (offset >= 128)) - write_opcode |= NVM_A8_OPCODE_SPI; - - /* Send the Write command (8-bit opcode + addr) */ - e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); - e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), - nvm->address_bits); - - /* Loop to allow for up to whole page write of eeprom */ - while (widx < words) { - u16 word_out = data[widx]; - word_out = (word_out >> 8) | (word_out << 8); - e1000_shift_out_eec_bits(hw, word_out, 16); - widx++; - - if ((((offset + widx) * 2) % nvm->page_size) == 0) { - e1000_standby_nvm(hw); - break; - } - } - msec_delay(10); - nvm->ops.release(hw); - } - - return ret_val; -} - -/** - * e1000_read_pba_string_generic - Read device part number - * @hw: pointer to the HW structure - * @pba_num: pointer to device part number - * @pba_num_size: size of part number buffer - * - * Reads the product board assembly (PBA) number from the EEPROM and stores - * the value in pba_num. - **/ -s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, - u32 pba_num_size) -{ - s32 ret_val; - u16 nvm_data; - u16 pba_ptr; - u16 offset; - u16 length; - - DEBUGFUNC("e1000_read_pba_string_generic"); - - if (pba_num == NULL) { - DEBUGOUT("PBA string buffer was null\n"); - return -E1000_ERR_INVALID_ARGUMENT; - } - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - /* if nvm_data is not ptr guard the PBA must be in legacy format which - * means pba_ptr is actually our second data word for the PBA number - * and we can decode it into an ascii string - */ - if (nvm_data != NVM_PBA_PTR_GUARD) { - DEBUGOUT("NVM PBA number is not stored as string\n"); - - /* make sure callers buffer is big enough to store the PBA */ - if (pba_num_size < E1000_PBANUM_LENGTH) { - DEBUGOUT("PBA string buffer too small\n"); - return E1000_ERR_NO_SPACE; - } - - /* extract hex string from data and pba_ptr */ - pba_num[0] = (nvm_data >> 12) & 0xF; - pba_num[1] = (nvm_data >> 8) & 0xF; - pba_num[2] = (nvm_data >> 4) & 0xF; - pba_num[3] = nvm_data & 0xF; - pba_num[4] = (pba_ptr >> 12) & 0xF; - pba_num[5] = (pba_ptr >> 8) & 0xF; - pba_num[6] = '-'; - pba_num[7] = 0; - pba_num[8] = (pba_ptr >> 4) & 0xF; - pba_num[9] = pba_ptr & 0xF; - - /* put a null character on the end of our string */ - pba_num[10] = '\0'; - - /* switch all the data but the '-' to hex char */ - for (offset = 0; offset < 10; offset++) { - if (pba_num[offset] < 0xA) - pba_num[offset] += '0'; - else if (pba_num[offset] < 0x10) - pba_num[offset] += 'A' - 0xA; - } - - return E1000_SUCCESS; - } - - ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - if (length == 0xFFFF || length == 0) { - DEBUGOUT("NVM PBA number section invalid length\n"); - return -E1000_ERR_NVM_PBA_SECTION; - } - /* check if pba_num buffer is big enough */ - if (pba_num_size < (((u32)length * 2) - 1)) { - DEBUGOUT("PBA string buffer too small\n"); - return -E1000_ERR_NO_SPACE; - } - - /* trim pba length from start of string */ - pba_ptr++; - length--; - - for (offset = 0; offset < length; offset++) { - ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - pba_num[offset * 2] = (u8)(nvm_data >> 8); - pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); - } - pba_num[offset * 2] = '\0'; - - return E1000_SUCCESS; -} - -/** - * e1000_read_pba_length_generic - Read device part number length - * @hw: pointer to the HW structure - * @pba_num_size: size of part number buffer - * - * Reads the product board assembly (PBA) number length from the EEPROM and - * stores the value in pba_num_size. - **/ -s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size) -{ - s32 ret_val; - u16 nvm_data; - u16 pba_ptr; - u16 length; - - DEBUGFUNC("e1000_read_pba_length_generic"); - - if (pba_num_size == NULL) { - DEBUGOUT("PBA buffer size was null\n"); - return -E1000_ERR_INVALID_ARGUMENT; - } - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - /* if data is not ptr guard the PBA must be in legacy format */ - if (nvm_data != NVM_PBA_PTR_GUARD) { - *pba_num_size = E1000_PBANUM_LENGTH; - return E1000_SUCCESS; - } - - ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - if (length == 0xFFFF || length == 0) { - DEBUGOUT("NVM PBA number section invalid length\n"); - return -E1000_ERR_NVM_PBA_SECTION; - } - - /* Convert from length in u16 values to u8 chars, add 1 for NULL, - * and subtract 2 because length field is included in length. - */ - *pba_num_size = ((u32)length * 2) - 1; - - return E1000_SUCCESS; -} - - - - - -/** - * e1000_read_mac_addr_generic - Read device MAC address - * @hw: pointer to the HW structure - * - * Reads the device MAC address from the EEPROM and stores the value. - * Since devices with two ports use the same EEPROM, we increment the - * last bit in the MAC address for the second port. - **/ -s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) -{ - u32 rar_high; - u32 rar_low; - u16 i; - - rar_high = E1000_READ_REG(hw, E1000_RAH(0)); - rar_low = E1000_READ_REG(hw, E1000_RAL(0)); - - for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) - hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); - - for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) - hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); - - for (i = 0; i < ETH_ADDR_LEN; i++) - hw->mac.addr[i] = hw->mac.perm_addr[i]; - - return E1000_SUCCESS; -} - -/** - * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum - * @hw: pointer to the HW structure - * - * Calculates the EEPROM checksum by reading/adding each word of the EEPROM - * and then verifies that the sum of the EEPROM is equal to 0xBABA. - **/ -s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw) -{ - s32 ret_val; - u16 checksum = 0; - u16 i, nvm_data; - - DEBUGFUNC("e1000_validate_nvm_checksum_generic"); - - for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { - ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - checksum += nvm_data; - } - - if (checksum != (u16) NVM_SUM) { - DEBUGOUT("NVM Checksum Invalid\n"); - return -E1000_ERR_NVM; - } - - return E1000_SUCCESS; -} - -/** - * e1000_update_nvm_checksum_generic - Update EEPROM checksum - * @hw: pointer to the HW structure - * - * Updates the EEPROM checksum by reading/adding each word of the EEPROM - * up to the checksum. Then calculates the EEPROM checksum and writes the - * value to the EEPROM. - **/ -s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw) -{ - s32 ret_val; - u16 checksum = 0; - u16 i, nvm_data; - - DEBUGFUNC("e1000_update_nvm_checksum"); - - for (i = 0; i < NVM_CHECKSUM_REG; i++) { - ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error while updating checksum.\n"); - return ret_val; - } - checksum += nvm_data; - } - checksum = (u16) NVM_SUM - checksum; - ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); - if (ret_val) - DEBUGOUT("NVM Write Error while updating checksum.\n"); - - return ret_val; -} - -/** - * e1000_reload_nvm_generic - Reloads EEPROM - * @hw: pointer to the HW structure - * - * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the - * extended control register. - **/ -static void e1000_reload_nvm_generic(struct e1000_hw *hw) -{ - u32 ctrl_ext; - - DEBUGFUNC("e1000_reload_nvm_generic"); - - usec_delay(10); - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_EE_RST; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); -} - -/** - * e1000_get_fw_version - Get firmware version information - * @hw: pointer to the HW structure - * @fw_vers: pointer to output version structure - * - * unsupported/not present features return 0 in version structure - **/ -void e1000_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers) -{ - u16 eeprom_verh, eeprom_verl, etrack_test, fw_version; - u8 q, hval, rem, result; - u16 comb_verh, comb_verl, comb_offset; - - memset(fw_vers, 0, sizeof(struct e1000_fw_version)); - - /* basic eeprom version numbers, bits used vary by part and by tool - * used to create the nvm images */ - /* Check which data format we have */ - hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); - switch (hw->mac.type) { - case e1000_i211: - e1000_read_invm_version(hw, fw_vers); - return; - case e1000_82575: - case e1000_82576: - case e1000_82580: - /* Use this format, unless EETRACK ID exists, - * then use alternate format - */ - if ((etrack_test & NVM_MAJOR_MASK) != NVM_ETRACK_VALID) { - hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); - fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) - >> NVM_MAJOR_SHIFT; - fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK) - >> NVM_MINOR_SHIFT; - fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK); - goto etrack_id; - } - break; - case e1000_i210: - if (!(e1000_get_flash_presence_i210(hw))) { - e1000_read_invm_version(hw, fw_vers); - return; - } - /* fall through */ - case e1000_i350: - case e1000_i354: - /* find combo image version */ - hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset); - if ((comb_offset != 0x0) && - (comb_offset != NVM_VER_INVALID)) { - - hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset - + 1), 1, &comb_verh); - hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset), - 1, &comb_verl); - - /* get Option Rom version if it exists and is valid */ - if ((comb_verh && comb_verl) && - ((comb_verh != NVM_VER_INVALID) && - (comb_verl != NVM_VER_INVALID))) { - - fw_vers->or_valid = true; - fw_vers->or_major = - comb_verl >> NVM_COMB_VER_SHFT; - fw_vers->or_build = - (comb_verl << NVM_COMB_VER_SHFT) - | (comb_verh >> NVM_COMB_VER_SHFT); - fw_vers->or_patch = - comb_verh & NVM_COMB_VER_MASK; - } - } - break; - default: - return; - } - hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); - fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) - >> NVM_MAJOR_SHIFT; - - /* check for old style version format in newer images*/ - if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) { - eeprom_verl = (fw_version & NVM_COMB_VER_MASK); - } else { - eeprom_verl = (fw_version & NVM_MINOR_MASK) - >> NVM_MINOR_SHIFT; - } - /* Convert minor value to hex before assigning to output struct - * Val to be converted will not be higher than 99, per tool output - */ - q = eeprom_verl / NVM_HEX_CONV; - hval = q * NVM_HEX_TENS; - rem = eeprom_verl % NVM_HEX_CONV; - result = hval + rem; - fw_vers->eep_minor = result; - -etrack_id: - if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) { - hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl); - hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh); - fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) - | eeprom_verl; - } - return; -} diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_nvm.h b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_nvm.h deleted file mode 100644 index e27b1c0a..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_nvm.h +++ /dev/null @@ -1,60 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#ifndef _E1000_NVM_H_ -#define _E1000_NVM_H_ - - -struct e1000_fw_version { - u32 etrack_id; - u16 eep_major; - u16 eep_minor; - u16 eep_build; - - u8 invm_major; - u8 invm_minor; - u8 invm_img_type; - - bool or_valid; - u16 or_major; - u16 or_build; - u16 or_patch; -}; - - -void e1000_init_nvm_ops_generic(struct e1000_hw *hw); -s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c); -void e1000_null_nvm_generic(struct e1000_hw *hw); -s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data); -s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c); -s32 e1000_acquire_nvm_generic(struct e1000_hw *hw); - -s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg); -s32 e1000_read_mac_addr_generic(struct e1000_hw *hw); -s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, - u32 pba_num_size); -s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size); -s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data); -s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data); -s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw); -s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data); -s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw); -void e1000_release_nvm_generic(struct e1000_hw *hw); -void e1000_get_fw_version(struct e1000_hw *hw, - struct e1000_fw_version *fw_vers); - -#define E1000_STM_OPCODE 0xDB00 - -#endif diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_osdep.h b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_osdep.h deleted file mode 100644 index 3228100e..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_osdep.h +++ /dev/null @@ -1,121 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - - -/* glue for the OS independent part of e1000 - * includes register access macros - */ - -#ifndef _E1000_OSDEP_H_ -#define _E1000_OSDEP_H_ - -#include <linux/pci.h> -#include <linux/delay.h> -#include <linux/interrupt.h> -#include <linux/if_ether.h> -#include <linux/sched.h> -#include "kcompat.h" - -#ifndef __INTEL_COMPILER -#pragma GCC diagnostic ignored "-Wunused-function" -#endif - -#define usec_delay(x) udelay(x) -#define usec_delay_irq(x) udelay(x) -#ifndef msec_delay -#define msec_delay(x) do { \ - /* Don't mdelay in interrupt context! */ \ - if (in_interrupt()) \ - BUG(); \ - else \ - msleep(x); \ -} while (0) - -/* Some workarounds require millisecond delays and are run during interrupt - * context. Most notably, when establishing link, the phy may need tweaking - * but cannot process phy register reads/writes faster than millisecond - * intervals...and we establish link due to a "link status change" interrupt. - */ -#define msec_delay_irq(x) mdelay(x) -#endif - -#define PCI_COMMAND_REGISTER PCI_COMMAND -#define CMD_MEM_WRT_INVALIDATE PCI_COMMAND_INVALIDATE -#define ETH_ADDR_LEN ETH_ALEN - -#ifdef __BIG_ENDIAN -#define E1000_BIG_ENDIAN __BIG_ENDIAN -#endif - - -#ifdef DEBUG -#define DEBUGOUT(S) printk(KERN_DEBUG S) -#define DEBUGOUT1(S, A...) printk(KERN_DEBUG S, ## A) -#else -#define DEBUGOUT(S) -#define DEBUGOUT1(S, A...) -#endif - -#ifdef DEBUG_FUNC -#define DEBUGFUNC(F) DEBUGOUT(F "\n") -#else -#define DEBUGFUNC(F) -#endif -#define DEBUGOUT2 DEBUGOUT1 -#define DEBUGOUT3 DEBUGOUT2 -#define DEBUGOUT7 DEBUGOUT3 - -#define E1000_REGISTER(a, reg) reg - -#define E1000_WRITE_REG(a, reg, value) ( \ - writel((value), ((a)->hw_addr + E1000_REGISTER(a, reg)))) - -#define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_REGISTER(a, reg))) - -#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) ( \ - writel((value), ((a)->hw_addr + E1000_REGISTER(a, reg) + ((offset) << 2)))) - -#define E1000_READ_REG_ARRAY(a, reg, offset) ( \ - readl((a)->hw_addr + E1000_REGISTER(a, reg) + ((offset) << 2))) - -#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY -#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY - -#define E1000_WRITE_REG_ARRAY_WORD(a, reg, offset, value) ( \ - writew((value), ((a)->hw_addr + E1000_REGISTER(a, reg) + ((offset) << 1)))) - -#define E1000_READ_REG_ARRAY_WORD(a, reg, offset) ( \ - readw((a)->hw_addr + E1000_REGISTER(a, reg) + ((offset) << 1))) - -#define E1000_WRITE_REG_ARRAY_BYTE(a, reg, offset, value) ( \ - writeb((value), ((a)->hw_addr + E1000_REGISTER(a, reg) + (offset)))) - -#define E1000_READ_REG_ARRAY_BYTE(a, reg, offset) ( \ - readb((a)->hw_addr + E1000_REGISTER(a, reg) + (offset))) - -#define E1000_WRITE_REG_IO(a, reg, offset) do { \ - outl(reg, ((a)->io_base)); \ - outl(offset, ((a)->io_base + 4)); } while (0) - -#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, E1000_STATUS) - -#define E1000_WRITE_FLASH_REG(a, reg, value) ( \ - writel((value), ((a)->flash_address + reg))) - -#define E1000_WRITE_FLASH_REG16(a, reg, value) ( \ - writew((value), ((a)->flash_address + reg))) - -#define E1000_READ_FLASH_REG(a, reg) (readl((a)->flash_address + reg)) - -#define E1000_READ_FLASH_REG16(a, reg) (readw((a)->flash_address + reg)) - -#endif /* _E1000_OSDEP_H_ */ diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_phy.c b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_phy.c deleted file mode 100644 index 1934a309..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_phy.c +++ /dev/null @@ -1,3392 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#include "e1000_api.h" - -static s32 e1000_wait_autoneg(struct e1000_hw *hw); -/* Cable length tables */ -static const u16 e1000_m88_cable_length_table[] = { - 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; -#define M88E1000_CABLE_LENGTH_TABLE_SIZE \ - (sizeof(e1000_m88_cable_length_table) / \ - sizeof(e1000_m88_cable_length_table[0])) - -static const u16 e1000_igp_2_cable_length_table[] = { - 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, - 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, - 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, - 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, - 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, - 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, - 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, - 124}; -#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ - (sizeof(e1000_igp_2_cable_length_table) / \ - sizeof(e1000_igp_2_cable_length_table[0])) - -/** - * e1000_init_phy_ops_generic - Initialize PHY function pointers - * @hw: pointer to the HW structure - * - * Setups up the function pointers to no-op functions - **/ -void e1000_init_phy_ops_generic(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - DEBUGFUNC("e1000_init_phy_ops_generic"); - - /* Initialize function pointers */ - phy->ops.init_params = e1000_null_ops_generic; - phy->ops.acquire = e1000_null_ops_generic; - phy->ops.check_polarity = e1000_null_ops_generic; - phy->ops.check_reset_block = e1000_null_ops_generic; - phy->ops.commit = e1000_null_ops_generic; - phy->ops.force_speed_duplex = e1000_null_ops_generic; - phy->ops.get_cfg_done = e1000_null_ops_generic; - phy->ops.get_cable_length = e1000_null_ops_generic; - phy->ops.get_info = e1000_null_ops_generic; - phy->ops.set_page = e1000_null_set_page; - phy->ops.read_reg = e1000_null_read_reg; - phy->ops.read_reg_locked = e1000_null_read_reg; - phy->ops.read_reg_page = e1000_null_read_reg; - phy->ops.release = e1000_null_phy_generic; - phy->ops.reset = e1000_null_ops_generic; - phy->ops.set_d0_lplu_state = e1000_null_lplu_state; - phy->ops.set_d3_lplu_state = e1000_null_lplu_state; - phy->ops.write_reg = e1000_null_write_reg; - phy->ops.write_reg_locked = e1000_null_write_reg; - phy->ops.write_reg_page = e1000_null_write_reg; - phy->ops.power_up = e1000_null_phy_generic; - phy->ops.power_down = e1000_null_phy_generic; - phy->ops.read_i2c_byte = e1000_read_i2c_byte_null; - phy->ops.write_i2c_byte = e1000_write_i2c_byte_null; -} - -/** - * e1000_null_set_page - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_set_page(struct e1000_hw E1000_UNUSEDARG *hw, - u16 E1000_UNUSEDARG data) -{ - DEBUGFUNC("e1000_null_set_page"); - return E1000_SUCCESS; -} - -/** - * e1000_null_read_reg - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_read_reg(struct e1000_hw E1000_UNUSEDARG *hw, - u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG *data) -{ - DEBUGFUNC("e1000_null_read_reg"); - return E1000_SUCCESS; -} - -/** - * e1000_null_phy_generic - No-op function, return void - * @hw: pointer to the HW structure - **/ -void e1000_null_phy_generic(struct e1000_hw E1000_UNUSEDARG *hw) -{ - DEBUGFUNC("e1000_null_phy_generic"); - return; -} - -/** - * e1000_null_lplu_state - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_lplu_state(struct e1000_hw E1000_UNUSEDARG *hw, - bool E1000_UNUSEDARG active) -{ - DEBUGFUNC("e1000_null_lplu_state"); - return E1000_SUCCESS; -} - -/** - * e1000_null_write_reg - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_write_reg(struct e1000_hw E1000_UNUSEDARG *hw, - u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG data) -{ - DEBUGFUNC("e1000_null_write_reg"); - return E1000_SUCCESS; -} - -/** - * e1000_read_i2c_byte_null - No-op function, return 0 - * @hw: pointer to hardware structure - * @byte_offset: byte offset to write - * @dev_addr: device address - * @data: data value read - * - **/ -s32 e1000_read_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw, - u8 E1000_UNUSEDARG byte_offset, - u8 E1000_UNUSEDARG dev_addr, - u8 E1000_UNUSEDARG *data) -{ - DEBUGFUNC("e1000_read_i2c_byte_null"); - return E1000_SUCCESS; -} - -/** - * e1000_write_i2c_byte_null - No-op function, return 0 - * @hw: pointer to hardware structure - * @byte_offset: byte offset to write - * @dev_addr: device address - * @data: data value to write - * - **/ -s32 e1000_write_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw, - u8 E1000_UNUSEDARG byte_offset, - u8 E1000_UNUSEDARG dev_addr, - u8 E1000_UNUSEDARG data) -{ - DEBUGFUNC("e1000_write_i2c_byte_null"); - return E1000_SUCCESS; -} - -/** - * e1000_check_reset_block_generic - Check if PHY reset is blocked - * @hw: pointer to the HW structure - * - * Read the PHY management control register and check whether a PHY reset - * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise - * return E1000_BLK_PHY_RESET (12). - **/ -s32 e1000_check_reset_block_generic(struct e1000_hw *hw) -{ - u32 manc; - - DEBUGFUNC("e1000_check_reset_block"); - - manc = E1000_READ_REG(hw, E1000_MANC); - - return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? - E1000_BLK_PHY_RESET : E1000_SUCCESS; -} - -/** - * e1000_get_phy_id - Retrieve the PHY ID and revision - * @hw: pointer to the HW structure - * - * Reads the PHY registers and stores the PHY ID and possibly the PHY - * revision in the hardware structure. - **/ -s32 e1000_get_phy_id(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 phy_id; - - DEBUGFUNC("e1000_get_phy_id"); - - if (!phy->ops.read_reg) - return E1000_SUCCESS; - - ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); - if (ret_val) - return ret_val; - - phy->id = (u32)(phy_id << 16); - usec_delay(20); - ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); - if (ret_val) - return ret_val; - - phy->id |= (u32)(phy_id & PHY_REVISION_MASK); - phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); - - - return E1000_SUCCESS; -} - -/** - * e1000_phy_reset_dsp_generic - Reset PHY DSP - * @hw: pointer to the HW structure - * - * Reset the digital signal processor. - **/ -s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw) -{ - s32 ret_val; - - DEBUGFUNC("e1000_phy_reset_dsp_generic"); - - if (!hw->phy.ops.write_reg) - return E1000_SUCCESS; - - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); - if (ret_val) - return ret_val; - - return hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); -} - -/** - * e1000_read_phy_reg_mdic - Read MDI control register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the MDI control register in the PHY at offset and stores the - * information read to data. - **/ -s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, mdic = 0; - - DEBUGFUNC("e1000_read_phy_reg_mdic"); - - if (offset > MAX_PHY_REG_ADDRESS) { - DEBUGOUT1("PHY Address %d is out of range\n", offset); - return -E1000_ERR_PARAM; - } - - /* Set up Op-code, Phy Address, and register offset in the MDI - * Control register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - mdic = ((offset << E1000_MDIC_REG_SHIFT) | - (phy->addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_READ)); - - E1000_WRITE_REG(hw, E1000_MDIC, mdic); - - /* Poll the ready bit to see if the MDI read completed - * Increasing the time out as testing showed failures with - * the lower time out - */ - for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { - usec_delay_irq(50); - mdic = E1000_READ_REG(hw, E1000_MDIC); - if (mdic & E1000_MDIC_READY) - break; - } - if (!(mdic & E1000_MDIC_READY)) { - DEBUGOUT("MDI Read did not complete\n"); - return -E1000_ERR_PHY; - } - if (mdic & E1000_MDIC_ERROR) { - DEBUGOUT("MDI Error\n"); - return -E1000_ERR_PHY; - } - if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { - DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n", - offset, - (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); - return -E1000_ERR_PHY; - } - *data = (u16) mdic; - - return E1000_SUCCESS; -} - -/** - * e1000_write_phy_reg_mdic - Write MDI control register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write to register at offset - * - * Writes data to MDI control register in the PHY at offset. - **/ -s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, mdic = 0; - - DEBUGFUNC("e1000_write_phy_reg_mdic"); - - if (offset > MAX_PHY_REG_ADDRESS) { - DEBUGOUT1("PHY Address %d is out of range\n", offset); - return -E1000_ERR_PARAM; - } - - /* Set up Op-code, Phy Address, and register offset in the MDI - * Control register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - mdic = (((u32)data) | - (offset << E1000_MDIC_REG_SHIFT) | - (phy->addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_WRITE)); - - E1000_WRITE_REG(hw, E1000_MDIC, mdic); - - /* Poll the ready bit to see if the MDI read completed - * Increasing the time out as testing showed failures with - * the lower time out - */ - for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { - usec_delay_irq(50); - mdic = E1000_READ_REG(hw, E1000_MDIC); - if (mdic & E1000_MDIC_READY) - break; - } - if (!(mdic & E1000_MDIC_READY)) { - DEBUGOUT("MDI Write did not complete\n"); - return -E1000_ERR_PHY; - } - if (mdic & E1000_MDIC_ERROR) { - DEBUGOUT("MDI Error\n"); - return -E1000_ERR_PHY; - } - if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { - DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n", - offset, - (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); - return -E1000_ERR_PHY; - } - - return E1000_SUCCESS; -} - -/** - * e1000_read_phy_reg_i2c - Read PHY register using i2c - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset using the i2c interface and stores the - * retrieved information in data. - **/ -s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, i2ccmd = 0; - - DEBUGFUNC("e1000_read_phy_reg_i2c"); - - /* Set up Op-code, Phy Address, and register address in the I2CCMD - * register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | - (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | - (E1000_I2CCMD_OPCODE_READ)); - - E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); - - /* Poll the ready bit to see if the I2C read completed */ - for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { - usec_delay(50); - i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); - if (i2ccmd & E1000_I2CCMD_READY) - break; - } - if (!(i2ccmd & E1000_I2CCMD_READY)) { - DEBUGOUT("I2CCMD Read did not complete\n"); - return -E1000_ERR_PHY; - } - if (i2ccmd & E1000_I2CCMD_ERROR) { - DEBUGOUT("I2CCMD Error bit set\n"); - return -E1000_ERR_PHY; - } - - /* Need to byte-swap the 16-bit value. */ - *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); - - return E1000_SUCCESS; -} - -/** - * e1000_write_phy_reg_i2c - Write PHY register using i2c - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes the data to PHY register at the offset using the i2c interface. - **/ -s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, i2ccmd = 0; - u16 phy_data_swapped; - - DEBUGFUNC("e1000_write_phy_reg_i2c"); - - /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/ - if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) { - DEBUGOUT1("PHY I2C Address %d is out of range.\n", - hw->phy.addr); - return -E1000_ERR_CONFIG; - } - - /* Swap the data bytes for the I2C interface */ - phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); - - /* Set up Op-code, Phy Address, and register address in the I2CCMD - * register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | - (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | - E1000_I2CCMD_OPCODE_WRITE | - phy_data_swapped); - - E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); - - /* Poll the ready bit to see if the I2C read completed */ - for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { - usec_delay(50); - i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); - if (i2ccmd & E1000_I2CCMD_READY) - break; - } - if (!(i2ccmd & E1000_I2CCMD_READY)) { - DEBUGOUT("I2CCMD Write did not complete\n"); - return -E1000_ERR_PHY; - } - if (i2ccmd & E1000_I2CCMD_ERROR) { - DEBUGOUT("I2CCMD Error bit set\n"); - return -E1000_ERR_PHY; - } - - return E1000_SUCCESS; -} - -/** - * e1000_read_sfp_data_byte - Reads SFP module data. - * @hw: pointer to the HW structure - * @offset: byte location offset to be read - * @data: read data buffer pointer - * - * Reads one byte from SFP module data stored - * in SFP resided EEPROM memory or SFP diagnostic area. - * Function should be called with - * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access - * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters - * access - **/ -s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data) -{ - u32 i = 0; - u32 i2ccmd = 0; - u32 data_local = 0; - - DEBUGFUNC("e1000_read_sfp_data_byte"); - - if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { - DEBUGOUT("I2CCMD command address exceeds upper limit\n"); - return -E1000_ERR_PHY; - } - - /* Set up Op-code, EEPROM Address,in the I2CCMD - * register. The MAC will take care of interfacing with the - * EEPROM to retrieve the desired data. - */ - i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | - E1000_I2CCMD_OPCODE_READ); - - E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); - - /* Poll the ready bit to see if the I2C read completed */ - for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { - usec_delay(50); - data_local = E1000_READ_REG(hw, E1000_I2CCMD); - if (data_local & E1000_I2CCMD_READY) - break; - } - if (!(data_local & E1000_I2CCMD_READY)) { - DEBUGOUT("I2CCMD Read did not complete\n"); - return -E1000_ERR_PHY; - } - if (data_local & E1000_I2CCMD_ERROR) { - DEBUGOUT("I2CCMD Error bit set\n"); - return -E1000_ERR_PHY; - } - *data = (u8) data_local & 0xFF; - - return E1000_SUCCESS; -} - -/** - * e1000_write_sfp_data_byte - Writes SFP module data. - * @hw: pointer to the HW structure - * @offset: byte location offset to write to - * @data: data to write - * - * Writes one byte to SFP module data stored - * in SFP resided EEPROM memory or SFP diagnostic area. - * Function should be called with - * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access - * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters - * access - **/ -s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data) -{ - u32 i = 0; - u32 i2ccmd = 0; - u32 data_local = 0; - - DEBUGFUNC("e1000_write_sfp_data_byte"); - - if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { - DEBUGOUT("I2CCMD command address exceeds upper limit\n"); - return -E1000_ERR_PHY; - } - /* The programming interface is 16 bits wide - * so we need to read the whole word first - * then update appropriate byte lane and write - * the updated word back. - */ - /* Set up Op-code, EEPROM Address,in the I2CCMD - * register. The MAC will take care of interfacing - * with an EEPROM to write the data given. - */ - i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | - E1000_I2CCMD_OPCODE_READ); - /* Set a command to read single word */ - E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); - for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { - usec_delay(50); - /* Poll the ready bit to see if lastly - * launched I2C operation completed - */ - i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); - if (i2ccmd & E1000_I2CCMD_READY) { - /* Check if this is READ or WRITE phase */ - if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) == - E1000_I2CCMD_OPCODE_READ) { - /* Write the selected byte - * lane and update whole word - */ - data_local = i2ccmd & 0xFF00; - data_local |= data; - i2ccmd = ((offset << - E1000_I2CCMD_REG_ADDR_SHIFT) | - E1000_I2CCMD_OPCODE_WRITE | data_local); - E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); - } else { - break; - } - } - } - if (!(i2ccmd & E1000_I2CCMD_READY)) { - DEBUGOUT("I2CCMD Write did not complete\n"); - return -E1000_ERR_PHY; - } - if (i2ccmd & E1000_I2CCMD_ERROR) { - DEBUGOUT("I2CCMD Error bit set\n"); - return -E1000_ERR_PHY; - } - return E1000_SUCCESS; -} - -/** - * e1000_read_phy_reg_m88 - Read m88 PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and storing the retrieved information in data. Release any acquired - * semaphores before exiting. - **/ -s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_read_phy_reg_m88"); - - if (!hw->phy.ops.acquire) - return E1000_SUCCESS; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000_write_phy_reg_m88 - Write m88 PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_write_phy_reg_m88"); - - if (!hw->phy.ops.acquire) - return E1000_SUCCESS; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000_set_page_igp - Set page as on IGP-like PHY(s) - * @hw: pointer to the HW structure - * @page: page to set (shifted left when necessary) - * - * Sets PHY page required for PHY register access. Assumes semaphore is - * already acquired. Note, this function sets phy.addr to 1 so the caller - * must set it appropriately (if necessary) after this function returns. - **/ -s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page) -{ - DEBUGFUNC("e1000_set_page_igp"); - - DEBUGOUT1("Setting page 0x%x\n", page); - - hw->phy.addr = 1; - - return e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page); -} - -/** - * __e1000_read_phy_reg_igp - Read igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and stores the retrieved information in data. Release any acquired - * semaphores before exiting. - **/ -static s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, - bool locked) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("__e1000_read_phy_reg_igp"); - - if (!locked) { - if (!hw->phy.ops.acquire) - return E1000_SUCCESS; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - } - - if (offset > MAX_PHY_MULTI_PAGE_REG) - ret_val = e1000_write_phy_reg_mdic(hw, - IGP01E1000_PHY_PAGE_SELECT, - (u16)offset); - if (!ret_val) - ret_val = e1000_read_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, - data); - if (!locked) - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000_read_phy_reg_igp - Read igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore then reads the PHY register at offset and stores the - * retrieved information in data. - * Release the acquired semaphore before exiting. - **/ -s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_phy_reg_igp(hw, offset, data, false); -} - -/** - * e1000_read_phy_reg_igp_locked - Read igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset and stores the retrieved information - * in data. Assumes semaphore already acquired. - **/ -s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_phy_reg_igp(hw, offset, data, true); -} - -/** - * e1000_write_phy_reg_igp - Write igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -static s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, - bool locked) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_write_phy_reg_igp"); - - if (!locked) { - if (!hw->phy.ops.acquire) - return E1000_SUCCESS; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - } - - if (offset > MAX_PHY_MULTI_PAGE_REG) - ret_val = e1000_write_phy_reg_mdic(hw, - IGP01E1000_PHY_PAGE_SELECT, - (u16)offset); - if (!ret_val) - ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & - offset, - data); - if (!locked) - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000_write_phy_reg_igp - Write igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_phy_reg_igp(hw, offset, data, false); -} - -/** - * e1000_write_phy_reg_igp_locked - Write igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes the data to PHY register at the offset. - * Assumes semaphore already acquired. - **/ -s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_phy_reg_igp(hw, offset, data, true); -} - -/** - * __e1000_read_kmrn_reg - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary. Then reads the PHY register at offset - * using the kumeran interface. The information retrieved is stored in data. - * Release any acquired semaphores before exiting. - **/ -static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, - bool locked) -{ - u32 kmrnctrlsta; - - DEBUGFUNC("__e1000_read_kmrn_reg"); - - if (!locked) { - s32 ret_val = E1000_SUCCESS; - - if (!hw->phy.ops.acquire) - return E1000_SUCCESS; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - } - - kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & - E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; - E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); - E1000_WRITE_FLUSH(hw); - - usec_delay(2); - - kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA); - *data = (u16)kmrnctrlsta; - - if (!locked) - hw->phy.ops.release(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_read_kmrn_reg_generic - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore then reads the PHY register at offset using the - * kumeran interface. The information retrieved is stored in data. - * Release the acquired semaphore before exiting. - **/ -s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_kmrn_reg(hw, offset, data, false); -} - -/** - * e1000_read_kmrn_reg_locked - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset using the kumeran interface. The - * information retrieved is stored in data. - * Assumes semaphore already acquired. - **/ -s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_kmrn_reg(hw, offset, data, true); -} - -/** - * __e1000_write_kmrn_reg - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary. Then write the data to PHY register - * at the offset using the kumeran interface. Release any acquired semaphores - * before exiting. - **/ -static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, - bool locked) -{ - u32 kmrnctrlsta; - - DEBUGFUNC("e1000_write_kmrn_reg_generic"); - - if (!locked) { - s32 ret_val = E1000_SUCCESS; - - if (!hw->phy.ops.acquire) - return E1000_SUCCESS; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - } - - kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & - E1000_KMRNCTRLSTA_OFFSET) | data; - E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); - E1000_WRITE_FLUSH(hw); - - usec_delay(2); - - if (!locked) - hw->phy.ops.release(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_write_kmrn_reg_generic - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore then writes the data to the PHY register at the offset - * using the kumeran interface. Release the acquired semaphore before exiting. - **/ -s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_kmrn_reg(hw, offset, data, false); -} - -/** - * e1000_write_kmrn_reg_locked - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Write the data to PHY register at the offset using the kumeran interface. - * Assumes semaphore already acquired. - **/ -s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_kmrn_reg(hw, offset, data, true); -} - -/** - * e1000_set_master_slave_mode - Setup PHY for Master/slave mode - * @hw: pointer to the HW structure - * - * Sets up Master/slave mode - **/ -static s32 e1000_set_master_slave_mode(struct e1000_hw *hw) -{ - s32 ret_val; - u16 phy_data; - - /* Resolve Master/Slave mode */ - ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* load defaults for future use */ - hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ? - ((phy_data & CR_1000T_MS_VALUE) ? - e1000_ms_force_master : - e1000_ms_force_slave) : e1000_ms_auto; - - switch (hw->phy.ms_type) { - case e1000_ms_force_master: - phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); - break; - case e1000_ms_force_slave: - phy_data |= CR_1000T_MS_ENABLE; - phy_data &= ~(CR_1000T_MS_VALUE); - break; - case e1000_ms_auto: - phy_data &= ~CR_1000T_MS_ENABLE; - /* fall-through */ - default: - break; - } - - return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data); -} - -/** - * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link - * @hw: pointer to the HW structure - * - * Sets up Carrier-sense on Transmit and downshift values. - **/ -s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) -{ - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_copper_link_setup_82577"); - - if (hw->phy.reset_disable) - return E1000_SUCCESS; - - if (hw->phy.type == e1000_phy_82580) { - ret_val = hw->phy.ops.reset(hw); - if (ret_val) { - DEBUGOUT("Error resetting the PHY.\n"); - return ret_val; - } - } - - /* Enable CRS on Tx. This must be set for half-duplex operation. */ - ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; - - /* Enable downshift */ - phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; - - ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data); - if (ret_val) - return ret_val; - - /* Set MDI/MDIX mode */ - ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data); - if (ret_val) - return ret_val; - phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK; - /* Options: - * 0 - Auto (default) - * 1 - MDI mode - * 2 - MDI-X mode - */ - switch (hw->phy.mdix) { - case 1: - break; - case 2: - phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX; - break; - case 0: - default: - phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX; - break; - } - ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data); - if (ret_val) - return ret_val; - - return e1000_set_master_slave_mode(hw); -} - -/** - * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link - * @hw: pointer to the HW structure - * - * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock - * and downshift values are set also. - **/ -s32 e1000_copper_link_setup_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_copper_link_setup_m88"); - - if (phy->reset_disable) - return E1000_SUCCESS; - - /* Enable CRS on Tx. This must be set for half-duplex operation. */ - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - - /* Options: - * MDI/MDI-X = 0 (default) - * 0 - Auto for all speeds - * 1 - MDI mode - * 2 - MDI-X mode - * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) - */ - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - - switch (phy->mdix) { - case 1: - phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; - break; - case 2: - phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; - break; - case 3: - phy_data |= M88E1000_PSCR_AUTO_X_1000T; - break; - case 0: - default: - phy_data |= M88E1000_PSCR_AUTO_X_MODE; - break; - } - - /* Options: - * disable_polarity_correction = 0 (default) - * Automatic Correction for Reversed Cable Polarity - * 0 - Disabled - * 1 - Enabled - */ - phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; - if (phy->disable_polarity_correction) - phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; - - ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - if (phy->revision < E1000_REVISION_4) { - /* Force TX_CLK in the Extended PHY Specific Control Register - * to 25MHz clock. - */ - ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, - &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_EPSCR_TX_CLK_25; - - if ((phy->revision == E1000_REVISION_2) && - (phy->id == M88E1111_I_PHY_ID)) { - /* 82573L PHY - set the downshift counter to 5x. */ - phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; - phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; - } else { - /* Configure Master and Slave downshift values */ - phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); - phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); - } - ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, - phy_data); - if (ret_val) - return ret_val; - } - - /* Commit the changes. */ - ret_val = phy->ops.commit(hw); - if (ret_val) { - DEBUGOUT("Error committing the PHY changes\n"); - return ret_val; - } - - return E1000_SUCCESS; -} - -/** - * e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link - * @hw: pointer to the HW structure - * - * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's. - * Also enables and sets the downshift parameters. - **/ -s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_copper_link_setup_m88_gen2"); - - if (phy->reset_disable) - return E1000_SUCCESS; - - /* Enable CRS on Tx. This must be set for half-duplex operation. */ - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* Options: - * MDI/MDI-X = 0 (default) - * 0 - Auto for all speeds - * 1 - MDI mode - * 2 - MDI-X mode - * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) - */ - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - - switch (phy->mdix) { - case 1: - phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; - break; - case 2: - phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; - break; - case 3: - /* M88E1112 does not support this mode) */ - if (phy->id != M88E1112_E_PHY_ID) { - phy_data |= M88E1000_PSCR_AUTO_X_1000T; - break; - } - case 0: - default: - phy_data |= M88E1000_PSCR_AUTO_X_MODE; - break; - } - - /* Options: - * disable_polarity_correction = 0 (default) - * Automatic Correction for Reversed Cable Polarity - * 0 - Disabled - * 1 - Enabled - */ - phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; - if (phy->disable_polarity_correction) - phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; - - /* Enable downshift and setting it to X6 */ - if (phy->id == M88E1543_E_PHY_ID) { - phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE; - ret_val = - phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - ret_val = phy->ops.commit(hw); - if (ret_val) { - DEBUGOUT("Error committing the PHY changes\n"); - return ret_val; - } - } - - phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK; - phy_data |= I347AT4_PSCR_DOWNSHIFT_6X; - phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE; - - ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - /* Commit the changes. */ - ret_val = phy->ops.commit(hw); - if (ret_val) { - DEBUGOUT("Error committing the PHY changes\n"); - return ret_val; - } - - ret_val = e1000_set_master_slave_mode(hw); - if (ret_val) - return ret_val; - - return E1000_SUCCESS; -} - -/** - * e1000_copper_link_setup_igp - Setup igp PHY's for copper link - * @hw: pointer to the HW structure - * - * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for - * igp PHY's. - **/ -s32 e1000_copper_link_setup_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_copper_link_setup_igp"); - - if (phy->reset_disable) - return E1000_SUCCESS; - - ret_val = hw->phy.ops.reset(hw); - if (ret_val) { - DEBUGOUT("Error resetting the PHY.\n"); - return ret_val; - } - - /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid - * timeout issues when LFS is enabled. - */ - msec_delay(100); - - /* disable lplu d0 during driver init */ - if (hw->phy.ops.set_d0_lplu_state) { - ret_val = hw->phy.ops.set_d0_lplu_state(hw, false); - if (ret_val) { - DEBUGOUT("Error Disabling LPLU D0\n"); - return ret_val; - } - } - /* Configure mdi-mdix settings */ - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCR_AUTO_MDIX; - - switch (phy->mdix) { - case 1: - data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 2: - data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 0: - default: - data |= IGP01E1000_PSCR_AUTO_MDIX; - break; - } - ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); - if (ret_val) - return ret_val; - - /* set auto-master slave resolution settings */ - if (hw->mac.autoneg) { - /* when autonegotiation advertisement is only 1000Mbps then we - * should disable SmartSpeed and enable Auto MasterSlave - * resolution as hardware default. - */ - if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { - /* Disable SmartSpeed */ - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - - /* Set auto Master/Slave resolution process */ - ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); - if (ret_val) - return ret_val; - - data &= ~CR_1000T_MS_ENABLE; - ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); - if (ret_val) - return ret_val; - } - - ret_val = e1000_set_master_slave_mode(hw); - } - - return ret_val; -} - -/** - * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation - * @hw: pointer to the HW structure - * - * Reads the MII auto-neg advertisement register and/or the 1000T control - * register and if the PHY is already setup for auto-negotiation, then - * return successful. Otherwise, setup advertisement and flow control to - * the appropriate values for the wanted auto-negotiation. - **/ -static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 mii_autoneg_adv_reg; - u16 mii_1000t_ctrl_reg = 0; - - DEBUGFUNC("e1000_phy_setup_autoneg"); - - phy->autoneg_advertised &= phy->autoneg_mask; - - /* Read the MII Auto-Neg Advertisement Register (Address 4). */ - ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); - if (ret_val) - return ret_val; - - if (phy->autoneg_mask & ADVERTISE_1000_FULL) { - /* Read the MII 1000Base-T Control Register (Address 9). */ - ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, - &mii_1000t_ctrl_reg); - if (ret_val) - return ret_val; - } - - /* Need to parse both autoneg_advertised and fc and set up - * the appropriate PHY registers. First we will parse for - * autoneg_advertised software override. Since we can advertise - * a plethora of combinations, we need to check each bit - * individually. - */ - - /* First we clear all the 10/100 mb speed bits in the Auto-Neg - * Advertisement Register (Address 4) and the 1000 mb speed bits in - * the 1000Base-T Control Register (Address 9). - */ - mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | - NWAY_AR_100TX_HD_CAPS | - NWAY_AR_10T_FD_CAPS | - NWAY_AR_10T_HD_CAPS); - mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); - - DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised); - - /* Do we want to advertise 10 Mb Half Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_10_HALF) { - DEBUGOUT("Advertise 10mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; - } - - /* Do we want to advertise 10 Mb Full Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_10_FULL) { - DEBUGOUT("Advertise 10mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; - } - - /* Do we want to advertise 100 Mb Half Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_100_HALF) { - DEBUGOUT("Advertise 100mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; - } - - /* Do we want to advertise 100 Mb Full Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_100_FULL) { - DEBUGOUT("Advertise 100mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; - } - - /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ - if (phy->autoneg_advertised & ADVERTISE_1000_HALF) - DEBUGOUT("Advertise 1000mb Half duplex request denied!\n"); - - /* Do we want to advertise 1000 Mb Full Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { - DEBUGOUT("Advertise 1000mb Full duplex\n"); - mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; - } - - /* Check for a software override of the flow control settings, and - * setup the PHY advertisement registers accordingly. If - * auto-negotiation is enabled, then software will have to set the - * "PAUSE" bits to the correct value in the Auto-Negotiation - * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- - * negotiation. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames - * but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * but we do not support receiving pause frames). - * 3: Both Rx and Tx flow control (symmetric) are enabled. - * other: No software override. The flow control configuration - * in the EEPROM is used. - */ - switch (hw->fc.current_mode) { - case e1000_fc_none: - /* Flow control (Rx & Tx) is completely disabled by a - * software over-ride. - */ - mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case e1000_fc_rx_pause: - /* Rx Flow control is enabled, and Tx Flow control is - * disabled, by a software over-ride. - * - * Since there really isn't a way to advertise that we are - * capable of Rx Pause ONLY, we will advertise that we - * support both symmetric and asymmetric Rx PAUSE. Later - * (in e1000_config_fc_after_link_up) we will disable the - * hw's ability to send PAUSE frames. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case e1000_fc_tx_pause: - /* Tx Flow control is enabled, and Rx Flow control is - * disabled, by a software over-ride. - */ - mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; - mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; - break; - case e1000_fc_full: - /* Flow control (both Rx and Tx) is enabled by a software - * over-ride. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - } - - ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); - if (ret_val) - return ret_val; - - DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); - - if (phy->autoneg_mask & ADVERTISE_1000_FULL) - ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, - mii_1000t_ctrl_reg); - - return ret_val; -} - -/** - * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link - * @hw: pointer to the HW structure - * - * Performs initial bounds checking on autoneg advertisement parameter, then - * configure to advertise the full capability. Setup the PHY to autoneg - * and restart the negotiation process between the link partner. If - * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. - **/ -static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_ctrl; - - DEBUGFUNC("e1000_copper_link_autoneg"); - - /* Perform some bounds checking on the autoneg advertisement - * parameter. - */ - phy->autoneg_advertised &= phy->autoneg_mask; - - /* If autoneg_advertised is zero, we assume it was not defaulted - * by the calling code so we set to advertise full capability. - */ - if (!phy->autoneg_advertised) - phy->autoneg_advertised = phy->autoneg_mask; - - DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); - ret_val = e1000_phy_setup_autoneg(hw); - if (ret_val) { - DEBUGOUT("Error Setting up Auto-Negotiation\n"); - return ret_val; - } - DEBUGOUT("Restarting Auto-Neg\n"); - - /* Restart auto-negotiation by setting the Auto Neg Enable bit and - * the Auto Neg Restart bit in the PHY control register. - */ - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); - if (ret_val) - return ret_val; - - phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); - if (ret_val) - return ret_val; - - /* Does the user want to wait for Auto-Neg to complete here, or - * check at a later time (for example, callback routine). - */ - if (phy->autoneg_wait_to_complete) { - ret_val = e1000_wait_autoneg(hw); - if (ret_val) { - DEBUGOUT("Error while waiting for autoneg to complete\n"); - return ret_val; - } - } - - hw->mac.get_link_status = true; - - return ret_val; -} - -/** - * e1000_setup_copper_link_generic - Configure copper link settings - * @hw: pointer to the HW structure - * - * Calls the appropriate function to configure the link for auto-neg or forced - * speed and duplex. Then we check for link, once link is established calls - * to configure collision distance and flow control are called. If link is - * not established, we return -E1000_ERR_PHY (-2). - **/ -s32 e1000_setup_copper_link_generic(struct e1000_hw *hw) -{ - s32 ret_val; - bool link; - - DEBUGFUNC("e1000_setup_copper_link_generic"); - - if (hw->mac.autoneg) { - /* Setup autoneg and flow control advertisement and perform - * autonegotiation. - */ - ret_val = e1000_copper_link_autoneg(hw); - if (ret_val) - return ret_val; - } else { - /* PHY will be set to 10H, 10F, 100H or 100F - * depending on user settings. - */ - DEBUGOUT("Forcing Speed and Duplex\n"); - ret_val = hw->phy.ops.force_speed_duplex(hw); - if (ret_val) { - DEBUGOUT("Error Forcing Speed and Duplex\n"); - return ret_val; - } - } - - /* Check link status. Wait up to 100 microseconds for link to become - * valid. - */ - ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, - &link); - if (ret_val) - return ret_val; - - if (link) { - DEBUGOUT("Valid link established!!!\n"); - hw->mac.ops.config_collision_dist(hw); - ret_val = e1000_config_fc_after_link_up_generic(hw); - } else { - DEBUGOUT("Unable to establish link!!!\n"); - } - - return ret_val; -} - -/** - * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY - * @hw: pointer to the HW structure - * - * Calls the PHY setup function to force speed and duplex. Clears the - * auto-crossover to force MDI manually. Waits for link and returns - * successful if link up is successful, else -E1000_ERR_PHY (-2). - **/ -s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - DEBUGFUNC("e1000_phy_force_speed_duplex_igp"); - - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - e1000_phy_force_speed_duplex_setup(hw, &phy_data); - - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); - if (ret_val) - return ret_val; - - /* Clear Auto-Crossover to force MDI manually. IGP requires MDI - * forced whenever speed and duplex are forced. - */ - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; - phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - - ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if (ret_val) - return ret_val; - - DEBUGOUT1("IGP PSCR: %X\n", phy_data); - - usec_delay(1); - - if (phy->autoneg_wait_to_complete) { - DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n"); - - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - return ret_val; - - if (!link) - DEBUGOUT("Link taking longer than expected.\n"); - - /* Try once more */ - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - } - - return ret_val; -} - -/** - * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY - * @hw: pointer to the HW structure - * - * Calls the PHY setup function to force speed and duplex. Clears the - * auto-crossover to force MDI manually. Resets the PHY to commit the - * changes. If time expires while waiting for link up, we reset the DSP. - * After reset, TX_CLK and CRS on Tx must be set. Return successful upon - * successful completion, else return corresponding error code. - **/ -s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - DEBUGFUNC("e1000_phy_force_speed_duplex_m88"); - - /* I210 and I211 devices support Auto-Crossover in forced operation. */ - if (phy->type != e1000_phy_i210) { - /* Clear Auto-Crossover to force MDI manually. M88E1000 - * requires MDI forced whenever speed and duplex are forced. - */ - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, - &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, - phy_data); - if (ret_val) - return ret_val; - } - - DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data); - - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - e1000_phy_force_speed_duplex_setup(hw, &phy_data); - - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); - if (ret_val) - return ret_val; - - /* Reset the phy to commit changes. */ - ret_val = hw->phy.ops.commit(hw); - if (ret_val) - return ret_val; - - if (phy->autoneg_wait_to_complete) { - DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n"); - - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - return ret_val; - - if (!link) { - bool reset_dsp = true; - - switch (hw->phy.id) { - case I347AT4_E_PHY_ID: - case M88E1340M_E_PHY_ID: - case M88E1112_E_PHY_ID: - case M88E1543_E_PHY_ID: - case I210_I_PHY_ID: - reset_dsp = false; - break; - default: - if (hw->phy.type != e1000_phy_m88) - reset_dsp = false; - break; - } - - if (!reset_dsp) { - DEBUGOUT("Link taking longer than expected.\n"); - } else { - /* We didn't get link. - * Reset the DSP and cross our fingers. - */ - ret_val = phy->ops.write_reg(hw, - M88E1000_PHY_PAGE_SELECT, - 0x001d); - if (ret_val) - return ret_val; - ret_val = e1000_phy_reset_dsp_generic(hw); - if (ret_val) - return ret_val; - } - } - - /* Try once more */ - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - return ret_val; - } - - if (hw->phy.type != e1000_phy_m88) - return E1000_SUCCESS; - - if (hw->phy.id == I347AT4_E_PHY_ID || - hw->phy.id == M88E1340M_E_PHY_ID || - hw->phy.id == M88E1112_E_PHY_ID) - return E1000_SUCCESS; - if (hw->phy.id == I210_I_PHY_ID) - return E1000_SUCCESS; - if ((hw->phy.id == M88E1543_E_PHY_ID)) - return E1000_SUCCESS; - ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* Resetting the phy means we need to re-force TX_CLK in the - * Extended PHY Specific Control Register to 25MHz clock from - * the reset value of 2.5MHz. - */ - phy_data |= M88E1000_EPSCR_TX_CLK_25; - ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - /* In addition, we must re-enable CRS on Tx for both half and full - * duplex. - */ - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - - return ret_val; -} - -/** - * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex - * @hw: pointer to the HW structure - * - * Forces the speed and duplex settings of the PHY. - * This is a function pointer entry point only called by - * PHY setup routines. - **/ -s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - DEBUGFUNC("e1000_phy_force_speed_duplex_ife"); - - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data); - if (ret_val) - return ret_val; - - e1000_phy_force_speed_duplex_setup(hw, &data); - - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data); - if (ret_val) - return ret_val; - - /* Disable MDI-X support for 10/100 */ - ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); - if (ret_val) - return ret_val; - - data &= ~IFE_PMC_AUTO_MDIX; - data &= ~IFE_PMC_FORCE_MDIX; - - ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data); - if (ret_val) - return ret_val; - - DEBUGOUT1("IFE PMC: %X\n", data); - - usec_delay(1); - - if (phy->autoneg_wait_to_complete) { - DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n"); - - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - return ret_val; - - if (!link) - DEBUGOUT("Link taking longer than expected.\n"); - - /* Try once more */ - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - return ret_val; - } - - return E1000_SUCCESS; -} - -/** - * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex - * @hw: pointer to the HW structure - * @phy_ctrl: pointer to current value of PHY_CONTROL - * - * Forces speed and duplex on the PHY by doing the following: disable flow - * control, force speed/duplex on the MAC, disable auto speed detection, - * disable auto-negotiation, configure duplex, configure speed, configure - * the collision distance, write configuration to CTRL register. The - * caller must write to the PHY_CONTROL register for these settings to - * take affect. - **/ -void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 ctrl; - - DEBUGFUNC("e1000_phy_force_speed_duplex_setup"); - - /* Turn off flow control when forcing speed/duplex */ - hw->fc.current_mode = e1000_fc_none; - - /* Force speed/duplex on the mac */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ctrl &= ~E1000_CTRL_SPD_SEL; - - /* Disable Auto Speed Detection */ - ctrl &= ~E1000_CTRL_ASDE; - - /* Disable autoneg on the phy */ - *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; - - /* Forcing Full or Half Duplex? */ - if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { - ctrl &= ~E1000_CTRL_FD; - *phy_ctrl &= ~MII_CR_FULL_DUPLEX; - DEBUGOUT("Half Duplex\n"); - } else { - ctrl |= E1000_CTRL_FD; - *phy_ctrl |= MII_CR_FULL_DUPLEX; - DEBUGOUT("Full Duplex\n"); - } - - /* Forcing 10mb or 100mb? */ - if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { - ctrl |= E1000_CTRL_SPD_100; - *phy_ctrl |= MII_CR_SPEED_100; - *phy_ctrl &= ~MII_CR_SPEED_1000; - DEBUGOUT("Forcing 100mb\n"); - } else { - ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); - *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); - DEBUGOUT("Forcing 10mb\n"); - } - - hw->mac.ops.config_collision_dist(hw); - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); -} - -/** - * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * Success returns 0, Failure returns 1 - * - * The low power link up (lplu) state is set to the power management level D3 - * and SmartSpeed is disabled when active is true, else clear lplu for D3 - * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. - **/ -s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_set_d3_lplu_state_generic"); - - if (!hw->phy.ops.read_reg) - return E1000_SUCCESS; - - ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); - if (ret_val) - return ret_val; - - if (!active) { - data &= ~IGP02E1000_PM_D3_LPLU; - ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, - data); - if (ret_val) - return ret_val; - /* LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } else if (phy->smart_speed == e1000_smart_speed_off) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } - } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || - (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || - (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { - data |= IGP02E1000_PM_D3_LPLU; - ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, - data); - if (ret_val) - return ret_val; - - /* When LPLU is enabled, we should disable SmartSpeed */ - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - data); - } - - return ret_val; -} - -/** - * e1000_check_downshift_generic - Checks whether a downshift in speed occurred - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns 1 - * - * A downshift is detected by querying the PHY link health. - **/ -s32 e1000_check_downshift_generic(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, offset, mask; - - DEBUGFUNC("e1000_check_downshift_generic"); - - switch (phy->type) { - case e1000_phy_i210: - case e1000_phy_m88: - case e1000_phy_gg82563: - offset = M88E1000_PHY_SPEC_STATUS; - mask = M88E1000_PSSR_DOWNSHIFT; - break; - case e1000_phy_igp_2: - case e1000_phy_igp_3: - offset = IGP01E1000_PHY_LINK_HEALTH; - mask = IGP01E1000_PLHR_SS_DOWNGRADE; - break; - default: - /* speed downshift not supported */ - phy->speed_downgraded = false; - return E1000_SUCCESS; - } - - ret_val = phy->ops.read_reg(hw, offset, &phy_data); - - if (!ret_val) - phy->speed_downgraded = !!(phy_data & mask); - - return ret_val; -} - -/** - * e1000_check_polarity_m88 - Checks the polarity. - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - * Polarity is determined based on the PHY specific status register. - **/ -s32 e1000_check_polarity_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_check_polarity_m88"); - - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); - - if (!ret_val) - phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal); - - return ret_val; -} - -/** - * e1000_check_polarity_igp - Checks the polarity. - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - * Polarity is determined based on the PHY port status register, and the - * current speed (since there is no polarity at 100Mbps). - **/ -s32 e1000_check_polarity_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data, offset, mask; - - DEBUGFUNC("e1000_check_polarity_igp"); - - /* Polarity is determined based on the speed of - * our connection. - */ - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); - if (ret_val) - return ret_val; - - if ((data & IGP01E1000_PSSR_SPEED_MASK) == - IGP01E1000_PSSR_SPEED_1000MBPS) { - offset = IGP01E1000_PHY_PCS_INIT_REG; - mask = IGP01E1000_PHY_POLARITY_MASK; - } else { - /* This really only applies to 10Mbps since - * there is no polarity for 100Mbps (always 0). - */ - offset = IGP01E1000_PHY_PORT_STATUS; - mask = IGP01E1000_PSSR_POLARITY_REVERSED; - } - - ret_val = phy->ops.read_reg(hw, offset, &data); - - if (!ret_val) - phy->cable_polarity = ((data & mask) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal); - - return ret_val; -} - -/** - * e1000_check_polarity_ife - Check cable polarity for IFE PHY - * @hw: pointer to the HW structure - * - * Polarity is determined on the polarity reversal feature being enabled. - **/ -s32 e1000_check_polarity_ife(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, offset, mask; - - DEBUGFUNC("e1000_check_polarity_ife"); - - /* Polarity is determined based on the reversal feature being enabled. - */ - if (phy->polarity_correction) { - offset = IFE_PHY_EXTENDED_STATUS_CONTROL; - mask = IFE_PESC_POLARITY_REVERSED; - } else { - offset = IFE_PHY_SPECIAL_CONTROL; - mask = IFE_PSC_FORCE_POLARITY; - } - - ret_val = phy->ops.read_reg(hw, offset, &phy_data); - - if (!ret_val) - phy->cable_polarity = ((phy_data & mask) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal); - - return ret_val; -} - -/** - * e1000_wait_autoneg - Wait for auto-neg completion - * @hw: pointer to the HW structure - * - * Waits for auto-negotiation to complete or for the auto-negotiation time - * limit to expire, which ever happens first. - **/ -static s32 e1000_wait_autoneg(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 i, phy_status; - - DEBUGFUNC("e1000_wait_autoneg"); - - if (!hw->phy.ops.read_reg) - return E1000_SUCCESS; - - /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ - for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); - if (ret_val) - break; - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); - if (ret_val) - break; - if (phy_status & MII_SR_AUTONEG_COMPLETE) - break; - msec_delay(100); - } - - /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation - * has completed. - */ - return ret_val; -} - -/** - * e1000_phy_has_link_generic - Polls PHY for link - * @hw: pointer to the HW structure - * @iterations: number of times to poll for link - * @usec_interval: delay between polling attempts - * @success: pointer to whether polling was successful or not - * - * Polls the PHY status register for link, 'iterations' number of times. - **/ -s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, - u32 usec_interval, bool *success) -{ - s32 ret_val = E1000_SUCCESS; - u16 i, phy_status; - - DEBUGFUNC("e1000_phy_has_link_generic"); - - if (!hw->phy.ops.read_reg) - return E1000_SUCCESS; - - for (i = 0; i < iterations; i++) { - /* Some PHYs require the PHY_STATUS register to be read - * twice due to the link bit being sticky. No harm doing - * it across the board. - */ - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); - if (ret_val) - /* If the first read fails, another entity may have - * ownership of the resources, wait and try again to - * see if they have relinquished the resources yet. - */ - usec_delay(usec_interval); - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); - if (ret_val) - break; - if (phy_status & MII_SR_LINK_STATUS) - break; - if (usec_interval >= 1000) - msec_delay_irq(usec_interval/1000); - else - usec_delay(usec_interval); - } - - *success = (i < iterations); - - return ret_val; -} - -/** - * e1000_get_cable_length_m88 - Determine cable length for m88 PHY - * @hw: pointer to the HW structure - * - * Reads the PHY specific status register to retrieve the cable length - * information. The cable length is determined by averaging the minimum and - * maximum values to get the "average" cable length. The m88 PHY has four - * possible cable length values, which are: - * Register Value Cable Length - * 0 < 50 meters - * 1 50 - 80 meters - * 2 80 - 110 meters - * 3 110 - 140 meters - * 4 > 140 meters - **/ -s32 e1000_get_cable_length_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, index; - - DEBUGFUNC("e1000_get_cable_length_m88"); - - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) - return ret_val; - - index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> - M88E1000_PSSR_CABLE_LENGTH_SHIFT); - - if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) - return -E1000_ERR_PHY; - - phy->min_cable_length = e1000_m88_cable_length_table[index]; - phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; - - phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; - - return E1000_SUCCESS; -} - -s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, phy_data2, is_cm; - u16 index, default_page; - - DEBUGFUNC("e1000_get_cable_length_m88_gen2"); - - switch (hw->phy.id) { - case I210_I_PHY_ID: - /* Get cable length from PHY Cable Diagnostics Control Reg */ - ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + - (I347AT4_PCDL + phy->addr), - &phy_data); - if (ret_val) - return ret_val; - - /* Check if the unit of cable length is meters or cm */ - ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + - I347AT4_PCDC, &phy_data2); - if (ret_val) - return ret_val; - - is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); - - /* Populate the phy structure with cable length in meters */ - phy->min_cable_length = phy_data / (is_cm ? 100 : 1); - phy->max_cable_length = phy_data / (is_cm ? 100 : 1); - phy->cable_length = phy_data / (is_cm ? 100 : 1); - break; - case M88E1543_E_PHY_ID: - case M88E1340M_E_PHY_ID: - case I347AT4_E_PHY_ID: - /* Remember the original page select and set it to 7 */ - ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, - &default_page); - if (ret_val) - return ret_val; - - ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07); - if (ret_val) - return ret_val; - - /* Get cable length from PHY Cable Diagnostics Control Reg */ - ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr), - &phy_data); - if (ret_val) - return ret_val; - - /* Check if the unit of cable length is meters or cm */ - ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2); - if (ret_val) - return ret_val; - - is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); - - /* Populate the phy structure with cable length in meters */ - phy->min_cable_length = phy_data / (is_cm ? 100 : 1); - phy->max_cable_length = phy_data / (is_cm ? 100 : 1); - phy->cable_length = phy_data / (is_cm ? 100 : 1); - - /* Reset the page select to its original value */ - ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, - default_page); - if (ret_val) - return ret_val; - break; - - case M88E1112_E_PHY_ID: - /* Remember the original page select and set it to 5 */ - ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, - &default_page); - if (ret_val) - return ret_val; - - ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05); - if (ret_val) - return ret_val; - - ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE, - &phy_data); - if (ret_val) - return ret_val; - - index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> - M88E1000_PSSR_CABLE_LENGTH_SHIFT; - - if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) - return -E1000_ERR_PHY; - - phy->min_cable_length = e1000_m88_cable_length_table[index]; - phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; - - phy->cable_length = (phy->min_cable_length + - phy->max_cable_length) / 2; - - /* Reset the page select to its original value */ - ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, - default_page); - if (ret_val) - return ret_val; - - break; - default: - return -E1000_ERR_PHY; - } - - return ret_val; -} - -/** - * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY - * @hw: pointer to the HW structure - * - * The automatic gain control (agc) normalizes the amplitude of the - * received signal, adjusting for the attenuation produced by the - * cable. By reading the AGC registers, which represent the - * combination of coarse and fine gain value, the value can be put - * into a lookup table to obtain the approximate cable length - * for each channel. - **/ -s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, i, agc_value = 0; - u16 cur_agc_index, max_agc_index = 0; - u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; - static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { - IGP02E1000_PHY_AGC_A, - IGP02E1000_PHY_AGC_B, - IGP02E1000_PHY_AGC_C, - IGP02E1000_PHY_AGC_D - }; - - DEBUGFUNC("e1000_get_cable_length_igp_2"); - - /* Read the AGC registers for all channels */ - for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { - ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data); - if (ret_val) - return ret_val; - - /* Getting bits 15:9, which represent the combination of - * coarse and fine gain values. The result is a number - * that can be put into the lookup table to obtain the - * approximate cable length. - */ - cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & - IGP02E1000_AGC_LENGTH_MASK); - - /* Array index bound check. */ - if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || - (cur_agc_index == 0)) - return -E1000_ERR_PHY; - - /* Remove min & max AGC values from calculation. */ - if (e1000_igp_2_cable_length_table[min_agc_index] > - e1000_igp_2_cable_length_table[cur_agc_index]) - min_agc_index = cur_agc_index; - if (e1000_igp_2_cable_length_table[max_agc_index] < - e1000_igp_2_cable_length_table[cur_agc_index]) - max_agc_index = cur_agc_index; - - agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; - } - - agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + - e1000_igp_2_cable_length_table[max_agc_index]); - agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); - - /* Calculate cable length with the error range of +/- 10 meters. */ - phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ? - (agc_value - IGP02E1000_AGC_RANGE) : 0); - phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; - - phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; - - return E1000_SUCCESS; -} - -/** - * e1000_get_phy_info_m88 - Retrieve PHY information - * @hw: pointer to the HW structure - * - * Valid for only copper links. Read the PHY status register (sticky read) - * to verify that link is up. Read the PHY special control register to - * determine the polarity and 10base-T extended distance. Read the PHY - * special status register to determine MDI/MDIx and current speed. If - * speed is 1000, then determine cable length, local and remote receiver. - **/ -s32 e1000_get_phy_info_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - DEBUGFUNC("e1000_get_phy_info_m88"); - - if (phy->media_type != e1000_media_type_copper) { - DEBUGOUT("Phy info is only valid for copper media\n"); - return -E1000_ERR_CONFIG; - } - - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - return ret_val; - - if (!link) { - DEBUGOUT("Phy info is only valid if link is up\n"); - return -E1000_ERR_CONFIG; - } - - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy->polarity_correction = !!(phy_data & - M88E1000_PSCR_POLARITY_REVERSAL); - - ret_val = e1000_check_polarity_m88(hw); - if (ret_val) - return ret_val; - - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) - return ret_val; - - phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX); - - if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { - ret_val = hw->phy.ops.get_cable_length(hw); - if (ret_val) - return ret_val; - - ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); - if (ret_val) - return ret_val; - - phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - - phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - } else { - /* Set values to "undefined" */ - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - } - - return ret_val; -} - -/** - * e1000_get_phy_info_igp - Retrieve igp PHY information - * @hw: pointer to the HW structure - * - * Read PHY status to determine if link is up. If link is up, then - * set/determine 10base-T extended distance and polarity correction. Read - * PHY port status to determine MDI/MDIx and speed. Based on the speed, - * determine on the cable length, local and remote receiver. - **/ -s32 e1000_get_phy_info_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - DEBUGFUNC("e1000_get_phy_info_igp"); - - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - return ret_val; - - if (!link) { - DEBUGOUT("Phy info is only valid if link is up\n"); - return -E1000_ERR_CONFIG; - } - - phy->polarity_correction = true; - - ret_val = e1000_check_polarity_igp(hw); - if (ret_val) - return ret_val; - - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); - if (ret_val) - return ret_val; - - phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX); - - if ((data & IGP01E1000_PSSR_SPEED_MASK) == - IGP01E1000_PSSR_SPEED_1000MBPS) { - ret_val = phy->ops.get_cable_length(hw); - if (ret_val) - return ret_val; - - ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); - if (ret_val) - return ret_val; - - phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - - phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - } else { - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - } - - return ret_val; -} - -/** - * e1000_get_phy_info_ife - Retrieves various IFE PHY states - * @hw: pointer to the HW structure - * - * Populates "phy" structure with various feature states. - **/ -s32 e1000_get_phy_info_ife(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - DEBUGFUNC("e1000_get_phy_info_ife"); - - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - return ret_val; - - if (!link) { - DEBUGOUT("Phy info is only valid if link is up\n"); - return -E1000_ERR_CONFIG; - } - - ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data); - if (ret_val) - return ret_val; - phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE); - - if (phy->polarity_correction) { - ret_val = e1000_check_polarity_ife(hw); - if (ret_val) - return ret_val; - } else { - /* Polarity is forced */ - phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal); - } - - ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); - if (ret_val) - return ret_val; - - phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS); - - /* The following parameters are undefined for 10/100 operation. */ - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - - return E1000_SUCCESS; -} - -/** - * e1000_phy_sw_reset_generic - PHY software reset - * @hw: pointer to the HW structure - * - * Does a software reset of the PHY by reading the PHY control register and - * setting/write the control register reset bit to the PHY. - **/ -s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw) -{ - s32 ret_val; - u16 phy_ctrl; - - DEBUGFUNC("e1000_phy_sw_reset_generic"); - - if (!hw->phy.ops.read_reg) - return E1000_SUCCESS; - - ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); - if (ret_val) - return ret_val; - - phy_ctrl |= MII_CR_RESET; - ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl); - if (ret_val) - return ret_val; - - usec_delay(1); - - return ret_val; -} - -/** - * e1000_phy_hw_reset_generic - PHY hardware reset - * @hw: pointer to the HW structure - * - * Verify the reset block is not blocking us from resetting. Acquire - * semaphore (if necessary) and read/set/write the device control reset - * bit in the PHY. Wait the appropriate delay time for the device to - * reset and release the semaphore (if necessary). - **/ -s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u32 ctrl; - - DEBUGFUNC("e1000_phy_hw_reset_generic"); - - if (phy->ops.check_reset_block) { - ret_val = phy->ops.check_reset_block(hw); - if (ret_val) - return E1000_SUCCESS; - } - - ret_val = phy->ops.acquire(hw); - if (ret_val) - return ret_val; - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); - E1000_WRITE_FLUSH(hw); - - usec_delay(phy->reset_delay_us); - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - usec_delay(150); - - phy->ops.release(hw); - - return phy->ops.get_cfg_done(hw); -} - -/** - * e1000_get_cfg_done_generic - Generic configuration done - * @hw: pointer to the HW structure - * - * Generic function to wait 10 milli-seconds for configuration to complete - * and return success. - **/ -s32 e1000_get_cfg_done_generic(struct e1000_hw E1000_UNUSEDARG *hw) -{ - DEBUGFUNC("e1000_get_cfg_done_generic"); - - msec_delay_irq(10); - - return E1000_SUCCESS; -} - -/** - * e1000_phy_init_script_igp3 - Inits the IGP3 PHY - * @hw: pointer to the HW structure - * - * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. - **/ -s32 e1000_phy_init_script_igp3(struct e1000_hw *hw) -{ - DEBUGOUT("Running IGP 3 PHY init script\n"); - - /* PHY init IGP 3 */ - /* Enable rise/fall, 10-mode work in class-A */ - hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018); - /* Remove all caps from Replica path filter */ - hw->phy.ops.write_reg(hw, 0x2F52, 0x0000); - /* Bias trimming for ADC, AFE and Driver (Default) */ - hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24); - /* Increase Hybrid poly bias */ - hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0); - /* Add 4% to Tx amplitude in Gig mode */ - hw->phy.ops.write_reg(hw, 0x2010, 0x10B0); - /* Disable trimming (TTT) */ - hw->phy.ops.write_reg(hw, 0x2011, 0x0000); - /* Poly DC correction to 94.6% + 2% for all channels */ - hw->phy.ops.write_reg(hw, 0x20DD, 0x249A); - /* ABS DC correction to 95.9% */ - hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3); - /* BG temp curve trim */ - hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE); - /* Increasing ADC OPAMP stage 1 currents to max */ - hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4); - /* Force 1000 ( required for enabling PHY regs configuration) */ - hw->phy.ops.write_reg(hw, 0x0000, 0x0140); - /* Set upd_freq to 6 */ - hw->phy.ops.write_reg(hw, 0x1F30, 0x1606); - /* Disable NPDFE */ - hw->phy.ops.write_reg(hw, 0x1F31, 0xB814); - /* Disable adaptive fixed FFE (Default) */ - hw->phy.ops.write_reg(hw, 0x1F35, 0x002A); - /* Enable FFE hysteresis */ - hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067); - /* Fixed FFE for short cable lengths */ - hw->phy.ops.write_reg(hw, 0x1F54, 0x0065); - /* Fixed FFE for medium cable lengths */ - hw->phy.ops.write_reg(hw, 0x1F55, 0x002A); - /* Fixed FFE for long cable lengths */ - hw->phy.ops.write_reg(hw, 0x1F56, 0x002A); - /* Enable Adaptive Clip Threshold */ - hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0); - /* AHT reset limit to 1 */ - hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF); - /* Set AHT master delay to 127 msec */ - hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC); - /* Set scan bits for AHT */ - hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF); - /* Set AHT Preset bits */ - hw->phy.ops.write_reg(hw, 0x1F79, 0x0210); - /* Change integ_factor of channel A to 3 */ - hw->phy.ops.write_reg(hw, 0x1895, 0x0003); - /* Change prop_factor of channels BCD to 8 */ - hw->phy.ops.write_reg(hw, 0x1796, 0x0008); - /* Change cg_icount + enable integbp for channels BCD */ - hw->phy.ops.write_reg(hw, 0x1798, 0xD008); - /* Change cg_icount + enable integbp + change prop_factor_master - * to 8 for channel A - */ - hw->phy.ops.write_reg(hw, 0x1898, 0xD918); - /* Disable AHT in Slave mode on channel A */ - hw->phy.ops.write_reg(hw, 0x187A, 0x0800); - /* Enable LPLU and disable AN to 1000 in non-D0a states, - * Enable SPD+B2B - */ - hw->phy.ops.write_reg(hw, 0x0019, 0x008D); - /* Enable restart AN on an1000_dis change */ - hw->phy.ops.write_reg(hw, 0x001B, 0x2080); - /* Enable wh_fifo read clock in 10/100 modes */ - hw->phy.ops.write_reg(hw, 0x0014, 0x0045); - /* Restart AN, Speed selection is 1000 */ - hw->phy.ops.write_reg(hw, 0x0000, 0x1340); - - return E1000_SUCCESS; -} - -/** - * e1000_get_phy_type_from_id - Get PHY type from id - * @phy_id: phy_id read from the phy - * - * Returns the phy type from the id. - **/ -enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id) -{ - enum e1000_phy_type phy_type = e1000_phy_unknown; - - switch (phy_id) { - case M88E1000_I_PHY_ID: - case M88E1000_E_PHY_ID: - case M88E1111_I_PHY_ID: - case M88E1011_I_PHY_ID: - case M88E1543_E_PHY_ID: - case I347AT4_E_PHY_ID: - case M88E1112_E_PHY_ID: - case M88E1340M_E_PHY_ID: - phy_type = e1000_phy_m88; - break; - case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ - phy_type = e1000_phy_igp_2; - break; - case GG82563_E_PHY_ID: - phy_type = e1000_phy_gg82563; - break; - case IGP03E1000_E_PHY_ID: - phy_type = e1000_phy_igp_3; - break; - case IFE_E_PHY_ID: - case IFE_PLUS_E_PHY_ID: - case IFE_C_E_PHY_ID: - phy_type = e1000_phy_ife; - break; - case I82580_I_PHY_ID: - phy_type = e1000_phy_82580; - break; - case I210_I_PHY_ID: - phy_type = e1000_phy_i210; - break; - default: - phy_type = e1000_phy_unknown; - break; - } - return phy_type; -} - -/** - * e1000_determine_phy_address - Determines PHY address. - * @hw: pointer to the HW structure - * - * This uses a trial and error method to loop through possible PHY - * addresses. It tests each by reading the PHY ID registers and - * checking for a match. - **/ -s32 e1000_determine_phy_address(struct e1000_hw *hw) -{ - u32 phy_addr = 0; - u32 i; - enum e1000_phy_type phy_type = e1000_phy_unknown; - - hw->phy.id = phy_type; - - for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { - hw->phy.addr = phy_addr; - i = 0; - - do { - e1000_get_phy_id(hw); - phy_type = e1000_get_phy_type_from_id(hw->phy.id); - - /* If phy_type is valid, break - we found our - * PHY address - */ - if (phy_type != e1000_phy_unknown) - return E1000_SUCCESS; - - msec_delay(1); - i++; - } while (i < 10); - } - - return -E1000_ERR_PHY_TYPE; -} - -/** - * e1000_power_up_phy_copper - Restore copper link in case of PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, restore the link to previous - * settings. - **/ -void e1000_power_up_phy_copper(struct e1000_hw *hw) -{ - u16 mii_reg = 0; - u16 power_reg = 0; - - /* The PHY will retain its settings across a power down/up cycle */ - hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); - mii_reg &= ~MII_CR_POWER_DOWN; - if (hw->phy.type == e1000_phy_i210) { - hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg); - power_reg &= ~GS40G_CS_POWER_DOWN; - hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg); - } - hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); -} - -/** - * e1000_power_down_phy_copper - Restore copper link in case of PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, restore the link to previous - * settings. - **/ -void e1000_power_down_phy_copper(struct e1000_hw *hw) -{ - u16 mii_reg = 0; - u16 power_reg = 0; - - /* The PHY will retain its settings across a power down/up cycle */ - hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); - mii_reg |= MII_CR_POWER_DOWN; - /* i210 Phy requires an additional bit for power up/down */ - if (hw->phy.type == e1000_phy_i210) { - hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg); - power_reg |= GS40G_CS_POWER_DOWN; - hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg); - } - hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); - msec_delay(1); -} - -/** - * e1000_check_polarity_82577 - Checks the polarity. - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - * Polarity is determined based on the PHY specific status register. - **/ -s32 e1000_check_polarity_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_check_polarity_82577"); - - ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data); - - if (!ret_val) - phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal); - - return ret_val; -} - -/** - * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY - * @hw: pointer to the HW structure - * - * Calls the PHY setup function to force speed and duplex. - **/ -s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - DEBUGFUNC("e1000_phy_force_speed_duplex_82577"); - - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - e1000_phy_force_speed_duplex_setup(hw, &phy_data); - - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); - if (ret_val) - return ret_val; - - usec_delay(1); - - if (phy->autoneg_wait_to_complete) { - DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n"); - - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - return ret_val; - - if (!link) - DEBUGOUT("Link taking longer than expected.\n"); - - /* Try once more */ - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - } - - return ret_val; -} - -/** - * e1000_get_phy_info_82577 - Retrieve I82577 PHY information - * @hw: pointer to the HW structure - * - * Read PHY status to determine if link is up. If link is up, then - * set/determine 10base-T extended distance and polarity correction. Read - * PHY port status to determine MDI/MDIx and speed. Based on the speed, - * determine on the cable length, local and remote receiver. - **/ -s32 e1000_get_phy_info_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - DEBUGFUNC("e1000_get_phy_info_82577"); - - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - return ret_val; - - if (!link) { - DEBUGOUT("Phy info is only valid if link is up\n"); - return -E1000_ERR_CONFIG; - } - - phy->polarity_correction = true; - - ret_val = e1000_check_polarity_82577(hw); - if (ret_val) - return ret_val; - - ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data); - if (ret_val) - return ret_val; - - phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX); - - if ((data & I82577_PHY_STATUS2_SPEED_MASK) == - I82577_PHY_STATUS2_SPEED_1000MBPS) { - ret_val = hw->phy.ops.get_cable_length(hw); - if (ret_val) - return ret_val; - - ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); - if (ret_val) - return ret_val; - - phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - - phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - } else { - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - } - - return E1000_SUCCESS; -} - -/** - * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY - * @hw: pointer to the HW structure - * - * Reads the diagnostic status register and verifies result is valid before - * placing it in the phy_cable_length field. - **/ -s32 e1000_get_cable_length_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, length; - - DEBUGFUNC("e1000_get_cable_length_82577"); - - ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data); - if (ret_val) - return ret_val; - - length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >> - I82577_DSTATUS_CABLE_LENGTH_SHIFT); - - if (length == E1000_CABLE_LENGTH_UNDEFINED) - return -E1000_ERR_PHY; - - phy->cable_length = length; - - return E1000_SUCCESS; -} - -/** - * e1000_write_phy_reg_gs40g - Write GS40G PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data) -{ - s32 ret_val; - u16 page = offset >> GS40G_PAGE_SHIFT; - - DEBUGFUNC("e1000_write_phy_reg_gs40g"); - - offset = offset & GS40G_OFFSET_MASK; - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); - if (ret_val) - goto release; - ret_val = e1000_write_phy_reg_mdic(hw, offset, data); - -release: - hw->phy.ops.release(hw); - return ret_val; -} - -/** - * e1000_read_phy_reg_gs40g - Read GS40G PHY register - * @hw: pointer to the HW structure - * @offset: lower half is register offset to read to - * upper half is page to use. - * @data: data to read at register offset - * - * Acquires semaphore, if necessary, then reads the data in the PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data) -{ - s32 ret_val; - u16 page = offset >> GS40G_PAGE_SHIFT; - - DEBUGFUNC("e1000_read_phy_reg_gs40g"); - - offset = offset & GS40G_OFFSET_MASK; - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); - if (ret_val) - goto release; - ret_val = e1000_read_phy_reg_mdic(hw, offset, data); - -release: - hw->phy.ops.release(hw); - return ret_val; -} - -/** - * e1000_read_phy_reg_mphy - Read mPHY control register - * @hw: pointer to the HW structure - * @address: address to be read - * @data: pointer to the read data - * - * Reads the mPHY control register in the PHY at offset and stores the - * information read to data. - **/ -s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data) -{ - u32 mphy_ctrl = 0; - bool locked = false; - bool ready = false; - - DEBUGFUNC("e1000_read_phy_reg_mphy"); - - /* Check if mPHY is ready to read/write operations */ - ready = e1000_is_mphy_ready(hw); - if (!ready) - return -E1000_ERR_PHY; - - /* Check if mPHY access is disabled and enable it if so */ - mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL); - if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) { - locked = true; - ready = e1000_is_mphy_ready(hw); - if (!ready) - return -E1000_ERR_PHY; - mphy_ctrl |= E1000_MPHY_ENA_ACCESS; - E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); - } - - /* Set the address that we want to read */ - ready = e1000_is_mphy_ready(hw); - if (!ready) - return -E1000_ERR_PHY; - - /* We mask address, because we want to use only current lane */ - mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK & - ~E1000_MPHY_ADDRESS_FNC_OVERRIDE) | - (address & E1000_MPHY_ADDRESS_MASK); - E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); - - /* Read data from the address */ - ready = e1000_is_mphy_ready(hw); - if (!ready) - return -E1000_ERR_PHY; - *data = E1000_READ_REG(hw, E1000_MPHY_DATA); - - /* Disable access to mPHY if it was originally disabled */ - if (locked) { - ready = e1000_is_mphy_ready(hw); - if (!ready) - return -E1000_ERR_PHY; - E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, - E1000_MPHY_DIS_ACCESS); - } - - return E1000_SUCCESS; -} - -/** - * e1000_write_phy_reg_mphy - Write mPHY control register - * @hw: pointer to the HW structure - * @address: address to write to - * @data: data to write to register at offset - * @line_override: used when we want to use different line than default one - * - * Writes data to mPHY control register. - **/ -s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data, - bool line_override) -{ - u32 mphy_ctrl = 0; - bool locked = false; - bool ready = false; - - DEBUGFUNC("e1000_write_phy_reg_mphy"); - - /* Check if mPHY is ready to read/write operations */ - ready = e1000_is_mphy_ready(hw); - if (!ready) - return -E1000_ERR_PHY; - - /* Check if mPHY access is disabled and enable it if so */ - mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL); - if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) { - locked = true; - ready = e1000_is_mphy_ready(hw); - if (!ready) - return -E1000_ERR_PHY; - mphy_ctrl |= E1000_MPHY_ENA_ACCESS; - E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); - } - - /* Set the address that we want to read */ - ready = e1000_is_mphy_ready(hw); - if (!ready) - return -E1000_ERR_PHY; - - /* We mask address, because we want to use only current lane */ - if (line_override) - mphy_ctrl |= E1000_MPHY_ADDRESS_FNC_OVERRIDE; - else - mphy_ctrl &= ~E1000_MPHY_ADDRESS_FNC_OVERRIDE; - mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK) | - (address & E1000_MPHY_ADDRESS_MASK); - E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); - - /* Read data from the address */ - ready = e1000_is_mphy_ready(hw); - if (!ready) - return -E1000_ERR_PHY; - E1000_WRITE_REG(hw, E1000_MPHY_DATA, data); - - /* Disable access to mPHY if it was originally disabled */ - if (locked) { - ready = e1000_is_mphy_ready(hw); - if (!ready) - return -E1000_ERR_PHY; - E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, - E1000_MPHY_DIS_ACCESS); - } - - return E1000_SUCCESS; -} - -/** - * e1000_is_mphy_ready - Check if mPHY control register is not busy - * @hw: pointer to the HW structure - * - * Returns mPHY control register status. - **/ -bool e1000_is_mphy_ready(struct e1000_hw *hw) -{ - u16 retry_count = 0; - u32 mphy_ctrl = 0; - bool ready = false; - - while (retry_count < 2) { - mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL); - if (mphy_ctrl & E1000_MPHY_BUSY) { - usec_delay(20); - retry_count++; - continue; - } - ready = true; - break; - } - - if (!ready) - DEBUGOUT("ERROR READING mPHY control register, phy is busy.\n"); - - return ready; -} diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_phy.h b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_phy.h deleted file mode 100644 index 67e9ba77..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_phy.h +++ /dev/null @@ -1,241 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#ifndef _E1000_PHY_H_ -#define _E1000_PHY_H_ - -void e1000_init_phy_ops_generic(struct e1000_hw *hw); -s32 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data); -void e1000_null_phy_generic(struct e1000_hw *hw); -s32 e1000_null_lplu_state(struct e1000_hw *hw, bool active); -s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_null_set_page(struct e1000_hw *hw, u16 data); -s32 e1000_read_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset, - u8 dev_addr, u8 *data); -s32 e1000_write_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset, - u8 dev_addr, u8 data); -s32 e1000_check_downshift_generic(struct e1000_hw *hw); -s32 e1000_check_polarity_m88(struct e1000_hw *hw); -s32 e1000_check_polarity_igp(struct e1000_hw *hw); -s32 e1000_check_polarity_ife(struct e1000_hw *hw); -s32 e1000_check_reset_block_generic(struct e1000_hw *hw); -s32 e1000_copper_link_setup_igp(struct e1000_hw *hw); -s32 e1000_copper_link_setup_m88(struct e1000_hw *hw); -s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw); -s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw); -s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw); -s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw); -s32 e1000_get_cable_length_m88(struct e1000_hw *hw); -s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw); -s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw); -s32 e1000_get_cfg_done_generic(struct e1000_hw *hw); -s32 e1000_get_phy_id(struct e1000_hw *hw); -s32 e1000_get_phy_info_igp(struct e1000_hw *hw); -s32 e1000_get_phy_info_m88(struct e1000_hw *hw); -s32 e1000_get_phy_info_ife(struct e1000_hw *hw); -s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw); -void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl); -s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw); -s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw); -s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page); -s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active); -s32 e1000_setup_copper_link_generic(struct e1000_hw *hw); -s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, - u32 usec_interval, bool *success); -s32 e1000_phy_init_script_igp3(struct e1000_hw *hw); -enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id); -s32 e1000_determine_phy_address(struct e1000_hw *hw); -s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg); -s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg); -void e1000_power_up_phy_copper(struct e1000_hw *hw); -void e1000_power_down_phy_copper(struct e1000_hw *hw); -s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data); -s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data); -s32 e1000_copper_link_setup_82577(struct e1000_hw *hw); -s32 e1000_check_polarity_82577(struct e1000_hw *hw); -s32 e1000_get_phy_info_82577(struct e1000_hw *hw); -s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw); -s32 e1000_get_cable_length_82577(struct e1000_hw *hw); -s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data); -s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data, - bool line_override); -bool e1000_is_mphy_ready(struct e1000_hw *hw); - -#define E1000_MAX_PHY_ADDR 8 - -/* IGP01E1000 Specific Registers */ -#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */ -#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */ -#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */ -#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */ -#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */ -#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */ -#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */ -#define IGP_PAGE_SHIFT 5 -#define PHY_REG_MASK 0x1F - -/* GS40G - I210 PHY defines */ -#define GS40G_PAGE_SELECT 0x16 -#define GS40G_PAGE_SHIFT 16 -#define GS40G_OFFSET_MASK 0xFFFF -#define GS40G_PAGE_2 0x20000 -#define GS40G_MAC_REG2 0x15 -#define GS40G_MAC_LB 0x4140 -#define GS40G_MAC_SPEED_1G 0X0006 -#define GS40G_COPPER_SPEC 0x0010 -#define GS40G_CS_POWER_DOWN 0x0002 - -#define HV_INTC_FC_PAGE_START 768 -#define I82578_ADDR_REG 29 -#define I82577_ADDR_REG 16 -#define I82577_CFG_REG 22 -#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15) -#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift */ -#define I82577_CTRL_REG 23 - -/* 82577 specific PHY registers */ -#define I82577_PHY_CTRL_2 18 -#define I82577_PHY_LBK_CTRL 19 -#define I82577_PHY_STATUS_2 26 -#define I82577_PHY_DIAG_STATUS 31 - -/* I82577 PHY Status 2 */ -#define I82577_PHY_STATUS2_REV_POLARITY 0x0400 -#define I82577_PHY_STATUS2_MDIX 0x0800 -#define I82577_PHY_STATUS2_SPEED_MASK 0x0300 -#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200 - -/* I82577 PHY Control 2 */ -#define I82577_PHY_CTRL2_MANUAL_MDIX 0x0200 -#define I82577_PHY_CTRL2_AUTO_MDI_MDIX 0x0400 -#define I82577_PHY_CTRL2_MDIX_CFG_MASK 0x0600 - -/* I82577 PHY Diagnostics Status */ -#define I82577_DSTATUS_CABLE_LENGTH 0x03FC -#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2 - -/* 82580 PHY Power Management */ -#define E1000_82580_PHY_POWER_MGMT 0xE14 -#define E1000_82580_PM_SPD 0x0001 /* Smart Power Down */ -#define E1000_82580_PM_D0_LPLU 0x0002 /* For D0a states */ -#define E1000_82580_PM_D3_LPLU 0x0004 /* For all other states */ -#define E1000_82580_PM_GO_LINKD 0x0020 /* Go Link Disconnect */ - -#define E1000_MPHY_DIS_ACCESS 0x80000000 /* disable_access bit */ -#define E1000_MPHY_ENA_ACCESS 0x40000000 /* enable_access bit */ -#define E1000_MPHY_BUSY 0x00010000 /* busy bit */ -#define E1000_MPHY_ADDRESS_FNC_OVERRIDE 0x20000000 /* fnc_override bit */ -#define E1000_MPHY_ADDRESS_MASK 0x0000FFFF /* address mask */ - -#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 -#define IGP01E1000_PHY_POLARITY_MASK 0x0078 - -#define IGP01E1000_PSCR_AUTO_MDIX 0x1000 -#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */ - -#define IGP01E1000_PSCFR_SMART_SPEED 0x0080 - -#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */ -#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */ -#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */ - -#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000 - -#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002 -#define IGP01E1000_PSSR_MDIX 0x0800 -#define IGP01E1000_PSSR_SPEED_MASK 0xC000 -#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000 - -#define IGP02E1000_PHY_CHANNEL_NUM 4 -#define IGP02E1000_PHY_AGC_A 0x11B1 -#define IGP02E1000_PHY_AGC_B 0x12B1 -#define IGP02E1000_PHY_AGC_C 0x14B1 -#define IGP02E1000_PHY_AGC_D 0x18B1 - -#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course=15:13, Fine=12:9 */ -#define IGP02E1000_AGC_LENGTH_MASK 0x7F -#define IGP02E1000_AGC_RANGE 15 - -#define E1000_CABLE_LENGTH_UNDEFINED 0xFF - -#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000 -#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16 -#define E1000_KMRNCTRLSTA_REN 0x00200000 -#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */ -#define E1000_KMRNCTRLSTA_TIMEOUTS 0x4 /* Kumeran Timeouts */ -#define E1000_KMRNCTRLSTA_INBAND_PARAM 0x9 /* Kumeran InBand Parameters */ -#define E1000_KMRNCTRLSTA_IBIST_DISABLE 0x0200 /* Kumeran IBIST Disable */ -#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */ - -#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 -#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Ctrl */ -#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Ctrl */ -#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */ - -/* IFE PHY Extended Status Control */ -#define IFE_PESC_POLARITY_REVERSED 0x0100 - -/* IFE PHY Special Control */ -#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 -#define IFE_PSC_FORCE_POLARITY 0x0020 - -/* IFE PHY Special Control and LED Control */ -#define IFE_PSCL_PROBE_MODE 0x0020 -#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */ -#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */ - -/* IFE PHY MDIX Control */ -#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */ -#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */ -#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto, 0=disable */ - -/* SFP modules ID memory locations */ -#define E1000_SFF_IDENTIFIER_OFFSET 0x00 -#define E1000_SFF_IDENTIFIER_SFF 0x02 -#define E1000_SFF_IDENTIFIER_SFP 0x03 - -#define E1000_SFF_ETH_FLAGS_OFFSET 0x06 -/* Flags for SFP modules compatible with ETH up to 1Gb */ -struct sfp_e1000_flags { - u8 e1000_base_sx:1; - u8 e1000_base_lx:1; - u8 e1000_base_cx:1; - u8 e1000_base_t:1; - u8 e100_base_lx:1; - u8 e100_base_fx:1; - u8 e10_base_bx10:1; - u8 e10_base_px:1; -}; - -/* Vendor OUIs: format of OUI is 0x[byte0][byte1][byte2][00] */ -#define E1000_SFF_VENDOR_OUI_TYCO 0x00407600 -#define E1000_SFF_VENDOR_OUI_FTL 0x00906500 -#define E1000_SFF_VENDOR_OUI_AVAGO 0x00176A00 -#define E1000_SFF_VENDOR_OUI_INTEL 0x001B2100 - -#endif diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_regs.h b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_regs.h deleted file mode 100644 index f5c7e031..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_regs.h +++ /dev/null @@ -1,631 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#ifndef _E1000_REGS_H_ -#define _E1000_REGS_H_ - -#define E1000_CTRL 0x00000 /* Device Control - RW */ -#define E1000_STATUS 0x00008 /* Device Status - RO */ -#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ -#define E1000_EERD 0x00014 /* EEPROM Read - RW */ -#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ -#define E1000_FLA 0x0001C /* Flash Access - RW */ -#define E1000_MDIC 0x00020 /* MDI Control - RW */ -#define E1000_MDICNFG 0x00E04 /* MDI Config - RW */ -#define E1000_REGISTER_SET_SIZE 0x20000 /* CSR Size */ -#define E1000_EEPROM_INIT_CTRL_WORD_2 0x0F /* EEPROM Init Ctrl Word 2 */ -#define E1000_EEPROM_PCIE_CTRL_WORD_2 0x28 /* EEPROM PCIe Ctrl Word 2 */ -#define E1000_BARCTRL 0x5BBC /* BAR ctrl reg */ -#define E1000_BARCTRL_FLSIZE 0x0700 /* BAR ctrl Flsize */ -#define E1000_BARCTRL_CSRSIZE 0x2000 /* BAR ctrl CSR size */ -#define E1000_MPHY_ADDR_CTRL 0x0024 /* GbE MPHY Address Control */ -#define E1000_MPHY_DATA 0x0E10 /* GBE MPHY Data */ -#define E1000_MPHY_STAT 0x0E0C /* GBE MPHY Statistics */ -#define E1000_PPHY_CTRL 0x5b48 /* PCIe PHY Control */ -#define E1000_I350_BARCTRL 0x5BFC /* BAR ctrl reg */ -#define E1000_I350_DTXMXPKTSZ 0x355C /* Maximum sent packet size reg*/ -#define E1000_SCTL 0x00024 /* SerDes Control - RW */ -#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ -#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ -#define E1000_FCT 0x00030 /* Flow Control Type - RW */ -#define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */ -#define E1000_VET 0x00038 /* VLAN Ether Type - RW */ -#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ -#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ -#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ -#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ -#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ -#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */ -#define E1000_RCTL 0x00100 /* Rx Control - RW */ -#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ -#define E1000_TXCW 0x00178 /* Tx Configuration Word - RW */ -#define E1000_RXCW 0x00180 /* Rx Configuration Word - RO */ -#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */ -#define E1000_EITR(_n) (0x01680 + (0x4 * (_n))) -#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */ -#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */ -#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */ -#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */ -#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */ -#define E1000_GPIE 0x01514 /* General Purpose Interrupt Enable - RW */ -#define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */ -#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */ -#define E1000_TCTL 0x00400 /* Tx Control - RW */ -#define E1000_TCTL_EXT 0x00404 /* Extended Tx Control - RW */ -#define E1000_TIPG 0x00410 /* Tx Inter-packet gap -RW */ -#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ -#define E1000_LEDCTL 0x00E00 /* LED Control - RW */ -#define E1000_LEDMUX 0x08130 /* LED MUX Control */ -#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ -#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ -#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */ -#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ -#define E1000_PBS 0x01008 /* Packet Buffer Size */ -#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ -#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */ -#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ -#define E1000_FLOP 0x0103C /* FLASH Opcode Register */ -#define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */ -#define E1000_I2CPARAMS 0x0102C /* SFPI2C Parameters Register - RW */ -#define E1000_I2CBB_EN 0x00000100 /* I2C - Bit Bang Enable */ -#define E1000_I2C_CLK_OUT 0x00000200 /* I2C- Clock */ -#define E1000_I2C_DATA_OUT 0x00000400 /* I2C- Data Out */ -#define E1000_I2C_DATA_OE_N 0x00000800 /* I2C- Data Output Enable */ -#define E1000_I2C_DATA_IN 0x00001000 /* I2C- Data In */ -#define E1000_I2C_CLK_OE_N 0x00002000 /* I2C- Clock Output Enable */ -#define E1000_I2C_CLK_IN 0x00004000 /* I2C- Clock In */ -#define E1000_I2C_CLK_STRETCH_DIS 0x00008000 /* I2C- Dis Clk Stretching */ -#define E1000_WDSTP 0x01040 /* Watchdog Setup - RW */ -#define E1000_SWDSTS 0x01044 /* SW Device Status - RW */ -#define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */ -#define E1000_TCPTIMER 0x0104C /* TCP Timer - RW */ -#define E1000_VPDDIAG 0x01060 /* VPD Diagnostic - RO */ -#define E1000_ICR_V2 0x01500 /* Intr Cause - new location - RC */ -#define E1000_ICS_V2 0x01504 /* Intr Cause Set - new location - WO */ -#define E1000_IMS_V2 0x01508 /* Intr Mask Set/Read - new location - RW */ -#define E1000_IMC_V2 0x0150C /* Intr Mask Clear - new location - WO */ -#define E1000_IAM_V2 0x01510 /* Intr Ack Auto Mask - new location - RW */ -#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */ -#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ -#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ -#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */ -#define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */ -#define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */ -#define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */ -#define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */ -#define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */ -#define E1000_PBRTH 0x02458 /* PB Rx Arbitration Threshold - RW */ -#define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */ -/* Split and Replication Rx Control - RW */ -#define E1000_RDPUMB 0x025CC /* DMA Rx Descriptor uC Mailbox - RW */ -#define E1000_RDPUAD 0x025D0 /* DMA Rx Descriptor uC Addr Command - RW */ -#define E1000_RDPUWD 0x025D4 /* DMA Rx Descriptor uC Data Write - RW */ -#define E1000_RDPURD 0x025D8 /* DMA Rx Descriptor uC Data Read - RW */ -#define E1000_RDPUCTL 0x025DC /* DMA Rx Descriptor uC Control - RW */ -#define E1000_PBDIAG 0x02458 /* Packet Buffer Diagnostic - RW */ -#define E1000_RXPBS 0x02404 /* Rx Packet Buffer Size - RW */ -#define E1000_IRPBS 0x02404 /* Same as RXPBS, renamed for newer Si - RW */ -#define E1000_PBRWAC 0x024E8 /* Rx packet buffer wrap around counter - RO */ -#define E1000_RDTR 0x02820 /* Rx Delay Timer - RW */ -#define E1000_RADV 0x0282C /* Rx Interrupt Absolute Delay Timer - RW */ -#define E1000_EMIADD 0x10 /* Extended Memory Indirect Address */ -#define E1000_EMIDATA 0x11 /* Extended Memory Indirect Data */ -#define E1000_SRWR 0x12018 /* Shadow Ram Write Register - RW */ -#define E1000_I210_FLMNGCTL 0x12038 -#define E1000_I210_FLMNGDATA 0x1203C -#define E1000_I210_FLMNGCNT 0x12040 - -#define E1000_I210_FLSWCTL 0x12048 -#define E1000_I210_FLSWDATA 0x1204C -#define E1000_I210_FLSWCNT 0x12050 - -#define E1000_I210_FLA 0x1201C - -#define E1000_INVM_DATA_REG(_n) (0x12120 + 4*(_n)) -#define E1000_INVM_SIZE 64 /* Number of INVM Data Registers */ - -/* QAV Tx mode control register */ -#define E1000_I210_TQAVCTRL 0x3570 - -/* QAV Tx mode control register bitfields masks */ -/* QAV enable */ -#define E1000_TQAVCTRL_MODE (1 << 0) -/* Fetching arbitration type */ -#define E1000_TQAVCTRL_FETCH_ARB (1 << 4) -/* Fetching timer enable */ -#define E1000_TQAVCTRL_FETCH_TIMER_ENABLE (1 << 5) -/* Launch arbitration type */ -#define E1000_TQAVCTRL_LAUNCH_ARB (1 << 8) -/* Launch timer enable */ -#define E1000_TQAVCTRL_LAUNCH_TIMER_ENABLE (1 << 9) -/* SP waits for SR enable */ -#define E1000_TQAVCTRL_SP_WAIT_SR (1 << 10) -/* Fetching timer correction */ -#define E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET 16 -#define E1000_TQAVCTRL_FETCH_TIMER_DELTA \ - (0xFFFF << E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET) - -/* High credit registers where _n can be 0 or 1. */ -#define E1000_I210_TQAVHC(_n) (0x300C + 0x40 * (_n)) - -/* Queues fetch arbitration priority control register */ -#define E1000_I210_TQAVARBCTRL 0x3574 -/* Queues priority masks where _n and _p can be 0-3. */ -#define E1000_TQAVARBCTRL_QUEUE_PRI(_n, _p) ((_p) << (2 * _n)) -/* QAV Tx mode control registers where _n can be 0 or 1. */ -#define E1000_I210_TQAVCC(_n) (0x3004 + 0x40 * (_n)) - -/* QAV Tx mode control register bitfields masks */ -#define E1000_TQAVCC_IDLE_SLOPE 0xFFFF /* Idle slope */ -#define E1000_TQAVCC_KEEP_CREDITS (1 << 30) /* Keep credits opt enable */ -#define E1000_TQAVCC_QUEUE_MODE (1 << 31) /* SP vs. SR Tx mode */ - -/* Good transmitted packets counter registers */ -#define E1000_PQGPTC(_n) (0x010014 + (0x100 * (_n))) - -/* Queues packet buffer size masks where _n can be 0-3 and _s 0-63 [kB] */ -#define E1000_I210_TXPBS_SIZE(_n, _s) ((_s) << (6 * _n)) - -#define E1000_MMDAC 13 /* MMD Access Control */ -#define E1000_MMDAAD 14 /* MMD Access Address/Data */ - -/* Convenience macros - * - * Note: "_n" is the queue number of the register to be written to. - * - * Example usage: - * E1000_RDBAL_REG(current_rx_queue) - */ -#define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : \ - (0x0C000 + ((_n) * 0x40))) -#define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : \ - (0x0C004 + ((_n) * 0x40))) -#define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : \ - (0x0C008 + ((_n) * 0x40))) -#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \ - (0x0C00C + ((_n) * 0x40))) -#define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : \ - (0x0C010 + ((_n) * 0x40))) -#define E1000_RXCTL(_n) ((_n) < 4 ? (0x02814 + ((_n) * 0x100)) : \ - (0x0C014 + ((_n) * 0x40))) -#define E1000_DCA_RXCTRL(_n) E1000_RXCTL(_n) -#define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : \ - (0x0C018 + ((_n) * 0x40))) -#define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : \ - (0x0C028 + ((_n) * 0x40))) -#define E1000_RQDPC(_n) ((_n) < 4 ? (0x02830 + ((_n) * 0x100)) : \ - (0x0C030 + ((_n) * 0x40))) -#define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : \ - (0x0E000 + ((_n) * 0x40))) -#define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : \ - (0x0E004 + ((_n) * 0x40))) -#define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : \ - (0x0E008 + ((_n) * 0x40))) -#define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : \ - (0x0E010 + ((_n) * 0x40))) -#define E1000_TXCTL(_n) ((_n) < 4 ? (0x03814 + ((_n) * 0x100)) : \ - (0x0E014 + ((_n) * 0x40))) -#define E1000_DCA_TXCTRL(_n) E1000_TXCTL(_n) -#define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : \ - (0x0E018 + ((_n) * 0x40))) -#define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : \ - (0x0E028 + ((_n) * 0x40))) -#define E1000_TDWBAL(_n) ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) : \ - (0x0E038 + ((_n) * 0x40))) -#define E1000_TDWBAH(_n) ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) : \ - (0x0E03C + ((_n) * 0x40))) -#define E1000_TARC(_n) (0x03840 + ((_n) * 0x100)) -#define E1000_RSRPD 0x02C00 /* Rx Small Packet Detect - RW */ -#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ -#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */ -#define E1000_PSRTYPE(_i) (0x05480 + ((_i) * 4)) -#define E1000_RAL(_i) (((_i) <= 15) ? (0x05400 + ((_i) * 8)) : \ - (0x054E0 + ((_i - 16) * 8))) -#define E1000_RAH(_i) (((_i) <= 15) ? (0x05404 + ((_i) * 8)) : \ - (0x054E4 + ((_i - 16) * 8))) -#define E1000_SHRAL(_i) (0x05438 + ((_i) * 8)) -#define E1000_SHRAH(_i) (0x0543C + ((_i) * 8)) -#define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8)) -#define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4)) -#define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4)) -#define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8)) -#define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8)) -#define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8)) -#define E1000_PBSLAC 0x03100 /* Pkt Buffer Slave Access Control */ -#define E1000_PBSLAD(_n) (0x03110 + (0x4 * (_n))) /* Pkt Buffer DWORD */ -#define E1000_TXPBS 0x03404 /* Tx Packet Buffer Size - RW */ -/* Same as TXPBS, renamed for newer Si - RW */ -#define E1000_ITPBS 0x03404 -#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */ -#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */ -#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */ -#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */ -#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */ -#define E1000_TDPUMB 0x0357C /* DMA Tx Desc uC Mail Box - RW */ -#define E1000_TDPUAD 0x03580 /* DMA Tx Desc uC Addr Command - RW */ -#define E1000_TDPUWD 0x03584 /* DMA Tx Desc uC Data Write - RW */ -#define E1000_TDPURD 0x03588 /* DMA Tx Desc uC Data Read - RW */ -#define E1000_TDPUCTL 0x0358C /* DMA Tx Desc uC Control - RW */ -#define E1000_DTXCTL 0x03590 /* DMA Tx Control - RW */ -#define E1000_DTXTCPFLGL 0x0359C /* DMA Tx Control flag low - RW */ -#define E1000_DTXTCPFLGH 0x035A0 /* DMA Tx Control flag high - RW */ -/* DMA Tx Max Total Allow Size Reqs - RW */ -#define E1000_DTXMXSZRQ 0x03540 -#define E1000_TIDV 0x03820 /* Tx Interrupt Delay Value - RW */ -#define E1000_TADV 0x0382C /* Tx Interrupt Absolute Delay Val - RW */ -#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ -#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ -#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ -#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ -#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ -#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ -#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ -#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ -#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ -#define E1000_COLC 0x04028 /* Collision Count - R/clr */ -#define E1000_DC 0x04030 /* Defer Count - R/clr */ -#define E1000_TNCRS 0x04034 /* Tx-No CRS - R/clr */ -#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ -#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ -#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ -#define E1000_XONRXC 0x04048 /* XON Rx Count - R/clr */ -#define E1000_XONTXC 0x0404C /* XON Tx Count - R/clr */ -#define E1000_XOFFRXC 0x04050 /* XOFF Rx Count - R/clr */ -#define E1000_XOFFTXC 0x04054 /* XOFF Tx Count - R/clr */ -#define E1000_FCRUC 0x04058 /* Flow Control Rx Unsupported Count- R/clr */ -#define E1000_PRC64 0x0405C /* Packets Rx (64 bytes) - R/clr */ -#define E1000_PRC127 0x04060 /* Packets Rx (65-127 bytes) - R/clr */ -#define E1000_PRC255 0x04064 /* Packets Rx (128-255 bytes) - R/clr */ -#define E1000_PRC511 0x04068 /* Packets Rx (255-511 bytes) - R/clr */ -#define E1000_PRC1023 0x0406C /* Packets Rx (512-1023 bytes) - R/clr */ -#define E1000_PRC1522 0x04070 /* Packets Rx (1024-1522 bytes) - R/clr */ -#define E1000_GPRC 0x04074 /* Good Packets Rx Count - R/clr */ -#define E1000_BPRC 0x04078 /* Broadcast Packets Rx Count - R/clr */ -#define E1000_MPRC 0x0407C /* Multicast Packets Rx Count - R/clr */ -#define E1000_GPTC 0x04080 /* Good Packets Tx Count - R/clr */ -#define E1000_GORCL 0x04088 /* Good Octets Rx Count Low - R/clr */ -#define E1000_GORCH 0x0408C /* Good Octets Rx Count High - R/clr */ -#define E1000_GOTCL 0x04090 /* Good Octets Tx Count Low - R/clr */ -#define E1000_GOTCH 0x04094 /* Good Octets Tx Count High - R/clr */ -#define E1000_RNBC 0x040A0 /* Rx No Buffers Count - R/clr */ -#define E1000_RUC 0x040A4 /* Rx Undersize Count - R/clr */ -#define E1000_RFC 0x040A8 /* Rx Fragment Count - R/clr */ -#define E1000_ROC 0x040AC /* Rx Oversize Count - R/clr */ -#define E1000_RJC 0x040B0 /* Rx Jabber Count - R/clr */ -#define E1000_MGTPRC 0x040B4 /* Management Packets Rx Count - R/clr */ -#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ -#define E1000_MGTPTC 0x040BC /* Management Packets Tx Count - R/clr */ -#define E1000_TORL 0x040C0 /* Total Octets Rx Low - R/clr */ -#define E1000_TORH 0x040C4 /* Total Octets Rx High - R/clr */ -#define E1000_TOTL 0x040C8 /* Total Octets Tx Low - R/clr */ -#define E1000_TOTH 0x040CC /* Total Octets Tx High - R/clr */ -#define E1000_TPR 0x040D0 /* Total Packets Rx - R/clr */ -#define E1000_TPT 0x040D4 /* Total Packets Tx - R/clr */ -#define E1000_PTC64 0x040D8 /* Packets Tx (64 bytes) - R/clr */ -#define E1000_PTC127 0x040DC /* Packets Tx (65-127 bytes) - R/clr */ -#define E1000_PTC255 0x040E0 /* Packets Tx (128-255 bytes) - R/clr */ -#define E1000_PTC511 0x040E4 /* Packets Tx (256-511 bytes) - R/clr */ -#define E1000_PTC1023 0x040E8 /* Packets Tx (512-1023 bytes) - R/clr */ -#define E1000_PTC1522 0x040EC /* Packets Tx (1024-1522 Bytes) - R/clr */ -#define E1000_MPTC 0x040F0 /* Multicast Packets Tx Count - R/clr */ -#define E1000_BPTC 0x040F4 /* Broadcast Packets Tx Count - R/clr */ -#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context Tx - R/clr */ -#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context Tx Fail - R/clr */ -#define E1000_IAC 0x04100 /* Interrupt Assertion Count */ -#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Pkt Timer Expire Count */ -#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Abs Timer Expire Count */ -#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Pkt Timer Expire Count */ -#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Abs Timer Expire Count */ -#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */ -#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Min Thresh Count */ -#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Desc Min Thresh Count */ -#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */ - -/* Virtualization statistical counters */ -#define E1000_PFVFGPRC(_n) (0x010010 + (0x100 * (_n))) -#define E1000_PFVFGPTC(_n) (0x010014 + (0x100 * (_n))) -#define E1000_PFVFGORC(_n) (0x010018 + (0x100 * (_n))) -#define E1000_PFVFGOTC(_n) (0x010034 + (0x100 * (_n))) -#define E1000_PFVFMPRC(_n) (0x010038 + (0x100 * (_n))) -#define E1000_PFVFGPRLBC(_n) (0x010040 + (0x100 * (_n))) -#define E1000_PFVFGPTLBC(_n) (0x010044 + (0x100 * (_n))) -#define E1000_PFVFGORLBC(_n) (0x010048 + (0x100 * (_n))) -#define E1000_PFVFGOTLBC(_n) (0x010050 + (0x100 * (_n))) - -/* LinkSec */ -#define E1000_LSECTXUT 0x04300 /* Tx Untagged Pkt Cnt */ -#define E1000_LSECTXPKTE 0x04304 /* Encrypted Tx Pkts Cnt */ -#define E1000_LSECTXPKTP 0x04308 /* Protected Tx Pkt Cnt */ -#define E1000_LSECTXOCTE 0x0430C /* Encrypted Tx Octets Cnt */ -#define E1000_LSECTXOCTP 0x04310 /* Protected Tx Octets Cnt */ -#define E1000_LSECRXUT 0x04314 /* Untagged non-Strict Rx Pkt Cnt */ -#define E1000_LSECRXOCTD 0x0431C /* Rx Octets Decrypted Count */ -#define E1000_LSECRXOCTV 0x04320 /* Rx Octets Validated */ -#define E1000_LSECRXBAD 0x04324 /* Rx Bad Tag */ -#define E1000_LSECRXNOSCI 0x04328 /* Rx Packet No SCI Count */ -#define E1000_LSECRXUNSCI 0x0432C /* Rx Packet Unknown SCI Count */ -#define E1000_LSECRXUNCH 0x04330 /* Rx Unchecked Packets Count */ -#define E1000_LSECRXDELAY 0x04340 /* Rx Delayed Packet Count */ -#define E1000_LSECRXLATE 0x04350 /* Rx Late Packets Count */ -#define E1000_LSECRXOK(_n) (0x04360 + (0x04 * (_n))) /* Rx Pkt OK Cnt */ -#define E1000_LSECRXINV(_n) (0x04380 + (0x04 * (_n))) /* Rx Invalid Cnt */ -#define E1000_LSECRXNV(_n) (0x043A0 + (0x04 * (_n))) /* Rx Not Valid Cnt */ -#define E1000_LSECRXUNSA 0x043C0 /* Rx Unused SA Count */ -#define E1000_LSECRXNUSA 0x043D0 /* Rx Not Using SA Count */ -#define E1000_LSECTXCAP 0x0B000 /* Tx Capabilities Register - RO */ -#define E1000_LSECRXCAP 0x0B300 /* Rx Capabilities Register - RO */ -#define E1000_LSECTXCTRL 0x0B004 /* Tx Control - RW */ -#define E1000_LSECRXCTRL 0x0B304 /* Rx Control - RW */ -#define E1000_LSECTXSCL 0x0B008 /* Tx SCI Low - RW */ -#define E1000_LSECTXSCH 0x0B00C /* Tx SCI High - RW */ -#define E1000_LSECTXSA 0x0B010 /* Tx SA0 - RW */ -#define E1000_LSECTXPN0 0x0B018 /* Tx SA PN 0 - RW */ -#define E1000_LSECTXPN1 0x0B01C /* Tx SA PN 1 - RW */ -#define E1000_LSECRXSCL 0x0B3D0 /* Rx SCI Low - RW */ -#define E1000_LSECRXSCH 0x0B3E0 /* Rx SCI High - RW */ -/* LinkSec Tx 128-bit Key 0 - WO */ -#define E1000_LSECTXKEY0(_n) (0x0B020 + (0x04 * (_n))) -/* LinkSec Tx 128-bit Key 1 - WO */ -#define E1000_LSECTXKEY1(_n) (0x0B030 + (0x04 * (_n))) -#define E1000_LSECRXSA(_n) (0x0B310 + (0x04 * (_n))) /* Rx SAs - RW */ -#define E1000_LSECRXPN(_n) (0x0B330 + (0x04 * (_n))) /* Rx SAs - RW */ -/* LinkSec Rx Keys - where _n is the SA no. and _m the 4 dwords of the 128 bit - * key - RW. - */ -#define E1000_LSECRXKEY(_n, _m) (0x0B350 + (0x10 * (_n)) + (0x04 * (_m))) - -#define E1000_SSVPC 0x041A0 /* Switch Security Violation Pkt Cnt */ -#define E1000_IPSCTRL 0xB430 /* IpSec Control Register */ -#define E1000_IPSRXCMD 0x0B408 /* IPSec Rx Command Register - RW */ -#define E1000_IPSRXIDX 0x0B400 /* IPSec Rx Index - RW */ -/* IPSec Rx IPv4/v6 Address - RW */ -#define E1000_IPSRXIPADDR(_n) (0x0B420 + (0x04 * (_n))) -/* IPSec Rx 128-bit Key - RW */ -#define E1000_IPSRXKEY(_n) (0x0B410 + (0x04 * (_n))) -#define E1000_IPSRXSALT 0x0B404 /* IPSec Rx Salt - RW */ -#define E1000_IPSRXSPI 0x0B40C /* IPSec Rx SPI - RW */ -/* IPSec Tx 128-bit Key - RW */ -#define E1000_IPSTXKEY(_n) (0x0B460 + (0x04 * (_n))) -#define E1000_IPSTXSALT 0x0B454 /* IPSec Tx Salt - RW */ -#define E1000_IPSTXIDX 0x0B450 /* IPSec Tx SA IDX - RW */ -#define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */ -#define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */ -#define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */ -#define E1000_CBTMPC 0x0402C /* Circuit Breaker Tx Packet Count */ -#define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */ -#define E1000_CBRDPC 0x04044 /* Circuit Breaker Rx Dropped Count */ -#define E1000_CBRMPC 0x040FC /* Circuit Breaker Rx Packet Count */ -#define E1000_RPTHC 0x04104 /* Rx Packets To Host */ -#define E1000_HGPTC 0x04118 /* Host Good Packets Tx Count */ -#define E1000_HTCBDPC 0x04124 /* Host Tx Circuit Breaker Dropped Count */ -#define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */ -#define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */ -#define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */ -#define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */ -#define E1000_LENERRS 0x04138 /* Length Errors Count */ -#define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */ -#define E1000_HRMPC 0x0A018 /* Header Redirection Missed Packet Count */ -#define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */ -#define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */ -#define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */ -#define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Pg - RW */ -#define E1000_RXCSUM 0x05000 /* Rx Checksum Control - RW */ -#define E1000_RLPML 0x05004 /* Rx Long Packet Max Length */ -#define E1000_RFCTL 0x05008 /* Receive Filter Control*/ -#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ -#define E1000_RA 0x05400 /* Receive Address - RW Array */ -#define E1000_RA2 0x054E0 /* 2nd half of Rx address array - RW Array */ -#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ -#define E1000_VT_CTL 0x0581C /* VMDq Control - RW */ -#define E1000_CIAA 0x05B88 /* Config Indirect Access Address - RW */ -#define E1000_CIAD 0x05B8C /* Config Indirect Access Data - RW */ -#define E1000_VFQA0 0x0B000 /* VLAN Filter Queue Array 0 - RW Array */ -#define E1000_VFQA1 0x0B200 /* VLAN Filter Queue Array 1 - RW Array */ -#define E1000_WUC 0x05800 /* Wakeup Control - RW */ -#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ -#define E1000_WUS 0x05810 /* Wakeup Status - RO */ -#define E1000_MANC 0x05820 /* Management Control - RW */ -#define E1000_IPAV 0x05838 /* IP Address Valid - RW */ -#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ -#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ -#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ -#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ -#define E1000_PBACL 0x05B68 /* MSIx PBA Clear - Read/Write 1's to clear */ -#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ -#define E1000_HOST_IF 0x08800 /* Host Interface */ -#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ -#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ -#define E1000_HIBBA 0x8F40 /* Host Interface Buffer Base Address */ -/* Flexible Host Filter Table */ -#define E1000_FHFT(_n) (0x09000 + ((_n) * 0x100)) -/* Ext Flexible Host Filter Table */ -#define E1000_FHFT_EXT(_n) (0x09A00 + ((_n) * 0x100)) - - -#define E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */ -#define E1000_MANC2H 0x05860 /* Management Control To Host - RW */ -/* Management Decision Filters */ -#define E1000_MDEF(_n) (0x05890 + (4 * (_n))) -#define E1000_SW_FW_SYNC 0x05B5C /* SW-FW Synchronization - RW */ -#define E1000_CCMCTL 0x05B48 /* CCM Control Register */ -#define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */ -#define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */ -#define E1000_GCR 0x05B00 /* PCI-Ex Control */ -#define E1000_GCR2 0x05B64 /* PCI-Ex Control #2 */ -#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */ -#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */ -#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */ -#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */ -#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */ -#define E1000_SWSM 0x05B50 /* SW Semaphore */ -#define E1000_FWSM 0x05B54 /* FW Semaphore */ -/* Driver-only SW semaphore (not used by BOOT agents) */ -#define E1000_SWSM2 0x05B58 -#define E1000_DCA_ID 0x05B70 /* DCA Requester ID Information - RO */ -#define E1000_DCA_CTRL 0x05B74 /* DCA Control - RW */ -#define E1000_UFUSE 0x05B78 /* UFUSE - RO */ -#define E1000_FFLT_DBG 0x05F04 /* Debug Register */ -#define E1000_HICR 0x08F00 /* Host Interface Control */ -#define E1000_FWSTS 0x08F0C /* FW Status */ - -/* RSS registers */ -#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */ -#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */ -#define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */ -#define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) /* Immediate INTR Ext*/ -#define E1000_IMIRVP 0x05AC0 /* Immediate INT Rx VLAN Priority -RW */ -#define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4)) /* MSI-X Alloc Reg -RW */ -#define E1000_RETA(_i) (0x05C00 + ((_i) * 4)) /* Redirection Table - RW */ -#define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) /* RSS Random Key - RW */ -#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */ -#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */ -/* VT Registers */ -#define E1000_SWPBS 0x03004 /* Switch Packet Buffer Size - RW */ -#define E1000_MBVFICR 0x00C80 /* Mailbox VF Cause - RWC */ -#define E1000_MBVFIMR 0x00C84 /* Mailbox VF int Mask - RW */ -#define E1000_VFLRE 0x00C88 /* VF Register Events - RWC */ -#define E1000_VFRE 0x00C8C /* VF Receive Enables */ -#define E1000_VFTE 0x00C90 /* VF Transmit Enables */ -#define E1000_QDE 0x02408 /* Queue Drop Enable - RW */ -#define E1000_DTXSWC 0x03500 /* DMA Tx Switch Control - RW */ -#define E1000_WVBR 0x03554 /* VM Wrong Behavior - RWS */ -#define E1000_RPLOLR 0x05AF0 /* Replication Offload - RW */ -#define E1000_UTA 0x0A000 /* Unicast Table Array - RW */ -#define E1000_IOVTCL 0x05BBC /* IOV Control Register */ -#define E1000_VMRCTL 0X05D80 /* Virtual Mirror Rule Control */ -#define E1000_VMRVLAN 0x05D90 /* Virtual Mirror Rule VLAN */ -#define E1000_VMRVM 0x05DA0 /* Virtual Mirror Rule VM */ -#define E1000_MDFB 0x03558 /* Malicious Driver free block */ -#define E1000_LVMMC 0x03548 /* Last VM Misbehavior cause */ -#define E1000_TXSWC 0x05ACC /* Tx Switch Control */ -#define E1000_SCCRL 0x05DB0 /* Storm Control Control */ -#define E1000_BSCTRH 0x05DB8 /* Broadcast Storm Control Threshold */ -#define E1000_MSCTRH 0x05DBC /* Multicast Storm Control Threshold */ -/* These act per VF so an array friendly macro is used */ -#define E1000_V2PMAILBOX(_n) (0x00C40 + (4 * (_n))) -#define E1000_P2VMAILBOX(_n) (0x00C00 + (4 * (_n))) -#define E1000_VMBMEM(_n) (0x00800 + (64 * (_n))) -#define E1000_VFVMBMEM(_n) (0x00800 + (_n)) -#define E1000_VMOLR(_n) (0x05AD0 + (4 * (_n))) -/* VLAN Virtual Machine Filter - RW */ -#define E1000_VLVF(_n) (0x05D00 + (4 * (_n))) -#define E1000_VMVIR(_n) (0x03700 + (4 * (_n))) -#define E1000_DVMOLR(_n) (0x0C038 + (0x40 * (_n))) /* DMA VM offload */ -#define E1000_VTCTRL(_n) (0x10000 + (0x100 * (_n))) /* VT Control */ -#define E1000_TSYNCRXCTL 0x0B620 /* Rx Time Sync Control register - RW */ -#define E1000_TSYNCTXCTL 0x0B614 /* Tx Time Sync Control register - RW */ -#define E1000_TSYNCRXCFG 0x05F50 /* Time Sync Rx Configuration - RW */ -#define E1000_RXSTMPL 0x0B624 /* Rx timestamp Low - RO */ -#define E1000_RXSTMPH 0x0B628 /* Rx timestamp High - RO */ -#define E1000_RXSATRL 0x0B62C /* Rx timestamp attribute low - RO */ -#define E1000_RXSATRH 0x0B630 /* Rx timestamp attribute high - RO */ -#define E1000_TXSTMPL 0x0B618 /* Tx timestamp value Low - RO */ -#define E1000_TXSTMPH 0x0B61C /* Tx timestamp value High - RO */ -#define E1000_SYSTIML 0x0B600 /* System time register Low - RO */ -#define E1000_SYSTIMH 0x0B604 /* System time register High - RO */ -#define E1000_TIMINCA 0x0B608 /* Increment attributes register - RW */ -#define E1000_TIMADJL 0x0B60C /* Time sync time adjustment offset Low - RW */ -#define E1000_TIMADJH 0x0B610 /* Time sync time adjustment offset High - RW */ -#define E1000_TSAUXC 0x0B640 /* Timesync Auxiliary Control register */ -#define E1000_SYSTIMR 0x0B6F8 /* System time register Residue */ -#define E1000_TSICR 0x0B66C /* Interrupt Cause Register */ -#define E1000_TSIM 0x0B674 /* Interrupt Mask Register */ - -/* Filtering Registers */ -#define E1000_SAQF(_n) (0x05980 + (4 * (_n))) /* Source Address Queue Fltr */ -#define E1000_DAQF(_n) (0x059A0 + (4 * (_n))) /* Dest Address Queue Fltr */ -#define E1000_SPQF(_n) (0x059C0 + (4 * (_n))) /* Source Port Queue Fltr */ -#define E1000_FTQF(_n) (0x059E0 + (4 * (_n))) /* 5-tuple Queue Fltr */ -#define E1000_TTQF(_n) (0x059E0 + (4 * (_n))) /* 2-tuple Queue Fltr */ -#define E1000_SYNQF(_n) (0x055FC + (4 * (_n))) /* SYN Packet Queue Fltr */ -#define E1000_ETQF(_n) (0x05CB0 + (4 * (_n))) /* EType Queue Fltr */ - -#define E1000_RTTDCS 0x3600 /* Reedtown Tx Desc plane control and status */ -#define E1000_RTTPCS 0x3474 /* Reedtown Tx Packet Plane control and status */ -#define E1000_RTRPCS 0x2474 /* Rx packet plane control and status */ -#define E1000_RTRUP2TC 0x05AC4 /* Rx User Priority to Traffic Class */ -#define E1000_RTTUP2TC 0x0418 /* Transmit User Priority to Traffic Class */ -/* Tx Desc plane TC Rate-scheduler config */ -#define E1000_RTTDTCRC(_n) (0x3610 + ((_n) * 4)) -/* Tx Packet plane TC Rate-Scheduler Config */ -#define E1000_RTTPTCRC(_n) (0x3480 + ((_n) * 4)) -/* Rx Packet plane TC Rate-Scheduler Config */ -#define E1000_RTRPTCRC(_n) (0x2480 + ((_n) * 4)) -/* Tx Desc Plane TC Rate-Scheduler Status */ -#define E1000_RTTDTCRS(_n) (0x3630 + ((_n) * 4)) -/* Tx Desc Plane TC Rate-Scheduler MMW */ -#define E1000_RTTDTCRM(_n) (0x3650 + ((_n) * 4)) -/* Tx Packet plane TC Rate-Scheduler Status */ -#define E1000_RTTPTCRS(_n) (0x34A0 + ((_n) * 4)) -/* Tx Packet plane TC Rate-scheduler MMW */ -#define E1000_RTTPTCRM(_n) (0x34C0 + ((_n) * 4)) -/* Rx Packet plane TC Rate-Scheduler Status */ -#define E1000_RTRPTCRS(_n) (0x24A0 + ((_n) * 4)) -/* Rx Packet plane TC Rate-Scheduler MMW */ -#define E1000_RTRPTCRM(_n) (0x24C0 + ((_n) * 4)) -/* Tx Desc plane VM Rate-Scheduler MMW*/ -#define E1000_RTTDVMRM(_n) (0x3670 + ((_n) * 4)) -/* Tx BCN Rate-Scheduler MMW */ -#define E1000_RTTBCNRM(_n) (0x3690 + ((_n) * 4)) -#define E1000_RTTDQSEL 0x3604 /* Tx Desc Plane Queue Select */ -#define E1000_RTTDVMRC 0x3608 /* Tx Desc Plane VM Rate-Scheduler Config */ -#define E1000_RTTDVMRS 0x360C /* Tx Desc Plane VM Rate-Scheduler Status */ -#define E1000_RTTBCNRC 0x36B0 /* Tx BCN Rate-Scheduler Config */ -#define E1000_RTTBCNRS 0x36B4 /* Tx BCN Rate-Scheduler Status */ -#define E1000_RTTBCNCR 0xB200 /* Tx BCN Control Register */ -#define E1000_RTTBCNTG 0x35A4 /* Tx BCN Tagging */ -#define E1000_RTTBCNCP 0xB208 /* Tx BCN Congestion point */ -#define E1000_RTRBCNCR 0xB20C /* Rx BCN Control Register */ -#define E1000_RTTBCNRD 0x36B8 /* Tx BCN Rate Drift */ -#define E1000_PFCTOP 0x1080 /* Priority Flow Control Type and Opcode */ -#define E1000_RTTBCNIDX 0xB204 /* Tx BCN Congestion Point */ -#define E1000_RTTBCNACH 0x0B214 /* Tx BCN Control High */ -#define E1000_RTTBCNACL 0x0B210 /* Tx BCN Control Low */ - -/* DMA Coalescing registers */ -#define E1000_DMACR 0x02508 /* Control Register */ -#define E1000_DMCTXTH 0x03550 /* Transmit Threshold */ -#define E1000_DMCTLX 0x02514 /* Time to Lx Request */ -#define E1000_DMCRTRH 0x05DD0 /* Receive Packet Rate Threshold */ -#define E1000_DMCCNT 0x05DD4 /* Current Rx Count */ -#define E1000_FCRTC 0x02170 /* Flow Control Rx high watermark */ -#define E1000_PCIEMISC 0x05BB8 /* PCIE misc config register */ - -/* PCIe Parity Status Register */ -#define E1000_PCIEERRSTS 0x05BA8 - -#define E1000_PROXYS 0x5F64 /* Proxying Status */ -#define E1000_PROXYFC 0x5F60 /* Proxying Filter Control */ -/* Thermal sensor configuration and status registers */ -#define E1000_THMJT 0x08100 /* Junction Temperature */ -#define E1000_THLOWTC 0x08104 /* Low Threshold Control */ -#define E1000_THMIDTC 0x08108 /* Mid Threshold Control */ -#define E1000_THHIGHTC 0x0810C /* High Threshold Control */ -#define E1000_THSTAT 0x08110 /* Thermal Sensor Status */ - -/* Energy Efficient Ethernet "EEE" registers */ -#define E1000_IPCNFG 0x0E38 /* Internal PHY Configuration */ -#define E1000_LTRC 0x01A0 /* Latency Tolerance Reporting Control */ -#define E1000_EEER 0x0E30 /* Energy Efficient Ethernet "EEE"*/ -#define E1000_EEE_SU 0x0E34 /* EEE Setup */ -#define E1000_TLPIC 0x4148 /* EEE Tx LPI Count - TLPIC */ -#define E1000_RLPIC 0x414C /* EEE Rx LPI Count - RLPIC */ - -/* OS2BMC Registers */ -#define E1000_B2OSPC 0x08FE0 /* BMC2OS packets sent by BMC */ -#define E1000_B2OGPRC 0x04158 /* BMC2OS packets received by host */ -#define E1000_O2BGPTC 0x08FE4 /* OS2BMC packets received by BMC */ -#define E1000_O2BSPC 0x0415C /* OS2BMC packets transmitted by host */ - - - -#endif diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/igb.h b/lib/librte_eal/linuxapp/kni/ethtool/igb/igb.h deleted file mode 100644 index 8aa2a308..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/igb.h +++ /dev/null @@ -1,844 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -/* Linux PRO/1000 Ethernet Driver main header file */ - -#ifndef _IGB_H_ -#define _IGB_H_ - -#include <linux/kobject.h> - -#ifndef IGB_NO_LRO -#include <net/tcp.h> -#endif - -#undef HAVE_HW_TIME_STAMP -#ifdef HAVE_HW_TIME_STAMP -#include <linux/pci.h> -#include <linux/netdevice.h> -#include <linux/vmalloc.h> - -#endif -#ifdef SIOCETHTOOL -#include <linux/ethtool.h> -#endif - -struct igb_adapter; - -#if defined(CONFIG_DCA) || defined(CONFIG_DCA_MODULE) -//#define IGB_DCA -#endif -#ifdef IGB_DCA -#include <linux/dca.h> -#endif - -#include "kcompat.h" - -#ifdef HAVE_SCTP -#include <linux/sctp.h> -#endif - -#include "e1000_api.h" -#include "e1000_82575.h" -#include "e1000_manage.h" -#include "e1000_mbx.h" - -#define IGB_ERR(args...) printk(KERN_ERR "igb: " args) - -#define PFX "igb: " -#define DPRINTK(nlevel, klevel, fmt, args...) \ - (void)((NETIF_MSG_##nlevel & adapter->msg_enable) && \ - printk(KERN_##klevel PFX "%s: %s: " fmt, adapter->netdev->name, \ - __FUNCTION__ , ## args)) - -#ifdef HAVE_PTP_1588_CLOCK -#include <linux/clocksource.h> -#include <linux/net_tstamp.h> -#include <linux/ptp_clock_kernel.h> -#endif /* HAVE_PTP_1588_CLOCK */ - -#ifdef HAVE_I2C_SUPPORT -#include <linux/i2c.h> -#include <linux/i2c-algo-bit.h> -#endif /* HAVE_I2C_SUPPORT */ - -/* Interrupt defines */ -#define IGB_START_ITR 648 /* ~6000 ints/sec */ -#define IGB_4K_ITR 980 -#define IGB_20K_ITR 196 -#define IGB_70K_ITR 56 - -/* Interrupt modes, as used by the IntMode parameter */ -#define IGB_INT_MODE_LEGACY 0 -#define IGB_INT_MODE_MSI 1 -#define IGB_INT_MODE_MSIX 2 - -/* TX/RX descriptor defines */ -#define IGB_DEFAULT_TXD 256 -#define IGB_DEFAULT_TX_WORK 128 -#define IGB_MIN_TXD 80 -#define IGB_MAX_TXD 4096 - -#define IGB_DEFAULT_RXD 256 -#define IGB_MIN_RXD 80 -#define IGB_MAX_RXD 4096 - -#define IGB_MIN_ITR_USECS 10 /* 100k irq/sec */ -#define IGB_MAX_ITR_USECS 8191 /* 120 irq/sec */ - -#define NON_Q_VECTORS 1 -#define MAX_Q_VECTORS 10 - -/* Transmit and receive queues */ -#define IGB_MAX_RX_QUEUES 16 -#define IGB_MAX_TX_QUEUES 16 - -#define IGB_MAX_VF_MC_ENTRIES 30 -#define IGB_MAX_VF_FUNCTIONS 8 -#define IGB_82576_VF_DEV_ID 0x10CA -#define IGB_I350_VF_DEV_ID 0x1520 -#define IGB_MAX_UTA_ENTRIES 128 -#define MAX_EMULATION_MAC_ADDRS 16 -#define OUI_LEN 3 -#define IGB_MAX_VMDQ_QUEUES 8 - - -struct vf_data_storage { - unsigned char vf_mac_addresses[ETH_ALEN]; - u16 vf_mc_hashes[IGB_MAX_VF_MC_ENTRIES]; - u16 num_vf_mc_hashes; - u16 default_vf_vlan_id; - u16 vlans_enabled; - unsigned char em_mac_addresses[MAX_EMULATION_MAC_ADDRS * ETH_ALEN]; - u32 uta_table_copy[IGB_MAX_UTA_ENTRIES]; - u32 flags; - unsigned long last_nack; -#ifdef IFLA_VF_MAX - u16 pf_vlan; /* When set, guest VLAN config not allowed. */ - u16 pf_qos; - u16 tx_rate; -#ifdef HAVE_VF_SPOOFCHK_CONFIGURE - bool spoofchk_enabled; -#endif -#endif -}; - -#define IGB_VF_FLAG_CTS 0x00000001 /* VF is clear to send data */ -#define IGB_VF_FLAG_UNI_PROMISC 0x00000002 /* VF has unicast promisc */ -#define IGB_VF_FLAG_MULTI_PROMISC 0x00000004 /* VF has multicast promisc */ -#define IGB_VF_FLAG_PF_SET_MAC 0x00000008 /* PF has set MAC address */ - -/* RX descriptor control thresholds. - * PTHRESH - MAC will consider prefetch if it has fewer than this number of - * descriptors available in its onboard memory. - * Setting this to 0 disables RX descriptor prefetch. - * HTHRESH - MAC will only prefetch if there are at least this many descriptors - * available in host memory. - * If PTHRESH is 0, this should also be 0. - * WTHRESH - RX descriptor writeback threshold - MAC will delay writing back - * descriptors until either it has this many to write back, or the - * ITR timer expires. - */ -#define IGB_RX_PTHRESH ((hw->mac.type == e1000_i354) ? 12 : 8) -#define IGB_RX_HTHRESH 8 -#define IGB_TX_PTHRESH ((hw->mac.type == e1000_i354) ? 20 : 8) -#define IGB_TX_HTHRESH 1 -#define IGB_RX_WTHRESH ((hw->mac.type == e1000_82576 && \ - adapter->msix_entries) ? 1 : 4) - -/* this is the size past which hardware will drop packets when setting LPE=0 */ -#define MAXIMUM_ETHERNET_VLAN_SIZE 1522 - -/* NOTE: netdev_alloc_skb reserves 16 bytes, NET_IP_ALIGN means we - * reserve 2 more, and skb_shared_info adds an additional 384 more, - * this adds roughly 448 bytes of extra data meaning the smallest - * allocation we could have is 1K. - * i.e. RXBUFFER_512 --> size-1024 slab - */ -/* Supported Rx Buffer Sizes */ -#define IGB_RXBUFFER_256 256 -#define IGB_RXBUFFER_2048 2048 -#define IGB_RXBUFFER_16384 16384 -#define IGB_RX_HDR_LEN IGB_RXBUFFER_256 -#if MAX_SKB_FRAGS < 8 -#define IGB_RX_BUFSZ ALIGN(MAX_JUMBO_FRAME_SIZE / MAX_SKB_FRAGS, 1024) -#else -#define IGB_RX_BUFSZ IGB_RXBUFFER_2048 -#endif - - -/* Packet Buffer allocations */ -#define IGB_PBA_BYTES_SHIFT 0xA -#define IGB_TX_HEAD_ADDR_SHIFT 7 -#define IGB_PBA_TX_MASK 0xFFFF0000 - -#define IGB_FC_PAUSE_TIME 0x0680 /* 858 usec */ - -/* How many Rx Buffers do we bundle into one write to the hardware ? */ -#define IGB_RX_BUFFER_WRITE 16 /* Must be power of 2 */ - -#define IGB_EEPROM_APME 0x0400 -#define AUTO_ALL_MODES 0 - -#ifndef IGB_MASTER_SLAVE -/* Switch to override PHY master/slave setting */ -#define IGB_MASTER_SLAVE e1000_ms_hw_default -#endif - -#define IGB_MNG_VLAN_NONE -1 - -#ifndef IGB_NO_LRO -#define IGB_LRO_MAX 32 /*Maximum number of LRO descriptors*/ -struct igb_lro_stats { - u32 flushed; - u32 coal; -}; - -/* - * igb_lro_header - header format to be aggregated by LRO - * @iph: IP header without options - * @tcp: TCP header - * @ts: Optional TCP timestamp data in TCP options - * - * This structure relies on the check above that verifies that the header - * is IPv4 and does not contain any options. - */ -struct igb_lrohdr { - struct iphdr iph; - struct tcphdr th; - __be32 ts[0]; -}; - -struct igb_lro_list { - struct sk_buff_head active; - struct igb_lro_stats stats; -}; - -#endif /* IGB_NO_LRO */ -struct igb_cb { -#ifndef IGB_NO_LRO -#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT - union { /* Union defining head/tail partner */ - struct sk_buff *head; - struct sk_buff *tail; - }; -#endif - __be32 tsecr; /* timestamp echo response */ - u32 tsval; /* timestamp value in host order */ - u32 next_seq; /* next expected sequence number */ - u16 free; /* 65521 minus total size */ - u16 mss; /* size of data portion of packet */ - u16 append_cnt; /* number of skb's appended */ -#endif /* IGB_NO_LRO */ -#ifdef HAVE_VLAN_RX_REGISTER - u16 vid; /* VLAN tag */ -#endif -}; -#define IGB_CB(skb) ((struct igb_cb *)(skb)->cb) - -enum igb_tx_flags { - /* cmd_type flags */ - IGB_TX_FLAGS_VLAN = 0x01, - IGB_TX_FLAGS_TSO = 0x02, - IGB_TX_FLAGS_TSTAMP = 0x04, - - /* olinfo flags */ - IGB_TX_FLAGS_IPV4 = 0x10, - IGB_TX_FLAGS_CSUM = 0x20, -}; - -/* VLAN info */ -#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000 -#define IGB_TX_FLAGS_VLAN_SHIFT 16 - -/* - * The largest size we can write to the descriptor is 65535. In order to - * maintain a power of two alignment we have to limit ourselves to 32K. - */ -#define IGB_MAX_TXD_PWR 15 -#define IGB_MAX_DATA_PER_TXD (1 << IGB_MAX_TXD_PWR) - -/* Tx Descriptors needed, worst case */ -#define TXD_USE_COUNT(S) DIV_ROUND_UP((S), IGB_MAX_DATA_PER_TXD) -#ifndef MAX_SKB_FRAGS -#define DESC_NEEDED 4 -#elif (MAX_SKB_FRAGS < 16) -#define DESC_NEEDED ((MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE)) + 4) -#else -#define DESC_NEEDED (MAX_SKB_FRAGS + 4) -#endif - -/* wrapper around a pointer to a socket buffer, - * so a DMA handle can be stored along with the buffer */ -struct igb_tx_buffer { - union e1000_adv_tx_desc *next_to_watch; - unsigned long time_stamp; - struct sk_buff *skb; - unsigned int bytecount; - u16 gso_segs; - __be16 protocol; - DEFINE_DMA_UNMAP_ADDR(dma); - DEFINE_DMA_UNMAP_LEN(len); - u32 tx_flags; -}; - -struct igb_rx_buffer { - dma_addr_t dma; -#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT - struct sk_buff *skb; -#else - struct page *page; - u32 page_offset; -#endif -}; - -struct igb_tx_queue_stats { - u64 packets; - u64 bytes; - u64 restart_queue; -}; - -struct igb_rx_queue_stats { - u64 packets; - u64 bytes; - u64 drops; - u64 csum_err; - u64 alloc_failed; - u64 ipv4_packets; /* IPv4 headers processed */ - u64 ipv4e_packets; /* IPv4E headers with extensions processed */ - u64 ipv6_packets; /* IPv6 headers processed */ - u64 ipv6e_packets; /* IPv6E headers with extensions processed */ - u64 tcp_packets; /* TCP headers processed */ - u64 udp_packets; /* UDP headers processed */ - u64 sctp_packets; /* SCTP headers processed */ - u64 nfs_packets; /* NFS headers processe */ -}; - -struct igb_ring_container { - struct igb_ring *ring; /* pointer to linked list of rings */ - unsigned int total_bytes; /* total bytes processed this int */ - unsigned int total_packets; /* total packets processed this int */ - u16 work_limit; /* total work allowed per interrupt */ - u8 count; /* total number of rings in vector */ - u8 itr; /* current ITR setting for ring */ -}; - -struct igb_ring { - struct igb_q_vector *q_vector; /* backlink to q_vector */ - struct net_device *netdev; /* back pointer to net_device */ - struct device *dev; /* device for dma mapping */ - union { /* array of buffer info structs */ - struct igb_tx_buffer *tx_buffer_info; - struct igb_rx_buffer *rx_buffer_info; - }; -#ifdef HAVE_PTP_1588_CLOCK - unsigned long last_rx_timestamp; -#endif /* HAVE_PTP_1588_CLOCK */ - void *desc; /* descriptor ring memory */ - unsigned long flags; /* ring specific flags */ - void __iomem *tail; /* pointer to ring tail register */ - dma_addr_t dma; /* phys address of the ring */ - unsigned int size; /* length of desc. ring in bytes */ - - u16 count; /* number of desc. in the ring */ - u8 queue_index; /* logical index of the ring*/ - u8 reg_idx; /* physical index of the ring */ - - /* everything past this point are written often */ - u16 next_to_clean; - u16 next_to_use; - u16 next_to_alloc; - - union { - /* TX */ - struct { - struct igb_tx_queue_stats tx_stats; - }; - /* RX */ - struct { - struct igb_rx_queue_stats rx_stats; -#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT - u16 rx_buffer_len; -#else - struct sk_buff *skb; -#endif - }; - }; -#ifdef CONFIG_IGB_VMDQ_NETDEV - struct net_device *vmdq_netdev; - int vqueue_index; /* queue index for virtual netdev */ -#endif -} ____cacheline_internodealigned_in_smp; - -struct igb_q_vector { - struct igb_adapter *adapter; /* backlink */ - int cpu; /* CPU for DCA */ - u32 eims_value; /* EIMS mask value */ - - u16 itr_val; - u8 set_itr; - void __iomem *itr_register; - - struct igb_ring_container rx, tx; - - struct napi_struct napi; -#ifndef IGB_NO_LRO - struct igb_lro_list lrolist; /* LRO list for queue vector*/ -#endif - char name[IFNAMSIZ + 9]; -#ifndef HAVE_NETDEV_NAPI_LIST - struct net_device poll_dev; -#endif - - /* for dynamic allocation of rings associated with this q_vector */ - struct igb_ring ring[0] ____cacheline_internodealigned_in_smp; -}; - -enum e1000_ring_flags_t { -#ifndef HAVE_NDO_SET_FEATURES - IGB_RING_FLAG_RX_CSUM, -#endif - IGB_RING_FLAG_RX_SCTP_CSUM, - IGB_RING_FLAG_RX_LB_VLAN_BSWAP, - IGB_RING_FLAG_TX_CTX_IDX, - IGB_RING_FLAG_TX_DETECT_HANG, -}; - -struct igb_mac_addr { - u8 addr[ETH_ALEN]; - u16 queue; - u16 state; /* bitmask */ -}; -#define IGB_MAC_STATE_DEFAULT 0x1 -#define IGB_MAC_STATE_MODIFIED 0x2 -#define IGB_MAC_STATE_IN_USE 0x4 - -#define IGB_TXD_DCMD (E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_RS) - -#define IGB_RX_DESC(R, i) \ - (&(((union e1000_adv_rx_desc *)((R)->desc))[i])) -#define IGB_TX_DESC(R, i) \ - (&(((union e1000_adv_tx_desc *)((R)->desc))[i])) -#define IGB_TX_CTXTDESC(R, i) \ - (&(((struct e1000_adv_tx_context_desc *)((R)->desc))[i])) - -#ifdef CONFIG_IGB_VMDQ_NETDEV -#define netdev_ring(ring) \ - ((ring->vmdq_netdev ? ring->vmdq_netdev : ring->netdev)) -#define ring_queue_index(ring) \ - ((ring->vmdq_netdev ? ring->vqueue_index : ring->queue_index)) -#else -#define netdev_ring(ring) (ring->netdev) -#define ring_queue_index(ring) (ring->queue_index) -#endif /* CONFIG_IGB_VMDQ_NETDEV */ - -/* igb_test_staterr - tests bits within Rx descriptor status and error fields */ -static inline __le32 igb_test_staterr(union e1000_adv_rx_desc *rx_desc, - const u32 stat_err_bits) -{ - return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits); -} - -/* igb_desc_unused - calculate if we have unused descriptors */ -static inline u16 igb_desc_unused(const struct igb_ring *ring) -{ - u16 ntc = ring->next_to_clean; - u16 ntu = ring->next_to_use; - - return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1; -} - -#ifdef CONFIG_BQL -static inline struct netdev_queue *txring_txq(const struct igb_ring *tx_ring) -{ - return netdev_get_tx_queue(tx_ring->netdev, tx_ring->queue_index); -} -#endif /* CONFIG_BQL */ - -// #ifdef EXT_THERMAL_SENSOR_SUPPORT -// #ifdef IGB_PROCFS -struct igb_therm_proc_data -{ - struct e1000_hw *hw; - struct e1000_thermal_diode_data *sensor_data; -}; - -// #endif /* IGB_PROCFS */ -// #endif /* EXT_THERMAL_SENSOR_SUPPORT */ - -#ifdef IGB_HWMON -#define IGB_HWMON_TYPE_LOC 0 -#define IGB_HWMON_TYPE_TEMP 1 -#define IGB_HWMON_TYPE_CAUTION 2 -#define IGB_HWMON_TYPE_MAX 3 - -struct hwmon_attr { - struct device_attribute dev_attr; - struct e1000_hw *hw; - struct e1000_thermal_diode_data *sensor; - char name[12]; - }; - -struct hwmon_buff { - struct device *device; - struct hwmon_attr *hwmon_list; - unsigned int n_hwmon; - }; -#endif /* IGB_HWMON */ - -/* board specific private data structure */ -struct igb_adapter { -#ifdef HAVE_VLAN_RX_REGISTER - /* vlgrp must be first member of structure */ - struct vlan_group *vlgrp; -#else - unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; -#endif - struct net_device *netdev; - - unsigned long state; - unsigned int flags; - - unsigned int num_q_vectors; - struct msix_entry *msix_entries; - - - /* TX */ - u16 tx_work_limit; - u32 tx_timeout_count; - int num_tx_queues; - struct igb_ring *tx_ring[IGB_MAX_TX_QUEUES]; - - /* RX */ - int num_rx_queues; - struct igb_ring *rx_ring[IGB_MAX_RX_QUEUES]; - - struct timer_list watchdog_timer; - struct timer_list dma_err_timer; - struct timer_list phy_info_timer; - u16 mng_vlan_id; - u32 bd_number; - u32 wol; - u32 en_mng_pt; - u16 link_speed; - u16 link_duplex; - u8 port_num; - - /* Interrupt Throttle Rate */ - u32 rx_itr_setting; - u32 tx_itr_setting; - - struct work_struct reset_task; - struct work_struct watchdog_task; - struct work_struct dma_err_task; - bool fc_autoneg; - u8 tx_timeout_factor; - -#ifdef DEBUG - bool tx_hang_detected; - bool disable_hw_reset; -#endif - u32 max_frame_size; - - /* OS defined structs */ - struct pci_dev *pdev; -#ifndef HAVE_NETDEV_STATS_IN_NETDEV - struct net_device_stats net_stats; -#endif -#ifndef IGB_NO_LRO - struct igb_lro_stats lro_stats; -#endif - - /* structs defined in e1000_hw.h */ - struct e1000_hw hw; - struct e1000_hw_stats stats; - struct e1000_phy_info phy_info; - struct e1000_phy_stats phy_stats; - -#ifdef ETHTOOL_TEST - u32 test_icr; - struct igb_ring test_tx_ring; - struct igb_ring test_rx_ring; -#endif - - int msg_enable; - - struct igb_q_vector *q_vector[MAX_Q_VECTORS]; - u32 eims_enable_mask; - u32 eims_other; - - /* to not mess up cache alignment, always add to the bottom */ - u32 *config_space; - u16 tx_ring_count; - u16 rx_ring_count; - struct vf_data_storage *vf_data; -#ifdef IFLA_VF_MAX - int vf_rate_link_speed; -#endif - u32 lli_port; - u32 lli_size; - unsigned int vfs_allocated_count; - /* Malicious Driver Detection flag. Valid only when SR-IOV is enabled */ - bool mdd; - int int_mode; - u32 rss_queues; - u32 vmdq_pools; - char fw_version[43]; - u32 wvbr; - struct igb_mac_addr *mac_table; -#ifdef CONFIG_IGB_VMDQ_NETDEV - struct net_device *vmdq_netdev[IGB_MAX_VMDQ_QUEUES]; -#endif - int vferr_refcount; - int dmac; - u32 *shadow_vfta; - - /* External Thermal Sensor support flag */ - bool ets; -#ifdef IGB_HWMON - struct hwmon_buff igb_hwmon_buff; -#else /* IGB_HWMON */ -#ifdef IGB_PROCFS - struct proc_dir_entry *eth_dir; - struct proc_dir_entry *info_dir; - struct proc_dir_entry *therm_dir[E1000_MAX_SENSORS]; - struct igb_therm_proc_data therm_data[E1000_MAX_SENSORS]; - bool old_lsc; -#endif /* IGB_PROCFS */ -#endif /* IGB_HWMON */ - u32 etrack_id; - -#ifdef HAVE_PTP_1588_CLOCK - struct ptp_clock *ptp_clock; - struct ptp_clock_info ptp_caps; - struct delayed_work ptp_overflow_work; - struct work_struct ptp_tx_work; - struct sk_buff *ptp_tx_skb; - unsigned long ptp_tx_start; - unsigned long last_rx_ptp_check; - spinlock_t tmreg_lock; - struct cyclecounter cc; - struct timecounter tc; - u32 tx_hwtstamp_timeouts; - u32 rx_hwtstamp_cleared; -#endif /* HAVE_PTP_1588_CLOCK */ - -#ifdef HAVE_I2C_SUPPORT - struct i2c_algo_bit_data i2c_algo; - struct i2c_adapter i2c_adap; - struct i2c_client *i2c_client; -#endif /* HAVE_I2C_SUPPORT */ - unsigned long link_check_timeout; - - - int devrc; - - int copper_tries; - u16 eee_advert; -}; - -#ifdef CONFIG_IGB_VMDQ_NETDEV -struct igb_vmdq_adapter { -#ifdef HAVE_VLAN_RX_REGISTER - /* vlgrp must be first member of structure */ - struct vlan_group *vlgrp; -#else - unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; -#endif - struct igb_adapter *real_adapter; - struct net_device *vnetdev; - struct net_device_stats net_stats; - struct igb_ring *tx_ring; - struct igb_ring *rx_ring; -}; -#endif - -#define IGB_FLAG_HAS_MSI (1 << 0) -#define IGB_FLAG_DCA_ENABLED (1 << 1) -#define IGB_FLAG_LLI_PUSH (1 << 2) -#define IGB_FLAG_QUAD_PORT_A (1 << 3) -#define IGB_FLAG_QUEUE_PAIRS (1 << 4) -#define IGB_FLAG_EEE (1 << 5) -#define IGB_FLAG_DMAC (1 << 6) -#define IGB_FLAG_DETECT_BAD_DMA (1 << 7) -#define IGB_FLAG_PTP (1 << 8) -#define IGB_FLAG_RSS_FIELD_IPV4_UDP (1 << 9) -#define IGB_FLAG_RSS_FIELD_IPV6_UDP (1 << 10) -#define IGB_FLAG_WOL_SUPPORTED (1 << 11) -#define IGB_FLAG_NEED_LINK_UPDATE (1 << 12) -#define IGB_FLAG_LOOPBACK_ENABLE (1 << 13) -#define IGB_FLAG_MEDIA_RESET (1 << 14) -#define IGB_FLAG_MAS_ENABLE (1 << 15) - -/* Media Auto Sense */ -#define IGB_MAS_ENABLE_0 0X0001 -#define IGB_MAS_ENABLE_1 0X0002 -#define IGB_MAS_ENABLE_2 0X0004 -#define IGB_MAS_ENABLE_3 0X0008 - -#define IGB_MIN_TXPBSIZE 20408 -#define IGB_TX_BUF_4096 4096 - -#define IGB_DMCTLX_DCFLUSH_DIS 0x80000000 /* Disable DMA Coal Flush */ - -/* DMA Coalescing defines */ -#define IGB_DMAC_DISABLE 0 -#define IGB_DMAC_MIN 250 -#define IGB_DMAC_500 500 -#define IGB_DMAC_EN_DEFAULT 1000 -#define IGB_DMAC_2000 2000 -#define IGB_DMAC_3000 3000 -#define IGB_DMAC_4000 4000 -#define IGB_DMAC_5000 5000 -#define IGB_DMAC_6000 6000 -#define IGB_DMAC_7000 7000 -#define IGB_DMAC_8000 8000 -#define IGB_DMAC_9000 9000 -#define IGB_DMAC_MAX 10000 - -#define IGB_82576_TSYNC_SHIFT 19 -#define IGB_82580_TSYNC_SHIFT 24 -#define IGB_TS_HDR_LEN 16 - -/* CEM Support */ -#define FW_HDR_LEN 0x4 -#define FW_CMD_DRV_INFO 0xDD -#define FW_CMD_DRV_INFO_LEN 0x5 -#define FW_CMD_RESERVED 0X0 -#define FW_RESP_SUCCESS 0x1 -#define FW_UNUSED_VER 0x0 -#define FW_MAX_RETRIES 3 -#define FW_STATUS_SUCCESS 0x1 -#define FW_FAMILY_DRV_VER 0Xffffffff - -#define IGB_MAX_LINK_TRIES 20 - -struct e1000_fw_hdr { - u8 cmd; - u8 buf_len; - union - { - u8 cmd_resv; - u8 ret_status; - } cmd_or_resp; - u8 checksum; -}; - -#pragma pack(push,1) -struct e1000_fw_drv_info { - struct e1000_fw_hdr hdr; - u8 port_num; - u32 drv_version; - u16 pad; /* end spacing to ensure length is mult. of dword */ - u8 pad2; /* end spacing to ensure length is mult. of dword2 */ -}; -#pragma pack(pop) - -enum e1000_state_t { - __IGB_TESTING, - __IGB_RESETTING, - __IGB_DOWN -}; - -extern char igb_driver_name[]; -extern char igb_driver_version[]; - -extern int igb_up(struct igb_adapter *); -extern void igb_down(struct igb_adapter *); -extern void igb_reinit_locked(struct igb_adapter *); -extern void igb_reset(struct igb_adapter *); -extern int igb_set_spd_dplx(struct igb_adapter *, u16); -extern int igb_setup_tx_resources(struct igb_ring *); -extern int igb_setup_rx_resources(struct igb_ring *); -extern void igb_free_tx_resources(struct igb_ring *); -extern void igb_free_rx_resources(struct igb_ring *); -extern void igb_configure_tx_ring(struct igb_adapter *, struct igb_ring *); -extern void igb_configure_rx_ring(struct igb_adapter *, struct igb_ring *); -extern void igb_setup_tctl(struct igb_adapter *); -extern void igb_setup_rctl(struct igb_adapter *); -extern netdev_tx_t igb_xmit_frame_ring(struct sk_buff *, struct igb_ring *); -extern void igb_unmap_and_free_tx_resource(struct igb_ring *, - struct igb_tx_buffer *); -extern void igb_alloc_rx_buffers(struct igb_ring *, u16); -extern void igb_clean_rx_ring(struct igb_ring *); -extern void igb_update_stats(struct igb_adapter *); -extern bool igb_has_link(struct igb_adapter *adapter); -extern void igb_set_ethtool_ops(struct net_device *); -extern void igb_check_options(struct igb_adapter *); -extern void igb_power_up_link(struct igb_adapter *); -#ifdef HAVE_PTP_1588_CLOCK -extern void igb_ptp_init(struct igb_adapter *adapter); -extern void igb_ptp_stop(struct igb_adapter *adapter); -extern void igb_ptp_reset(struct igb_adapter *adapter); -extern void igb_ptp_tx_work(struct work_struct *work); -extern void igb_ptp_rx_hang(struct igb_adapter *adapter); -extern void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter); -extern void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, - struct sk_buff *skb); -extern void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, - unsigned char *va, - struct sk_buff *skb); -static inline void igb_ptp_rx_hwtstamp(struct igb_ring *rx_ring, - union e1000_adv_rx_desc *rx_desc, - struct sk_buff *skb) -{ - if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { -#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT - igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb); - skb_pull(skb, IGB_TS_HDR_LEN); -#endif - return; - } - - if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS)) - igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb); - - /* Update the last_rx_timestamp timer in order to enable watchdog check - * for error case of latched timestamp on a dropped packet. - */ - rx_ring->last_rx_timestamp = jiffies; -} - -extern int igb_ptp_hwtstamp_ioctl(struct net_device *netdev, - struct ifreq *ifr, int cmd); -#endif /* HAVE_PTP_1588_CLOCK */ -#ifdef ETHTOOL_OPS_COMPAT -extern int ethtool_ioctl(struct ifreq *); -#endif -extern int igb_write_mc_addr_list(struct net_device *netdev); -extern int igb_add_mac_filter(struct igb_adapter *adapter, u8 *addr, u16 queue); -extern int igb_del_mac_filter(struct igb_adapter *adapter, u8* addr, u16 queue); -extern int igb_available_rars(struct igb_adapter *adapter); -extern s32 igb_vlvf_set(struct igb_adapter *, u32, bool, u32); -extern void igb_configure_vt_default_pool(struct igb_adapter *adapter); -extern void igb_enable_vlan_tags(struct igb_adapter *adapter); -#ifndef HAVE_VLAN_RX_REGISTER -extern void igb_vlan_mode(struct net_device *, u32); -#endif - -#define E1000_PCS_CFG_IGN_SD 1 - -#ifdef IGB_HWMON -void igb_sysfs_exit(struct igb_adapter *adapter); -int igb_sysfs_init(struct igb_adapter *adapter); -#else -#ifdef IGB_PROCFS -int igb_procfs_init(struct igb_adapter* adapter); -void igb_procfs_exit(struct igb_adapter* adapter); -int igb_procfs_topdir_init(void); -void igb_procfs_topdir_exit(void); -#endif /* IGB_PROCFS */ -#endif /* IGB_HWMON */ - - - -#endif /* _IGB_H_ */ diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/igb_ethtool.c b/lib/librte_eal/linuxapp/kni/ethtool/igb/igb_ethtool.c deleted file mode 100644 index 064528bc..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/igb_ethtool.c +++ /dev/null @@ -1,2842 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -/* ethtool support for igb */ - -#include <linux/netdevice.h> -#include <linux/vmalloc.h> - -#ifdef SIOCETHTOOL -#include <linux/ethtool.h> -#ifdef CONFIG_PM_RUNTIME -#include <linux/pm_runtime.h> -#endif /* CONFIG_PM_RUNTIME */ -#include <linux/highmem.h> - -#include "igb.h" -#include "igb_regtest.h" -#include <linux/if_vlan.h> -#ifdef ETHTOOL_GEEE -#include <linux/mdio.h> -#endif - -#ifdef ETHTOOL_OPS_COMPAT -#include "kcompat_ethtool.c" -#endif -#ifdef ETHTOOL_GSTATS -struct igb_stats { - char stat_string[ETH_GSTRING_LEN]; - int sizeof_stat; - int stat_offset; -}; - -#define IGB_STAT(_name, _stat) { \ - .stat_string = _name, \ - .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \ - .stat_offset = offsetof(struct igb_adapter, _stat) \ -} -static const struct igb_stats igb_gstrings_stats[] = { - IGB_STAT("rx_packets", stats.gprc), - IGB_STAT("tx_packets", stats.gptc), - IGB_STAT("rx_bytes", stats.gorc), - IGB_STAT("tx_bytes", stats.gotc), - IGB_STAT("rx_broadcast", stats.bprc), - IGB_STAT("tx_broadcast", stats.bptc), - IGB_STAT("rx_multicast", stats.mprc), - IGB_STAT("tx_multicast", stats.mptc), - IGB_STAT("multicast", stats.mprc), - IGB_STAT("collisions", stats.colc), - IGB_STAT("rx_crc_errors", stats.crcerrs), - IGB_STAT("rx_no_buffer_count", stats.rnbc), - IGB_STAT("rx_missed_errors", stats.mpc), - IGB_STAT("tx_aborted_errors", stats.ecol), - IGB_STAT("tx_carrier_errors", stats.tncrs), - IGB_STAT("tx_window_errors", stats.latecol), - IGB_STAT("tx_abort_late_coll", stats.latecol), - IGB_STAT("tx_deferred_ok", stats.dc), - IGB_STAT("tx_single_coll_ok", stats.scc), - IGB_STAT("tx_multi_coll_ok", stats.mcc), - IGB_STAT("tx_timeout_count", tx_timeout_count), - IGB_STAT("rx_long_length_errors", stats.roc), - IGB_STAT("rx_short_length_errors", stats.ruc), - IGB_STAT("rx_align_errors", stats.algnerrc), - IGB_STAT("tx_tcp_seg_good", stats.tsctc), - IGB_STAT("tx_tcp_seg_failed", stats.tsctfc), - IGB_STAT("rx_flow_control_xon", stats.xonrxc), - IGB_STAT("rx_flow_control_xoff", stats.xoffrxc), - IGB_STAT("tx_flow_control_xon", stats.xontxc), - IGB_STAT("tx_flow_control_xoff", stats.xofftxc), - IGB_STAT("rx_long_byte_count", stats.gorc), - IGB_STAT("tx_dma_out_of_sync", stats.doosync), -#ifndef IGB_NO_LRO - IGB_STAT("lro_aggregated", lro_stats.coal), - IGB_STAT("lro_flushed", lro_stats.flushed), -#endif /* IGB_LRO */ - IGB_STAT("tx_smbus", stats.mgptc), - IGB_STAT("rx_smbus", stats.mgprc), - IGB_STAT("dropped_smbus", stats.mgpdc), - IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc), - IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc), - IGB_STAT("os2bmc_tx_by_host", stats.o2bspc), - IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc), -#ifdef HAVE_PTP_1588_CLOCK - IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), - IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), -#endif /* HAVE_PTP_1588_CLOCK */ -}; - -#define IGB_NETDEV_STAT(_net_stat) { \ - .stat_string = #_net_stat, \ - .sizeof_stat = FIELD_SIZEOF(struct net_device_stats, _net_stat), \ - .stat_offset = offsetof(struct net_device_stats, _net_stat) \ -} -static const struct igb_stats igb_gstrings_net_stats[] = { - IGB_NETDEV_STAT(rx_errors), - IGB_NETDEV_STAT(tx_errors), - IGB_NETDEV_STAT(tx_dropped), - IGB_NETDEV_STAT(rx_length_errors), - IGB_NETDEV_STAT(rx_over_errors), - IGB_NETDEV_STAT(rx_frame_errors), - IGB_NETDEV_STAT(rx_fifo_errors), - IGB_NETDEV_STAT(tx_fifo_errors), - IGB_NETDEV_STAT(tx_heartbeat_errors) -}; - -#define IGB_GLOBAL_STATS_LEN ARRAY_SIZE(igb_gstrings_stats) -#define IGB_NETDEV_STATS_LEN ARRAY_SIZE(igb_gstrings_net_stats) -#define IGB_RX_QUEUE_STATS_LEN \ - (sizeof(struct igb_rx_queue_stats) / sizeof(u64)) -#define IGB_TX_QUEUE_STATS_LEN \ - (sizeof(struct igb_tx_queue_stats) / sizeof(u64)) -#define IGB_QUEUE_STATS_LEN \ - ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \ - IGB_RX_QUEUE_STATS_LEN) + \ - (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \ - IGB_TX_QUEUE_STATS_LEN)) -#define IGB_STATS_LEN \ - (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN) - -#endif /* ETHTOOL_GSTATS */ -#ifdef ETHTOOL_TEST -static const char igb_gstrings_test[][ETH_GSTRING_LEN] = { - "Register test (offline)", "Eeprom test (offline)", - "Interrupt test (offline)", "Loopback test (offline)", - "Link test (on/offline)" -}; -#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN) -#endif /* ETHTOOL_TEST */ - -static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 status; - - if (hw->phy.media_type == e1000_media_type_copper) { - - ecmd->supported = (SUPPORTED_10baseT_Half | - SUPPORTED_10baseT_Full | - SUPPORTED_100baseT_Half | - SUPPORTED_100baseT_Full | - SUPPORTED_1000baseT_Full| - SUPPORTED_Autoneg | - SUPPORTED_TP | - SUPPORTED_Pause); - ecmd->advertising = ADVERTISED_TP; - - if (hw->mac.autoneg == 1) { - ecmd->advertising |= ADVERTISED_Autoneg; - /* the e1000 autoneg seems to match ethtool nicely */ - ecmd->advertising |= hw->phy.autoneg_advertised; - } - - ecmd->port = PORT_TP; - ecmd->phy_address = hw->phy.addr; - ecmd->transceiver = XCVR_INTERNAL; - - } else { - ecmd->supported = (SUPPORTED_1000baseT_Full | - SUPPORTED_100baseT_Full | - SUPPORTED_FIBRE | - SUPPORTED_Autoneg | - SUPPORTED_Pause); - if (hw->mac.type == e1000_i354) - ecmd->supported |= (SUPPORTED_2500baseX_Full); - - ecmd->advertising = ADVERTISED_FIBRE; - - switch (adapter->link_speed) { - case SPEED_2500: - ecmd->advertising = ADVERTISED_2500baseX_Full; - break; - case SPEED_1000: - ecmd->advertising = ADVERTISED_1000baseT_Full; - break; - case SPEED_100: - ecmd->advertising = ADVERTISED_100baseT_Full; - break; - default: - break; - } - - if (hw->mac.autoneg == 1) - ecmd->advertising |= ADVERTISED_Autoneg; - - ecmd->port = PORT_FIBRE; - ecmd->transceiver = XCVR_EXTERNAL; - } - - if (hw->mac.autoneg != 1) - ecmd->advertising &= ~(ADVERTISED_Pause | - ADVERTISED_Asym_Pause); - - if (hw->fc.requested_mode == e1000_fc_full) - ecmd->advertising |= ADVERTISED_Pause; - else if (hw->fc.requested_mode == e1000_fc_rx_pause) - ecmd->advertising |= (ADVERTISED_Pause | - ADVERTISED_Asym_Pause); - else if (hw->fc.requested_mode == e1000_fc_tx_pause) - ecmd->advertising |= ADVERTISED_Asym_Pause; - else - ecmd->advertising &= ~(ADVERTISED_Pause | - ADVERTISED_Asym_Pause); - - status = E1000_READ_REG(hw, E1000_STATUS); - - if (status & E1000_STATUS_LU) { - if ((hw->mac.type == e1000_i354) && - (status & E1000_STATUS_2P5_SKU) && - !(status & E1000_STATUS_2P5_SKU_OVER)) - ecmd->speed = SPEED_2500; - else if (status & E1000_STATUS_SPEED_1000) - ecmd->speed = SPEED_1000; - else if (status & E1000_STATUS_SPEED_100) - ecmd->speed = SPEED_100; - else - ecmd->speed = SPEED_10; - - if ((status & E1000_STATUS_FD) || - hw->phy.media_type != e1000_media_type_copper) - ecmd->duplex = DUPLEX_FULL; - else - ecmd->duplex = DUPLEX_HALF; - - } else { - ecmd->speed = -1; - ecmd->duplex = -1; - } - - if ((hw->phy.media_type == e1000_media_type_fiber) || - hw->mac.autoneg) - ecmd->autoneg = AUTONEG_ENABLE; - else - ecmd->autoneg = AUTONEG_DISABLE; -#ifdef ETH_TP_MDI_X - - /* MDI-X => 2; MDI =>1; Invalid =>0 */ - if (hw->phy.media_type == e1000_media_type_copper) - ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : - ETH_TP_MDI; - else - ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; - -#ifdef ETH_TP_MDI_AUTO - if (hw->phy.mdix == AUTO_ALL_MODES) - ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; - else - ecmd->eth_tp_mdix_ctrl = hw->phy.mdix; - -#endif -#endif /* ETH_TP_MDI_X */ - return 0; -} - -static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - if (ecmd->duplex == DUPLEX_HALF) { - if (!hw->dev_spec._82575.eee_disable) - dev_info(pci_dev_to_dev(adapter->pdev), "EEE disabled: not supported with half duplex\n"); - hw->dev_spec._82575.eee_disable = true; - } else { - if (hw->dev_spec._82575.eee_disable) - dev_info(pci_dev_to_dev(adapter->pdev), "EEE enabled\n"); - hw->dev_spec._82575.eee_disable = false; - } - - /* When SoL/IDER sessions are active, autoneg/speed/duplex - * cannot be changed */ - if (e1000_check_reset_block(hw)) { - dev_err(pci_dev_to_dev(adapter->pdev), "Cannot change link " - "characteristics when SoL/IDER is active.\n"); - return -EINVAL; - } - -#ifdef ETH_TP_MDI_AUTO - /* - * MDI setting is only allowed when autoneg enabled because - * some hardware doesn't allow MDI setting when speed or - * duplex is forced. - */ - if (ecmd->eth_tp_mdix_ctrl) { - if (hw->phy.media_type != e1000_media_type_copper) - return -EOPNOTSUPP; - - if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && - (ecmd->autoneg != AUTONEG_ENABLE)) { - dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); - return -EINVAL; - } - } - -#endif /* ETH_TP_MDI_AUTO */ - while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) - usleep_range(1000, 2000); - - if (ecmd->autoneg == AUTONEG_ENABLE) { - hw->mac.autoneg = 1; - if (hw->phy.media_type == e1000_media_type_fiber) { - hw->phy.autoneg_advertised = ecmd->advertising | - ADVERTISED_FIBRE | - ADVERTISED_Autoneg; - switch (adapter->link_speed) { - case SPEED_2500: - hw->phy.autoneg_advertised = - ADVERTISED_2500baseX_Full; - break; - case SPEED_1000: - hw->phy.autoneg_advertised = - ADVERTISED_1000baseT_Full; - break; - case SPEED_100: - hw->phy.autoneg_advertised = - ADVERTISED_100baseT_Full; - break; - default: - break; - } - } else { - hw->phy.autoneg_advertised = ecmd->advertising | - ADVERTISED_TP | - ADVERTISED_Autoneg; - } - ecmd->advertising = hw->phy.autoneg_advertised; - if (adapter->fc_autoneg) - hw->fc.requested_mode = e1000_fc_default; - } else { - if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) { - clear_bit(__IGB_RESETTING, &adapter->state); - return -EINVAL; - } - } - -#ifdef ETH_TP_MDI_AUTO - /* MDI-X => 2; MDI => 1; Auto => 3 */ - if (ecmd->eth_tp_mdix_ctrl) { - /* fix up the value for auto (3 => 0) as zero is mapped - * internally to auto - */ - if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) - hw->phy.mdix = AUTO_ALL_MODES; - else - hw->phy.mdix = ecmd->eth_tp_mdix_ctrl; - } - -#endif /* ETH_TP_MDI_AUTO */ - /* reset the link */ - if (netif_running(adapter->netdev)) { - igb_down(adapter); - igb_up(adapter); - } else - igb_reset(adapter); - - clear_bit(__IGB_RESETTING, &adapter->state); - return 0; -} - -static u32 igb_get_link(struct net_device *netdev) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_mac_info *mac = &adapter->hw.mac; - - /* - * If the link is not reported up to netdev, interrupts are disabled, - * and so the physical link state may have changed since we last - * looked. Set get_link_status to make sure that the true link - * state is interrogated, rather than pulling a cached and possibly - * stale link state from the driver. - */ - if (!netif_carrier_ok(netdev)) - mac->get_link_status = 1; - - return igb_has_link(adapter); -} - -static void igb_get_pauseparam(struct net_device *netdev, - struct ethtool_pauseparam *pause) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - pause->autoneg = - (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); - - if (hw->fc.current_mode == e1000_fc_rx_pause) - pause->rx_pause = 1; - else if (hw->fc.current_mode == e1000_fc_tx_pause) - pause->tx_pause = 1; - else if (hw->fc.current_mode == e1000_fc_full) { - pause->rx_pause = 1; - pause->tx_pause = 1; - } -} - -static int igb_set_pauseparam(struct net_device *netdev, - struct ethtool_pauseparam *pause) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - int retval = 0; - - adapter->fc_autoneg = pause->autoneg; - - while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) - usleep_range(1000, 2000); - - if (adapter->fc_autoneg == AUTONEG_ENABLE) { - hw->fc.requested_mode = e1000_fc_default; - if (netif_running(adapter->netdev)) { - igb_down(adapter); - igb_up(adapter); - } else { - igb_reset(adapter); - } - } else { - if (pause->rx_pause && pause->tx_pause) - hw->fc.requested_mode = e1000_fc_full; - else if (pause->rx_pause && !pause->tx_pause) - hw->fc.requested_mode = e1000_fc_rx_pause; - else if (!pause->rx_pause && pause->tx_pause) - hw->fc.requested_mode = e1000_fc_tx_pause; - else if (!pause->rx_pause && !pause->tx_pause) - hw->fc.requested_mode = e1000_fc_none; - - hw->fc.current_mode = hw->fc.requested_mode; - - if (hw->phy.media_type == e1000_media_type_fiber) { - retval = hw->mac.ops.setup_link(hw); - /* implicit goto out */ - } else { - retval = e1000_force_mac_fc(hw); - if (retval) - goto out; - e1000_set_fc_watermarks_generic(hw); - } - } - -out: - clear_bit(__IGB_RESETTING, &adapter->state); - return retval; -} - -static u32 igb_get_msglevel(struct net_device *netdev) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - return adapter->msg_enable; -} - -static void igb_set_msglevel(struct net_device *netdev, u32 data) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - adapter->msg_enable = data; -} - -static int igb_get_regs_len(struct net_device *netdev) -{ -#define IGB_REGS_LEN 555 - return IGB_REGS_LEN * sizeof(u32); -} - -static void igb_get_regs(struct net_device *netdev, - struct ethtool_regs *regs, void *p) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 *regs_buff = p; - u8 i; - - memset(p, 0, IGB_REGS_LEN * sizeof(u32)); - - regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; - - /* General Registers */ - regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL); - regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS); - regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT); - regs_buff[3] = E1000_READ_REG(hw, E1000_MDIC); - regs_buff[4] = E1000_READ_REG(hw, E1000_SCTL); - regs_buff[5] = E1000_READ_REG(hw, E1000_CONNSW); - regs_buff[6] = E1000_READ_REG(hw, E1000_VET); - regs_buff[7] = E1000_READ_REG(hw, E1000_LEDCTL); - regs_buff[8] = E1000_READ_REG(hw, E1000_PBA); - regs_buff[9] = E1000_READ_REG(hw, E1000_PBS); - regs_buff[10] = E1000_READ_REG(hw, E1000_FRTIMER); - regs_buff[11] = E1000_READ_REG(hw, E1000_TCPTIMER); - - /* NVM Register */ - regs_buff[12] = E1000_READ_REG(hw, E1000_EECD); - - /* Interrupt */ - /* Reading EICS for EICR because they read the - * same but EICS does not clear on read */ - regs_buff[13] = E1000_READ_REG(hw, E1000_EICS); - regs_buff[14] = E1000_READ_REG(hw, E1000_EICS); - regs_buff[15] = E1000_READ_REG(hw, E1000_EIMS); - regs_buff[16] = E1000_READ_REG(hw, E1000_EIMC); - regs_buff[17] = E1000_READ_REG(hw, E1000_EIAC); - regs_buff[18] = E1000_READ_REG(hw, E1000_EIAM); - /* Reading ICS for ICR because they read the - * same but ICS does not clear on read */ - regs_buff[19] = E1000_READ_REG(hw, E1000_ICS); - regs_buff[20] = E1000_READ_REG(hw, E1000_ICS); - regs_buff[21] = E1000_READ_REG(hw, E1000_IMS); - regs_buff[22] = E1000_READ_REG(hw, E1000_IMC); - regs_buff[23] = E1000_READ_REG(hw, E1000_IAC); - regs_buff[24] = E1000_READ_REG(hw, E1000_IAM); - regs_buff[25] = E1000_READ_REG(hw, E1000_IMIRVP); - - /* Flow Control */ - regs_buff[26] = E1000_READ_REG(hw, E1000_FCAL); - regs_buff[27] = E1000_READ_REG(hw, E1000_FCAH); - regs_buff[28] = E1000_READ_REG(hw, E1000_FCTTV); - regs_buff[29] = E1000_READ_REG(hw, E1000_FCRTL); - regs_buff[30] = E1000_READ_REG(hw, E1000_FCRTH); - regs_buff[31] = E1000_READ_REG(hw, E1000_FCRTV); - - /* Receive */ - regs_buff[32] = E1000_READ_REG(hw, E1000_RCTL); - regs_buff[33] = E1000_READ_REG(hw, E1000_RXCSUM); - regs_buff[34] = E1000_READ_REG(hw, E1000_RLPML); - regs_buff[35] = E1000_READ_REG(hw, E1000_RFCTL); - regs_buff[36] = E1000_READ_REG(hw, E1000_MRQC); - regs_buff[37] = E1000_READ_REG(hw, E1000_VT_CTL); - - /* Transmit */ - regs_buff[38] = E1000_READ_REG(hw, E1000_TCTL); - regs_buff[39] = E1000_READ_REG(hw, E1000_TCTL_EXT); - regs_buff[40] = E1000_READ_REG(hw, E1000_TIPG); - regs_buff[41] = E1000_READ_REG(hw, E1000_DTXCTL); - - /* Wake Up */ - regs_buff[42] = E1000_READ_REG(hw, E1000_WUC); - regs_buff[43] = E1000_READ_REG(hw, E1000_WUFC); - regs_buff[44] = E1000_READ_REG(hw, E1000_WUS); - regs_buff[45] = E1000_READ_REG(hw, E1000_IPAV); - regs_buff[46] = E1000_READ_REG(hw, E1000_WUPL); - - /* MAC */ - regs_buff[47] = E1000_READ_REG(hw, E1000_PCS_CFG0); - regs_buff[48] = E1000_READ_REG(hw, E1000_PCS_LCTL); - regs_buff[49] = E1000_READ_REG(hw, E1000_PCS_LSTAT); - regs_buff[50] = E1000_READ_REG(hw, E1000_PCS_ANADV); - regs_buff[51] = E1000_READ_REG(hw, E1000_PCS_LPAB); - regs_buff[52] = E1000_READ_REG(hw, E1000_PCS_NPTX); - regs_buff[53] = E1000_READ_REG(hw, E1000_PCS_LPABNP); - - /* Statistics */ - regs_buff[54] = adapter->stats.crcerrs; - regs_buff[55] = adapter->stats.algnerrc; - regs_buff[56] = adapter->stats.symerrs; - regs_buff[57] = adapter->stats.rxerrc; - regs_buff[58] = adapter->stats.mpc; - regs_buff[59] = adapter->stats.scc; - regs_buff[60] = adapter->stats.ecol; - regs_buff[61] = adapter->stats.mcc; - regs_buff[62] = adapter->stats.latecol; - regs_buff[63] = adapter->stats.colc; - regs_buff[64] = adapter->stats.dc; - regs_buff[65] = adapter->stats.tncrs; - regs_buff[66] = adapter->stats.sec; - regs_buff[67] = adapter->stats.htdpmc; - regs_buff[68] = adapter->stats.rlec; - regs_buff[69] = adapter->stats.xonrxc; - regs_buff[70] = adapter->stats.xontxc; - regs_buff[71] = adapter->stats.xoffrxc; - regs_buff[72] = adapter->stats.xofftxc; - regs_buff[73] = adapter->stats.fcruc; - regs_buff[74] = adapter->stats.prc64; - regs_buff[75] = adapter->stats.prc127; - regs_buff[76] = adapter->stats.prc255; - regs_buff[77] = adapter->stats.prc511; - regs_buff[78] = adapter->stats.prc1023; - regs_buff[79] = adapter->stats.prc1522; - regs_buff[80] = adapter->stats.gprc; - regs_buff[81] = adapter->stats.bprc; - regs_buff[82] = adapter->stats.mprc; - regs_buff[83] = adapter->stats.gptc; - regs_buff[84] = adapter->stats.gorc; - regs_buff[86] = adapter->stats.gotc; - regs_buff[88] = adapter->stats.rnbc; - regs_buff[89] = adapter->stats.ruc; - regs_buff[90] = adapter->stats.rfc; - regs_buff[91] = adapter->stats.roc; - regs_buff[92] = adapter->stats.rjc; - regs_buff[93] = adapter->stats.mgprc; - regs_buff[94] = adapter->stats.mgpdc; - regs_buff[95] = adapter->stats.mgptc; - regs_buff[96] = adapter->stats.tor; - regs_buff[98] = adapter->stats.tot; - regs_buff[100] = adapter->stats.tpr; - regs_buff[101] = adapter->stats.tpt; - regs_buff[102] = adapter->stats.ptc64; - regs_buff[103] = adapter->stats.ptc127; - regs_buff[104] = adapter->stats.ptc255; - regs_buff[105] = adapter->stats.ptc511; - regs_buff[106] = adapter->stats.ptc1023; - regs_buff[107] = adapter->stats.ptc1522; - regs_buff[108] = adapter->stats.mptc; - regs_buff[109] = adapter->stats.bptc; - regs_buff[110] = adapter->stats.tsctc; - regs_buff[111] = adapter->stats.iac; - regs_buff[112] = adapter->stats.rpthc; - regs_buff[113] = adapter->stats.hgptc; - regs_buff[114] = adapter->stats.hgorc; - regs_buff[116] = adapter->stats.hgotc; - regs_buff[118] = adapter->stats.lenerrs; - regs_buff[119] = adapter->stats.scvpc; - regs_buff[120] = adapter->stats.hrmpc; - - for (i = 0; i < 4; i++) - regs_buff[121 + i] = E1000_READ_REG(hw, E1000_SRRCTL(i)); - for (i = 0; i < 4; i++) - regs_buff[125 + i] = E1000_READ_REG(hw, E1000_PSRTYPE(i)); - for (i = 0; i < 4; i++) - regs_buff[129 + i] = E1000_READ_REG(hw, E1000_RDBAL(i)); - for (i = 0; i < 4; i++) - regs_buff[133 + i] = E1000_READ_REG(hw, E1000_RDBAH(i)); - for (i = 0; i < 4; i++) - regs_buff[137 + i] = E1000_READ_REG(hw, E1000_RDLEN(i)); - for (i = 0; i < 4; i++) - regs_buff[141 + i] = E1000_READ_REG(hw, E1000_RDH(i)); - for (i = 0; i < 4; i++) - regs_buff[145 + i] = E1000_READ_REG(hw, E1000_RDT(i)); - for (i = 0; i < 4; i++) - regs_buff[149 + i] = E1000_READ_REG(hw, E1000_RXDCTL(i)); - - for (i = 0; i < 10; i++) - regs_buff[153 + i] = E1000_READ_REG(hw, E1000_EITR(i)); - for (i = 0; i < 8; i++) - regs_buff[163 + i] = E1000_READ_REG(hw, E1000_IMIR(i)); - for (i = 0; i < 8; i++) - regs_buff[171 + i] = E1000_READ_REG(hw, E1000_IMIREXT(i)); - for (i = 0; i < 16; i++) - regs_buff[179 + i] = E1000_READ_REG(hw, E1000_RAL(i)); - for (i = 0; i < 16; i++) - regs_buff[195 + i] = E1000_READ_REG(hw, E1000_RAH(i)); - - for (i = 0; i < 4; i++) - regs_buff[211 + i] = E1000_READ_REG(hw, E1000_TDBAL(i)); - for (i = 0; i < 4; i++) - regs_buff[215 + i] = E1000_READ_REG(hw, E1000_TDBAH(i)); - for (i = 0; i < 4; i++) - regs_buff[219 + i] = E1000_READ_REG(hw, E1000_TDLEN(i)); - for (i = 0; i < 4; i++) - regs_buff[223 + i] = E1000_READ_REG(hw, E1000_TDH(i)); - for (i = 0; i < 4; i++) - regs_buff[227 + i] = E1000_READ_REG(hw, E1000_TDT(i)); - for (i = 0; i < 4; i++) - regs_buff[231 + i] = E1000_READ_REG(hw, E1000_TXDCTL(i)); - for (i = 0; i < 4; i++) - regs_buff[235 + i] = E1000_READ_REG(hw, E1000_TDWBAL(i)); - for (i = 0; i < 4; i++) - regs_buff[239 + i] = E1000_READ_REG(hw, E1000_TDWBAH(i)); - for (i = 0; i < 4; i++) - regs_buff[243 + i] = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i)); - - for (i = 0; i < 4; i++) - regs_buff[247 + i] = E1000_READ_REG(hw, E1000_IP4AT_REG(i)); - for (i = 0; i < 4; i++) - regs_buff[251 + i] = E1000_READ_REG(hw, E1000_IP6AT_REG(i)); - for (i = 0; i < 32; i++) - regs_buff[255 + i] = E1000_READ_REG(hw, E1000_WUPM_REG(i)); - for (i = 0; i < 128; i++) - regs_buff[287 + i] = E1000_READ_REG(hw, E1000_FFMT_REG(i)); - for (i = 0; i < 128; i++) - regs_buff[415 + i] = E1000_READ_REG(hw, E1000_FFVT_REG(i)); - for (i = 0; i < 4; i++) - regs_buff[543 + i] = E1000_READ_REG(hw, E1000_FFLT_REG(i)); - - regs_buff[547] = E1000_READ_REG(hw, E1000_TDFH); - regs_buff[548] = E1000_READ_REG(hw, E1000_TDFT); - regs_buff[549] = E1000_READ_REG(hw, E1000_TDFHS); - regs_buff[550] = E1000_READ_REG(hw, E1000_TDFPC); - if (hw->mac.type > e1000_82580) { - regs_buff[551] = adapter->stats.o2bgptc; - regs_buff[552] = adapter->stats.b2ospc; - regs_buff[553] = adapter->stats.o2bspc; - regs_buff[554] = adapter->stats.b2ogprc; - } -} - -static int igb_get_eeprom_len(struct net_device *netdev) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - return adapter->hw.nvm.word_size * 2; -} - -static int igb_get_eeprom(struct net_device *netdev, - struct ethtool_eeprom *eeprom, u8 *bytes) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u16 *eeprom_buff; - int first_word, last_word; - int ret_val = 0; - u16 i; - - if (eeprom->len == 0) - return -EINVAL; - - eeprom->magic = hw->vendor_id | (hw->device_id << 16); - - first_word = eeprom->offset >> 1; - last_word = (eeprom->offset + eeprom->len - 1) >> 1; - - eeprom_buff = kmalloc(sizeof(u16) * - (last_word - first_word + 1), GFP_KERNEL); - if (!eeprom_buff) - return -ENOMEM; - - if (hw->nvm.type == e1000_nvm_eeprom_spi) - ret_val = e1000_read_nvm(hw, first_word, - last_word - first_word + 1, - eeprom_buff); - else { - for (i = 0; i < last_word - first_word + 1; i++) { - ret_val = e1000_read_nvm(hw, first_word + i, 1, - &eeprom_buff[i]); - if (ret_val) - break; - } - } - - /* Device's eeprom is always little-endian, word addressable */ - for (i = 0; i < last_word - first_word + 1; i++) - eeprom_buff[i] = le16_to_cpu(eeprom_buff[i]); - - memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), - eeprom->len); - kfree(eeprom_buff); - - return ret_val; -} - -static int igb_set_eeprom(struct net_device *netdev, - struct ethtool_eeprom *eeprom, u8 *bytes) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u16 *eeprom_buff; - void *ptr; - int max_len, first_word, last_word, ret_val = 0; - u16 i; - - if (eeprom->len == 0) - return -EOPNOTSUPP; - - if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) - return -EFAULT; - - max_len = hw->nvm.word_size * 2; - - first_word = eeprom->offset >> 1; - last_word = (eeprom->offset + eeprom->len - 1) >> 1; - eeprom_buff = kmalloc(max_len, GFP_KERNEL); - if (!eeprom_buff) - return -ENOMEM; - - ptr = (void *)eeprom_buff; - - if (eeprom->offset & 1) { - /* need read/modify/write of first changed EEPROM word */ - /* only the second byte of the word is being modified */ - ret_val = e1000_read_nvm(hw, first_word, 1, - &eeprom_buff[0]); - ptr++; - } - if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { - /* need read/modify/write of last changed EEPROM word */ - /* only the first byte of the word is being modified */ - ret_val = e1000_read_nvm(hw, last_word, 1, - &eeprom_buff[last_word - first_word]); - } - - /* Device's eeprom is always little-endian, word addressable */ - for (i = 0; i < last_word - first_word + 1; i++) - le16_to_cpus(&eeprom_buff[i]); - - memcpy(ptr, bytes, eeprom->len); - - for (i = 0; i < last_word - first_word + 1; i++) - cpu_to_le16s(&eeprom_buff[i]); - - ret_val = e1000_write_nvm(hw, first_word, - last_word - first_word + 1, eeprom_buff); - - /* Update the checksum if write succeeded. - * and flush shadow RAM for 82573 controllers */ - if (ret_val == 0) - e1000_update_nvm_checksum(hw); - - kfree(eeprom_buff); - return ret_val; -} - -static void igb_get_drvinfo(struct net_device *netdev, - struct ethtool_drvinfo *drvinfo) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - - strncpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver) - 1); - strncpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version) - 1); - - strncpy(drvinfo->fw_version, adapter->fw_version, - sizeof(drvinfo->fw_version) - 1); - strncpy(drvinfo->bus_info, pci_name(adapter->pdev), sizeof(drvinfo->bus_info) -1); - drvinfo->n_stats = IGB_STATS_LEN; - drvinfo->testinfo_len = IGB_TEST_LEN; - drvinfo->regdump_len = igb_get_regs_len(netdev); - drvinfo->eedump_len = igb_get_eeprom_len(netdev); -} - -static void igb_get_ringparam(struct net_device *netdev, - struct ethtool_ringparam *ring) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - - ring->rx_max_pending = IGB_MAX_RXD; - ring->tx_max_pending = IGB_MAX_TXD; - ring->rx_mini_max_pending = 0; - ring->rx_jumbo_max_pending = 0; - ring->rx_pending = adapter->rx_ring_count; - ring->tx_pending = adapter->tx_ring_count; - ring->rx_mini_pending = 0; - ring->rx_jumbo_pending = 0; -} - -static int igb_set_ringparam(struct net_device *netdev, - struct ethtool_ringparam *ring) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct igb_ring *temp_ring; - int i, err = 0; - u16 new_rx_count, new_tx_count; - - if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) - return -EINVAL; - - new_rx_count = min(ring->rx_pending, (u32)IGB_MAX_RXD); - new_rx_count = max(new_rx_count, (u16)IGB_MIN_RXD); - new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); - - new_tx_count = min(ring->tx_pending, (u32)IGB_MAX_TXD); - new_tx_count = max(new_tx_count, (u16)IGB_MIN_TXD); - new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); - - if ((new_tx_count == adapter->tx_ring_count) && - (new_rx_count == adapter->rx_ring_count)) { - /* nothing to do */ - return 0; - } - - while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) - usleep_range(1000, 2000); - - if (!netif_running(adapter->netdev)) { - for (i = 0; i < adapter->num_tx_queues; i++) - adapter->tx_ring[i]->count = new_tx_count; - for (i = 0; i < adapter->num_rx_queues; i++) - adapter->rx_ring[i]->count = new_rx_count; - adapter->tx_ring_count = new_tx_count; - adapter->rx_ring_count = new_rx_count; - goto clear_reset; - } - - if (adapter->num_tx_queues > adapter->num_rx_queues) - temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring)); - else - temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring)); - - if (!temp_ring) { - err = -ENOMEM; - goto clear_reset; - } - - igb_down(adapter); - - /* - * We can't just free everything and then setup again, - * because the ISRs in MSI-X mode get passed pointers - * to the tx and rx ring structs. - */ - if (new_tx_count != adapter->tx_ring_count) { - for (i = 0; i < adapter->num_tx_queues; i++) { - memcpy(&temp_ring[i], adapter->tx_ring[i], - sizeof(struct igb_ring)); - - temp_ring[i].count = new_tx_count; - err = igb_setup_tx_resources(&temp_ring[i]); - if (err) { - while (i) { - i--; - igb_free_tx_resources(&temp_ring[i]); - } - goto err_setup; - } - } - - for (i = 0; i < adapter->num_tx_queues; i++) { - igb_free_tx_resources(adapter->tx_ring[i]); - - memcpy(adapter->tx_ring[i], &temp_ring[i], - sizeof(struct igb_ring)); - } - - adapter->tx_ring_count = new_tx_count; - } - - if (new_rx_count != adapter->rx_ring_count) { - for (i = 0; i < adapter->num_rx_queues; i++) { - memcpy(&temp_ring[i], adapter->rx_ring[i], - sizeof(struct igb_ring)); - - temp_ring[i].count = new_rx_count; - err = igb_setup_rx_resources(&temp_ring[i]); - if (err) { - while (i) { - i--; - igb_free_rx_resources(&temp_ring[i]); - } - goto err_setup; - } - - } - - for (i = 0; i < adapter->num_rx_queues; i++) { - igb_free_rx_resources(adapter->rx_ring[i]); - - memcpy(adapter->rx_ring[i], &temp_ring[i], - sizeof(struct igb_ring)); - } - - adapter->rx_ring_count = new_rx_count; - } -err_setup: - igb_up(adapter); - vfree(temp_ring); -clear_reset: - clear_bit(__IGB_RESETTING, &adapter->state); - return err; -} -static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data, - int reg, u32 mask, u32 write) -{ - struct e1000_hw *hw = &adapter->hw; - u32 pat, val; - static const u32 _test[] = - {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; - for (pat = 0; pat < ARRAY_SIZE(_test); pat++) { - E1000_WRITE_REG(hw, reg, (_test[pat] & write)); - val = E1000_READ_REG(hw, reg) & mask; - if (val != (_test[pat] & write & mask)) { - dev_err(pci_dev_to_dev(adapter->pdev), "pattern test reg %04X " - "failed: got 0x%08X expected 0x%08X\n", - E1000_REGISTER(hw, reg), val, (_test[pat] & write & mask)); - *data = E1000_REGISTER(hw, reg); - return 1; - } - } - - return 0; -} - -static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data, - int reg, u32 mask, u32 write) -{ - struct e1000_hw *hw = &adapter->hw; - u32 val; - E1000_WRITE_REG(hw, reg, write & mask); - val = E1000_READ_REG(hw, reg); - if ((write & mask) != (val & mask)) { - dev_err(pci_dev_to_dev(adapter->pdev), "set/check reg %04X test failed:" - " got 0x%08X expected 0x%08X\n", reg, - (val & mask), (write & mask)); - *data = E1000_REGISTER(hw, reg); - return 1; - } - - return 0; -} - -#define REG_PATTERN_TEST(reg, mask, write) \ - do { \ - if (reg_pattern_test(adapter, data, reg, mask, write)) \ - return 1; \ - } while (0) - -#define REG_SET_AND_CHECK(reg, mask, write) \ - do { \ - if (reg_set_and_check(adapter, data, reg, mask, write)) \ - return 1; \ - } while (0) - -static int igb_reg_test(struct igb_adapter *adapter, u64 *data) -{ - struct e1000_hw *hw = &adapter->hw; - struct igb_reg_test *test; - u32 value, before, after; - u32 i, toggle; - - switch (adapter->hw.mac.type) { - case e1000_i350: - case e1000_i354: - test = reg_test_i350; - toggle = 0x7FEFF3FF; - break; - case e1000_i210: - case e1000_i211: - test = reg_test_i210; - toggle = 0x7FEFF3FF; - break; - case e1000_82580: - test = reg_test_82580; - toggle = 0x7FEFF3FF; - break; - case e1000_82576: - test = reg_test_82576; - toggle = 0x7FFFF3FF; - break; - default: - test = reg_test_82575; - toggle = 0x7FFFF3FF; - break; - } - - /* Because the status register is such a special case, - * we handle it separately from the rest of the register - * tests. Some bits are read-only, some toggle, and some - * are writable on newer MACs. - */ - before = E1000_READ_REG(hw, E1000_STATUS); - value = (E1000_READ_REG(hw, E1000_STATUS) & toggle); - E1000_WRITE_REG(hw, E1000_STATUS, toggle); - after = E1000_READ_REG(hw, E1000_STATUS) & toggle; - if (value != after) { - dev_err(pci_dev_to_dev(adapter->pdev), "failed STATUS register test " - "got: 0x%08X expected: 0x%08X\n", after, value); - *data = 1; - return 1; - } - /* restore previous status */ - E1000_WRITE_REG(hw, E1000_STATUS, before); - - /* Perform the remainder of the register test, looping through - * the test table until we either fail or reach the null entry. - */ - while (test->reg) { - for (i = 0; i < test->array_len; i++) { - switch (test->test_type) { - case PATTERN_TEST: - REG_PATTERN_TEST(test->reg + - (i * test->reg_offset), - test->mask, - test->write); - break; - case SET_READ_TEST: - REG_SET_AND_CHECK(test->reg + - (i * test->reg_offset), - test->mask, - test->write); - break; - case WRITE_NO_TEST: - writel(test->write, - (adapter->hw.hw_addr + test->reg) - + (i * test->reg_offset)); - break; - case TABLE32_TEST: - REG_PATTERN_TEST(test->reg + (i * 4), - test->mask, - test->write); - break; - case TABLE64_TEST_LO: - REG_PATTERN_TEST(test->reg + (i * 8), - test->mask, - test->write); - break; - case TABLE64_TEST_HI: - REG_PATTERN_TEST((test->reg + 4) + (i * 8), - test->mask, - test->write); - break; - } - } - test++; - } - - *data = 0; - return 0; -} - -static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data) -{ - *data = 0; - - /* Validate NVM checksum */ - if (e1000_validate_nvm_checksum(&adapter->hw) < 0) - *data = 2; - - return *data; -} - -static irqreturn_t igb_test_intr(int irq, void *data) -{ - struct igb_adapter *adapter = data; - struct e1000_hw *hw = &adapter->hw; - - adapter->test_icr |= E1000_READ_REG(hw, E1000_ICR); - - return IRQ_HANDLED; -} - -static int igb_intr_test(struct igb_adapter *adapter, u64 *data) -{ - struct e1000_hw *hw = &adapter->hw; - struct net_device *netdev = adapter->netdev; - u32 mask, ics_mask, i = 0, shared_int = TRUE; - u32 irq = adapter->pdev->irq; - - *data = 0; - - /* Hook up test interrupt handler just for this test */ - if (adapter->msix_entries) { - if (request_irq(adapter->msix_entries[0].vector, - &igb_test_intr, 0, netdev->name, adapter)) { - *data = 1; - return -1; - } - } else if (adapter->flags & IGB_FLAG_HAS_MSI) { - shared_int = FALSE; - if (request_irq(irq, - igb_test_intr, 0, netdev->name, adapter)) { - *data = 1; - return -1; - } - } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED, - netdev->name, adapter)) { - shared_int = FALSE; - } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED, - netdev->name, adapter)) { - *data = 1; - return -1; - } - dev_info(pci_dev_to_dev(adapter->pdev), "testing %s interrupt\n", - (shared_int ? "shared" : "unshared")); - - /* Disable all the interrupts */ - E1000_WRITE_REG(hw, E1000_IMC, ~0); - E1000_WRITE_FLUSH(hw); - usleep_range(10000, 20000); - - /* Define all writable bits for ICS */ - switch (hw->mac.type) { - case e1000_82575: - ics_mask = 0x37F47EDD; - break; - case e1000_82576: - ics_mask = 0x77D4FBFD; - break; - case e1000_82580: - ics_mask = 0x77DCFED5; - break; - case e1000_i350: - case e1000_i354: - ics_mask = 0x77DCFED5; - break; - case e1000_i210: - case e1000_i211: - ics_mask = 0x774CFED5; - break; - default: - ics_mask = 0x7FFFFFFF; - break; - } - - /* Test each interrupt */ - for (; i < 31; i++) { - /* Interrupt to test */ - mask = 1 << i; - - if (!(mask & ics_mask)) - continue; - - if (!shared_int) { - /* Disable the interrupt to be reported in - * the cause register and then force the same - * interrupt and see if one gets posted. If - * an interrupt was posted to the bus, the - * test failed. - */ - adapter->test_icr = 0; - - /* Flush any pending interrupts */ - E1000_WRITE_REG(hw, E1000_ICR, ~0); - - E1000_WRITE_REG(hw, E1000_IMC, mask); - E1000_WRITE_REG(hw, E1000_ICS, mask); - E1000_WRITE_FLUSH(hw); - usleep_range(10000, 20000); - - if (adapter->test_icr & mask) { - *data = 3; - break; - } - } - - /* Enable the interrupt to be reported in - * the cause register and then force the same - * interrupt and see if one gets posted. If - * an interrupt was not posted to the bus, the - * test failed. - */ - adapter->test_icr = 0; - - /* Flush any pending interrupts */ - E1000_WRITE_REG(hw, E1000_ICR, ~0); - - E1000_WRITE_REG(hw, E1000_IMS, mask); - E1000_WRITE_REG(hw, E1000_ICS, mask); - E1000_WRITE_FLUSH(hw); - usleep_range(10000, 20000); - - if (!(adapter->test_icr & mask)) { - *data = 4; - break; - } - - if (!shared_int) { - /* Disable the other interrupts to be reported in - * the cause register and then force the other - * interrupts and see if any get posted. If - * an interrupt was posted to the bus, the - * test failed. - */ - adapter->test_icr = 0; - - /* Flush any pending interrupts */ - E1000_WRITE_REG(hw, E1000_ICR, ~0); - - E1000_WRITE_REG(hw, E1000_IMC, ~mask); - E1000_WRITE_REG(hw, E1000_ICS, ~mask); - E1000_WRITE_FLUSH(hw); - usleep_range(10000, 20000); - - if (adapter->test_icr & mask) { - *data = 5; - break; - } - } - } - - /* Disable all the interrupts */ - E1000_WRITE_REG(hw, E1000_IMC, ~0); - E1000_WRITE_FLUSH(hw); - usleep_range(10000, 20000); - - /* Unhook test interrupt handler */ - if (adapter->msix_entries) - free_irq(adapter->msix_entries[0].vector, adapter); - else - free_irq(irq, adapter); - - return *data; -} - -static void igb_free_desc_rings(struct igb_adapter *adapter) -{ - igb_free_tx_resources(&adapter->test_tx_ring); - igb_free_rx_resources(&adapter->test_rx_ring); -} - -static int igb_setup_desc_rings(struct igb_adapter *adapter) -{ - struct igb_ring *tx_ring = &adapter->test_tx_ring; - struct igb_ring *rx_ring = &adapter->test_rx_ring; - struct e1000_hw *hw = &adapter->hw; - int ret_val; - - /* Setup Tx descriptor ring and Tx buffers */ - tx_ring->count = IGB_DEFAULT_TXD; - tx_ring->dev = pci_dev_to_dev(adapter->pdev); - tx_ring->netdev = adapter->netdev; - tx_ring->reg_idx = adapter->vfs_allocated_count; - - if (igb_setup_tx_resources(tx_ring)) { - ret_val = 1; - goto err_nomem; - } - - igb_setup_tctl(adapter); - igb_configure_tx_ring(adapter, tx_ring); - - /* Setup Rx descriptor ring and Rx buffers */ - rx_ring->count = IGB_DEFAULT_RXD; - rx_ring->dev = pci_dev_to_dev(adapter->pdev); - rx_ring->netdev = adapter->netdev; -#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT - rx_ring->rx_buffer_len = IGB_RX_HDR_LEN; -#endif - rx_ring->reg_idx = adapter->vfs_allocated_count; - - if (igb_setup_rx_resources(rx_ring)) { - ret_val = 2; - goto err_nomem; - } - - /* set the default queue to queue 0 of PF */ - E1000_WRITE_REG(hw, E1000_MRQC, adapter->vfs_allocated_count << 3); - - /* enable receive ring */ - igb_setup_rctl(adapter); - igb_configure_rx_ring(adapter, rx_ring); - - igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring)); - - return 0; - -err_nomem: - igb_free_desc_rings(adapter); - return ret_val; -} - -static void igb_phy_disable_receiver(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - - /* Write out to PHY registers 29 and 30 to disable the Receiver. */ - e1000_write_phy_reg(hw, 29, 0x001F); - e1000_write_phy_reg(hw, 30, 0x8FFC); - e1000_write_phy_reg(hw, 29, 0x001A); - e1000_write_phy_reg(hw, 30, 0x8FF0); -} - -static int igb_integrated_phy_loopback(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 ctrl_reg = 0; - - hw->mac.autoneg = FALSE; - - if (hw->phy.type == e1000_phy_m88) { - if (hw->phy.id != I210_I_PHY_ID) { - /* Auto-MDI/MDIX Off */ - e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); - /* reset to update Auto-MDI/MDIX */ - e1000_write_phy_reg(hw, PHY_CONTROL, 0x9140); - /* autoneg off */ - e1000_write_phy_reg(hw, PHY_CONTROL, 0x8140); - } else { - /* force 1000, set loopback */ - e1000_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0); - e1000_write_phy_reg(hw, PHY_CONTROL, 0x4140); - } - } else { - /* enable MII loopback */ - if (hw->phy.type == e1000_phy_82580) - e1000_write_phy_reg(hw, I82577_PHY_LBK_CTRL, 0x8041); - } - - /* force 1000, set loopback */ - e1000_write_phy_reg(hw, PHY_CONTROL, 0x4140); - - /* Now set up the MAC to the same speed/duplex as the PHY. */ - ctrl_reg = E1000_READ_REG(hw, E1000_CTRL); - ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ - ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ - E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ - E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ - E1000_CTRL_FD | /* Force Duplex to FULL */ - E1000_CTRL_SLU); /* Set link up enable bit */ - - if (hw->phy.type == e1000_phy_m88) - ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg); - - /* Disable the receiver on the PHY so when a cable is plugged in, the - * PHY does not begin to autoneg when a cable is reconnected to the NIC. - */ - if (hw->phy.type == e1000_phy_m88) - igb_phy_disable_receiver(adapter); - - mdelay(500); - return 0; -} - -static int igb_set_phy_loopback(struct igb_adapter *adapter) -{ - return igb_integrated_phy_loopback(adapter); -} - -static int igb_setup_loopback_test(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 reg; - - reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - - /* use CTRL_EXT to identify link type as SGMII can appear as copper */ - if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) { - if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || - (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || - (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || - (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) { - - /* Enable DH89xxCC MPHY for near end loopback */ - reg = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTL); - reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | - E1000_MPHY_PCS_CLK_REG_OFFSET; - E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTL, reg); - - reg = E1000_READ_REG(hw, E1000_MPHY_DATA); - reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN; - E1000_WRITE_REG(hw, E1000_MPHY_DATA, reg); - } - - reg = E1000_READ_REG(hw, E1000_RCTL); - reg |= E1000_RCTL_LBM_TCVR; - E1000_WRITE_REG(hw, E1000_RCTL, reg); - - E1000_WRITE_REG(hw, E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK); - - reg = E1000_READ_REG(hw, E1000_CTRL); - reg &= ~(E1000_CTRL_RFCE | - E1000_CTRL_TFCE | - E1000_CTRL_LRST); - reg |= E1000_CTRL_SLU | - E1000_CTRL_FD; - E1000_WRITE_REG(hw, E1000_CTRL, reg); - - /* Unset switch control to serdes energy detect */ - reg = E1000_READ_REG(hw, E1000_CONNSW); - reg &= ~E1000_CONNSW_ENRGSRC; - E1000_WRITE_REG(hw, E1000_CONNSW, reg); - - /* Unset sigdetect for SERDES loopback on - * 82580 and newer devices - */ - if (hw->mac.type >= e1000_82580) { - reg = E1000_READ_REG(hw, E1000_PCS_CFG0); - reg |= E1000_PCS_CFG_IGN_SD; - E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); - } - - /* Set PCS register for forced speed */ - reg = E1000_READ_REG(hw, E1000_PCS_LCTL); - reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/ - reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */ - E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ - E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ - E1000_PCS_LCTL_FSD | /* Force Speed */ - E1000_PCS_LCTL_FORCE_LINK; /* Force Link */ - E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg); - - return 0; - } - - return igb_set_phy_loopback(adapter); -} - -static void igb_loopback_cleanup(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 rctl; - u16 phy_reg; - - if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || - (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || - (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || - (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) { - u32 reg; - - /* Disable near end loopback on DH89xxCC */ - reg = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTL); - reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK ) | - E1000_MPHY_PCS_CLK_REG_OFFSET; - E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTL, reg); - - reg = E1000_READ_REG(hw, E1000_MPHY_DATA); - reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN; - E1000_WRITE_REG(hw, E1000_MPHY_DATA, reg); - } - - rctl = E1000_READ_REG(hw, E1000_RCTL); - rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - - hw->mac.autoneg = TRUE; - e1000_read_phy_reg(hw, PHY_CONTROL, &phy_reg); - if (phy_reg & MII_CR_LOOPBACK) { - phy_reg &= ~MII_CR_LOOPBACK; - if (hw->phy.type == I210_I_PHY_ID) - e1000_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0); - e1000_write_phy_reg(hw, PHY_CONTROL, phy_reg); - e1000_phy_commit(hw); - } -} -static void igb_create_lbtest_frame(struct sk_buff *skb, - unsigned int frame_size) -{ - memset(skb->data, 0xFF, frame_size); - frame_size /= 2; - memset(&skb->data[frame_size], 0xAA, frame_size - 1); - memset(&skb->data[frame_size + 10], 0xBE, 1); - memset(&skb->data[frame_size + 12], 0xAF, 1); -} - -static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer, - unsigned int frame_size) -{ - unsigned char *data; - bool match = true; - - frame_size >>= 1; - -#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT - data = rx_buffer->skb->data; -#else - data = kmap(rx_buffer->page); -#endif - - if (data[3] != 0xFF || - data[frame_size + 10] != 0xBE || - data[frame_size + 12] != 0xAF) - match = false; - -#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT - kunmap(rx_buffer->page); - -#endif - return match; -} - -static u16 igb_clean_test_rings(struct igb_ring *rx_ring, - struct igb_ring *tx_ring, - unsigned int size) -{ - union e1000_adv_rx_desc *rx_desc; - struct igb_rx_buffer *rx_buffer_info; - struct igb_tx_buffer *tx_buffer_info; - u16 rx_ntc, tx_ntc, count = 0; - - /* initialize next to clean and descriptor values */ - rx_ntc = rx_ring->next_to_clean; - tx_ntc = tx_ring->next_to_clean; - rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); - - while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) { - /* check rx buffer */ - rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc]; - - /* sync Rx buffer for CPU read */ - dma_sync_single_for_cpu(rx_ring->dev, - rx_buffer_info->dma, -#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT - IGB_RX_HDR_LEN, -#else - IGB_RX_BUFSZ, -#endif - DMA_FROM_DEVICE); - - /* verify contents of skb */ - if (igb_check_lbtest_frame(rx_buffer_info, size)) - count++; - - /* sync Rx buffer for device write */ - dma_sync_single_for_device(rx_ring->dev, - rx_buffer_info->dma, -#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT - IGB_RX_HDR_LEN, -#else - IGB_RX_BUFSZ, -#endif - DMA_FROM_DEVICE); - - /* unmap buffer on tx side */ - tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc]; - igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info); - - /* increment rx/tx next to clean counters */ - rx_ntc++; - if (rx_ntc == rx_ring->count) - rx_ntc = 0; - tx_ntc++; - if (tx_ntc == tx_ring->count) - tx_ntc = 0; - - /* fetch next descriptor */ - rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); - } - - /* re-map buffers to ring, store next to clean values */ - igb_alloc_rx_buffers(rx_ring, count); - rx_ring->next_to_clean = rx_ntc; - tx_ring->next_to_clean = tx_ntc; - - return count; -} - -static int igb_run_loopback_test(struct igb_adapter *adapter) -{ - struct igb_ring *tx_ring = &adapter->test_tx_ring; - struct igb_ring *rx_ring = &adapter->test_rx_ring; - u16 i, j, lc, good_cnt; - int ret_val = 0; - unsigned int size = IGB_RX_HDR_LEN; - netdev_tx_t tx_ret_val; - struct sk_buff *skb; - - /* allocate test skb */ - skb = alloc_skb(size, GFP_KERNEL); - if (!skb) - return 11; - - /* place data into test skb */ - igb_create_lbtest_frame(skb, size); - skb_put(skb, size); - - /* - * Calculate the loop count based on the largest descriptor ring - * The idea is to wrap the largest ring a number of times using 64 - * send/receive pairs during each loop - */ - - if (rx_ring->count <= tx_ring->count) - lc = ((tx_ring->count / 64) * 2) + 1; - else - lc = ((rx_ring->count / 64) * 2) + 1; - - for (j = 0; j <= lc; j++) { /* loop count loop */ - /* reset count of good packets */ - good_cnt = 0; - - /* place 64 packets on the transmit queue*/ - for (i = 0; i < 64; i++) { - skb_get(skb); - tx_ret_val = igb_xmit_frame_ring(skb, tx_ring); - if (tx_ret_val == NETDEV_TX_OK) - good_cnt++; - } - - if (good_cnt != 64) { - ret_val = 12; - break; - } - - /* allow 200 milliseconds for packets to go from tx to rx */ - msleep(200); - - good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size); - if (good_cnt != 64) { - ret_val = 13; - break; - } - } /* end loop count loop */ - - /* free the original skb */ - kfree_skb(skb); - - return ret_val; -} - -static int igb_loopback_test(struct igb_adapter *adapter, u64 *data) -{ - /* PHY loopback cannot be performed if SoL/IDER - * sessions are active */ - if (e1000_check_reset_block(&adapter->hw)) { - dev_err(pci_dev_to_dev(adapter->pdev), - "Cannot do PHY loopback test " - "when SoL/IDER is active.\n"); - *data = 0; - goto out; - } - if (adapter->hw.mac.type == e1000_i354) { - dev_info(&adapter->pdev->dev, - "Loopback test not supported on i354.\n"); - *data = 0; - goto out; - } - *data = igb_setup_desc_rings(adapter); - if (*data) - goto out; - *data = igb_setup_loopback_test(adapter); - if (*data) - goto err_loopback; - *data = igb_run_loopback_test(adapter); - - igb_loopback_cleanup(adapter); - -err_loopback: - igb_free_desc_rings(adapter); -out: - return *data; -} - -static int igb_link_test(struct igb_adapter *adapter, u64 *data) -{ - u32 link; - int i, time; - - *data = 0; - time = 0; - if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { - int i = 0; - adapter->hw.mac.serdes_has_link = FALSE; - - /* On some blade server designs, link establishment - * could take as long as 2-3 minutes */ - do { - e1000_check_for_link(&adapter->hw); - if (adapter->hw.mac.serdes_has_link) - goto out; - msleep(20); - } while (i++ < 3750); - - *data = 1; - } else { - for (i=0; i < IGB_MAX_LINK_TRIES; i++) { - link = igb_has_link(adapter); - if (link) - goto out; - else { - time++; - msleep(1000); - } - } - if (!link) - *data = 1; - } - out: - return *data; -} - -static void igb_diag_test(struct net_device *netdev, - struct ethtool_test *eth_test, u64 *data) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - u16 autoneg_advertised; - u8 forced_speed_duplex, autoneg; - bool if_running = netif_running(netdev); - - set_bit(__IGB_TESTING, &adapter->state); - if (eth_test->flags == ETH_TEST_FL_OFFLINE) { - /* Offline tests */ - - /* save speed, duplex, autoneg settings */ - autoneg_advertised = adapter->hw.phy.autoneg_advertised; - forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; - autoneg = adapter->hw.mac.autoneg; - - dev_info(pci_dev_to_dev(adapter->pdev), "offline testing starting\n"); - - /* power up link for link test */ - igb_power_up_link(adapter); - - /* Link test performed before hardware reset so autoneg doesn't - * interfere with test result */ - if (igb_link_test(adapter, &data[4])) - eth_test->flags |= ETH_TEST_FL_FAILED; - - if (if_running) - /* indicate we're in test mode */ - dev_close(netdev); - else - igb_reset(adapter); - - if (igb_reg_test(adapter, &data[0])) - eth_test->flags |= ETH_TEST_FL_FAILED; - - igb_reset(adapter); - if (igb_eeprom_test(adapter, &data[1])) - eth_test->flags |= ETH_TEST_FL_FAILED; - - igb_reset(adapter); - if (igb_intr_test(adapter, &data[2])) - eth_test->flags |= ETH_TEST_FL_FAILED; - - igb_reset(adapter); - - /* power up link for loopback test */ - igb_power_up_link(adapter); - - if (igb_loopback_test(adapter, &data[3])) - eth_test->flags |= ETH_TEST_FL_FAILED; - - /* restore speed, duplex, autoneg settings */ - adapter->hw.phy.autoneg_advertised = autoneg_advertised; - adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; - adapter->hw.mac.autoneg = autoneg; - - /* force this routine to wait until autoneg complete/timeout */ - adapter->hw.phy.autoneg_wait_to_complete = TRUE; - igb_reset(adapter); - adapter->hw.phy.autoneg_wait_to_complete = FALSE; - - clear_bit(__IGB_TESTING, &adapter->state); - if (if_running) - dev_open(netdev); - } else { - dev_info(pci_dev_to_dev(adapter->pdev), "online testing starting\n"); - - /* PHY is powered down when interface is down */ - if (if_running && igb_link_test(adapter, &data[4])) - eth_test->flags |= ETH_TEST_FL_FAILED; - else - data[4] = 0; - - /* Online tests aren't run; pass by default */ - data[0] = 0; - data[1] = 0; - data[2] = 0; - data[3] = 0; - - clear_bit(__IGB_TESTING, &adapter->state); - } - msleep_interruptible(4 * 1000); -} - -static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - - wol->supported = WAKE_UCAST | WAKE_MCAST | - WAKE_BCAST | WAKE_MAGIC | - WAKE_PHY; - wol->wolopts = 0; - - if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) - return; - - /* apply any specific unsupported masks here */ - switch (adapter->hw.device_id) { - default: - break; - } - - if (adapter->wol & E1000_WUFC_EX) - wol->wolopts |= WAKE_UCAST; - if (adapter->wol & E1000_WUFC_MC) - wol->wolopts |= WAKE_MCAST; - if (adapter->wol & E1000_WUFC_BC) - wol->wolopts |= WAKE_BCAST; - if (adapter->wol & E1000_WUFC_MAG) - wol->wolopts |= WAKE_MAGIC; - if (adapter->wol & E1000_WUFC_LNKC) - wol->wolopts |= WAKE_PHY; -} - -static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - - if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE)) - return -EOPNOTSUPP; - - if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) - return wol->wolopts ? -EOPNOTSUPP : 0; - - /* these settings will always override what we currently have */ - adapter->wol = 0; - - if (wol->wolopts & WAKE_UCAST) - adapter->wol |= E1000_WUFC_EX; - if (wol->wolopts & WAKE_MCAST) - adapter->wol |= E1000_WUFC_MC; - if (wol->wolopts & WAKE_BCAST) - adapter->wol |= E1000_WUFC_BC; - if (wol->wolopts & WAKE_MAGIC) - adapter->wol |= E1000_WUFC_MAG; - if (wol->wolopts & WAKE_PHY) - adapter->wol |= E1000_WUFC_LNKC; - device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); - - return 0; -} - -/* bit defines for adapter->led_status */ -#ifdef HAVE_ETHTOOL_SET_PHYS_ID -static int igb_set_phys_id(struct net_device *netdev, - enum ethtool_phys_id_state state) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - switch (state) { - case ETHTOOL_ID_ACTIVE: - e1000_blink_led(hw); - return 2; - case ETHTOOL_ID_ON: - e1000_led_on(hw); - break; - case ETHTOOL_ID_OFF: - e1000_led_off(hw); - break; - case ETHTOOL_ID_INACTIVE: - e1000_led_off(hw); - e1000_cleanup_led(hw); - break; - } - - return 0; -} -#else -static int igb_phys_id(struct net_device *netdev, u32 data) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - unsigned long timeout; - - timeout = data * 1000; - - /* - * msleep_interruptable only accepts unsigned int so we are limited - * in how long a duration we can wait - */ - if (!timeout || timeout > UINT_MAX) - timeout = UINT_MAX; - - e1000_blink_led(hw); - msleep_interruptible(timeout); - - e1000_led_off(hw); - e1000_cleanup_led(hw); - - return 0; -} -#endif /* HAVE_ETHTOOL_SET_PHYS_ID */ - -static int igb_set_coalesce(struct net_device *netdev, - struct ethtool_coalesce *ec) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - int i; - - if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) || - ((ec->rx_coalesce_usecs > 3) && - (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) || - (ec->rx_coalesce_usecs == 2)) - { - printk("set_coalesce:invalid parameter.."); - return -EINVAL; - } - - if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) || - ((ec->tx_coalesce_usecs > 3) && - (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) || - (ec->tx_coalesce_usecs == 2)) - return -EINVAL; - - if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs) - return -EINVAL; - - if (ec->tx_max_coalesced_frames_irq) - adapter->tx_work_limit = ec->tx_max_coalesced_frames_irq; - - /* If ITR is disabled, disable DMAC */ - if (ec->rx_coalesce_usecs == 0) { - adapter->dmac = IGB_DMAC_DISABLE; - } - - /* convert to rate of irq's per second */ - if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) - adapter->rx_itr_setting = ec->rx_coalesce_usecs; - else - adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2; - - /* convert to rate of irq's per second */ - if (adapter->flags & IGB_FLAG_QUEUE_PAIRS) - adapter->tx_itr_setting = adapter->rx_itr_setting; - else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3) - adapter->tx_itr_setting = ec->tx_coalesce_usecs; - else - adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2; - - for (i = 0; i < adapter->num_q_vectors; i++) { - struct igb_q_vector *q_vector = adapter->q_vector[i]; - q_vector->tx.work_limit = adapter->tx_work_limit; - if (q_vector->rx.ring) - q_vector->itr_val = adapter->rx_itr_setting; - else - q_vector->itr_val = adapter->tx_itr_setting; - if (q_vector->itr_val && q_vector->itr_val <= 3) - q_vector->itr_val = IGB_START_ITR; - q_vector->set_itr = 1; - } - - return 0; -} - -static int igb_get_coalesce(struct net_device *netdev, - struct ethtool_coalesce *ec) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - - if (adapter->rx_itr_setting <= 3) - ec->rx_coalesce_usecs = adapter->rx_itr_setting; - else - ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2; - - ec->tx_max_coalesced_frames_irq = adapter->tx_work_limit; - - if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) { - if (adapter->tx_itr_setting <= 3) - ec->tx_coalesce_usecs = adapter->tx_itr_setting; - else - ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2; - } - - return 0; -} - -static int igb_nway_reset(struct net_device *netdev) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - if (netif_running(netdev)) - igb_reinit_locked(adapter); - return 0; -} - -#ifdef HAVE_ETHTOOL_GET_SSET_COUNT -static int igb_get_sset_count(struct net_device *netdev, int sset) -{ - switch (sset) { - case ETH_SS_STATS: - return IGB_STATS_LEN; - case ETH_SS_TEST: - return IGB_TEST_LEN; - default: - return -ENOTSUPP; - } -} -#else -static int igb_get_stats_count(struct net_device *netdev) -{ - return IGB_STATS_LEN; -} - -static int igb_diag_test_count(struct net_device *netdev) -{ - return IGB_TEST_LEN; -} -#endif - -static void igb_get_ethtool_stats(struct net_device *netdev, - struct ethtool_stats *stats, u64 *data) -{ - struct igb_adapter *adapter = netdev_priv(netdev); -#ifdef HAVE_NETDEV_STATS_IN_NETDEV - struct net_device_stats *net_stats = &netdev->stats; -#else - struct net_device_stats *net_stats = &adapter->net_stats; -#endif - u64 *queue_stat; - int i, j, k; - char *p; - - igb_update_stats(adapter); - - for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { - p = (char *)adapter + igb_gstrings_stats[i].stat_offset; - data[i] = (igb_gstrings_stats[i].sizeof_stat == - sizeof(u64)) ? *(u64 *)p : *(u32 *)p; - } - for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) { - p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset; - data[i] = (igb_gstrings_net_stats[j].sizeof_stat == - sizeof(u64)) ? *(u64 *)p : *(u32 *)p; - } - for (j = 0; j < adapter->num_tx_queues; j++) { - queue_stat = (u64 *)&adapter->tx_ring[j]->tx_stats; - for (k = 0; k < IGB_TX_QUEUE_STATS_LEN; k++, i++) - data[i] = queue_stat[k]; - } - for (j = 0; j < adapter->num_rx_queues; j++) { - queue_stat = (u64 *)&adapter->rx_ring[j]->rx_stats; - for (k = 0; k < IGB_RX_QUEUE_STATS_LEN; k++, i++) - data[i] = queue_stat[k]; - } -} - -static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - u8 *p = data; - int i; - - switch (stringset) { - case ETH_SS_TEST: - memcpy(data, *igb_gstrings_test, - IGB_TEST_LEN*ETH_GSTRING_LEN); - break; - case ETH_SS_STATS: - for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { - memcpy(p, igb_gstrings_stats[i].stat_string, - ETH_GSTRING_LEN); - p += ETH_GSTRING_LEN; - } - for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) { - memcpy(p, igb_gstrings_net_stats[i].stat_string, - ETH_GSTRING_LEN); - p += ETH_GSTRING_LEN; - } - for (i = 0; i < adapter->num_tx_queues; i++) { - sprintf(p, "tx_queue_%u_packets", i); - p += ETH_GSTRING_LEN; - sprintf(p, "tx_queue_%u_bytes", i); - p += ETH_GSTRING_LEN; - sprintf(p, "tx_queue_%u_restart", i); - p += ETH_GSTRING_LEN; - } - for (i = 0; i < adapter->num_rx_queues; i++) { - sprintf(p, "rx_queue_%u_packets", i); - p += ETH_GSTRING_LEN; - sprintf(p, "rx_queue_%u_bytes", i); - p += ETH_GSTRING_LEN; - sprintf(p, "rx_queue_%u_drops", i); - p += ETH_GSTRING_LEN; - sprintf(p, "rx_queue_%u_csum_err", i); - p += ETH_GSTRING_LEN; - sprintf(p, "rx_queue_%u_alloc_failed", i); - p += ETH_GSTRING_LEN; - sprintf(p, "rx_queue_%u_ipv4_packets", i); - p += ETH_GSTRING_LEN; - sprintf(p, "rx_queue_%u_ipv4e_packets", i); - p += ETH_GSTRING_LEN; - sprintf(p, "rx_queue_%u_ipv6_packets", i); - p += ETH_GSTRING_LEN; - sprintf(p, "rx_queue_%u_ipv6e_packets", i); - p += ETH_GSTRING_LEN; - sprintf(p, "rx_queue_%u_tcp_packets", i); - p += ETH_GSTRING_LEN; - sprintf(p, "rx_queue_%u_udp_packets", i); - p += ETH_GSTRING_LEN; - sprintf(p, "rx_queue_%u_sctp_packets", i); - p += ETH_GSTRING_LEN; - sprintf(p, "rx_queue_%u_nfs_packets", i); - p += ETH_GSTRING_LEN; - } -/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */ - break; - } -} - -#ifdef HAVE_ETHTOOL_GET_TS_INFO -static int igb_get_ts_info(struct net_device *dev, - struct ethtool_ts_info *info) -{ - struct igb_adapter *adapter = netdev_priv(dev); - - switch (adapter->hw.mac.type) { -#ifdef HAVE_PTP_1588_CLOCK - case e1000_82575: - info->so_timestamping = - SOF_TIMESTAMPING_TX_SOFTWARE | - SOF_TIMESTAMPING_RX_SOFTWARE | - SOF_TIMESTAMPING_SOFTWARE; - return 0; - case e1000_82576: - case e1000_82580: - case e1000_i350: - case e1000_i354: - case e1000_i210: - case e1000_i211: - info->so_timestamping = - SOF_TIMESTAMPING_TX_SOFTWARE | - SOF_TIMESTAMPING_RX_SOFTWARE | - SOF_TIMESTAMPING_SOFTWARE | - SOF_TIMESTAMPING_TX_HARDWARE | - SOF_TIMESTAMPING_RX_HARDWARE | - SOF_TIMESTAMPING_RAW_HARDWARE; - - if (adapter->ptp_clock) - info->phc_index = ptp_clock_index(adapter->ptp_clock); - else - info->phc_index = -1; - - info->tx_types = - (1 << HWTSTAMP_TX_OFF) | - (1 << HWTSTAMP_TX_ON); - - info->rx_filters = 1 << HWTSTAMP_FILTER_NONE; - - /* 82576 does not support timestamping all packets. */ - if (adapter->hw.mac.type >= e1000_82580) - info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL; - else - info->rx_filters |= - (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | - (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | - (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | - (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | - (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | - (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | - (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); - - return 0; -#endif /* HAVE_PTP_1588_CLOCK */ - default: - return -EOPNOTSUPP; - } -} -#endif /* HAVE_ETHTOOL_GET_TS_INFO */ - -#ifdef CONFIG_PM_RUNTIME -static int igb_ethtool_begin(struct net_device *netdev) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - - pm_runtime_get_sync(&adapter->pdev->dev); - - return 0; -} - -static void igb_ethtool_complete(struct net_device *netdev) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - - pm_runtime_put(&adapter->pdev->dev); -} -#endif /* CONFIG_PM_RUNTIME */ - -#ifndef HAVE_NDO_SET_FEATURES -static u32 igb_get_rx_csum(struct net_device *netdev) -{ - return !!(netdev->features & NETIF_F_RXCSUM); -} - -static int igb_set_rx_csum(struct net_device *netdev, u32 data) -{ - const u32 feature_list = NETIF_F_RXCSUM; - - if (data) - netdev->features |= feature_list; - else - netdev->features &= ~feature_list; - - return 0; -} - -static int igb_set_tx_csum(struct net_device *netdev, u32 data) -{ - struct igb_adapter *adapter = netdev_priv(netdev); -#ifdef NETIF_F_IPV6_CSUM - u32 feature_list = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; -#else - u32 feature_list = NETIF_F_IP_CSUM; -#endif - - if (adapter->hw.mac.type >= e1000_82576) - feature_list |= NETIF_F_SCTP_CSUM; - - if (data) - netdev->features |= feature_list; - else - netdev->features &= ~feature_list; - - return 0; -} - -#ifdef NETIF_F_TSO -static int igb_set_tso(struct net_device *netdev, u32 data) -{ -#ifdef NETIF_F_TSO6 - const u32 feature_list = NETIF_F_TSO | NETIF_F_TSO6; -#else - const u32 feature_list = NETIF_F_TSO; -#endif - - if (data) - netdev->features |= feature_list; - else - netdev->features &= ~feature_list; - -#ifndef HAVE_NETDEV_VLAN_FEATURES - if (!data) { - struct igb_adapter *adapter = netdev_priv(netdev); - struct net_device *v_netdev; - int i; - - /* disable TSO on all VLANs if they're present */ - if (!adapter->vlgrp) - goto tso_out; - - for (i = 0; i < VLAN_GROUP_ARRAY_LEN; i++) { - v_netdev = vlan_group_get_device(adapter->vlgrp, i); - if (!v_netdev) - continue; - - v_netdev->features &= ~feature_list; - vlan_group_set_device(adapter->vlgrp, i, v_netdev); - } - } - -tso_out: - -#endif /* HAVE_NETDEV_VLAN_FEATURES */ - return 0; -} - -#endif /* NETIF_F_TSO */ -#ifdef ETHTOOL_GFLAGS -static int igb_set_flags(struct net_device *netdev, u32 data) -{ - u32 supported_flags = ETH_FLAG_RXVLAN | ETH_FLAG_TXVLAN | - ETH_FLAG_RXHASH; -#ifndef HAVE_VLAN_RX_REGISTER - u32 changed = netdev->features ^ data; -#endif - int rc; -#ifndef IGB_NO_LRO - - supported_flags |= ETH_FLAG_LRO; -#endif - /* - * Since there is no support for separate tx vlan accel - * enabled make sure tx flag is cleared if rx is. - */ - if (!(data & ETH_FLAG_RXVLAN)) - data &= ~ETH_FLAG_TXVLAN; - - rc = ethtool_op_set_flags(netdev, data, supported_flags); - if (rc) - return rc; -#ifndef HAVE_VLAN_RX_REGISTER - - if (changed & ETH_FLAG_RXVLAN) - igb_vlan_mode(netdev, data); -#endif - - return 0; -} - -#endif /* ETHTOOL_GFLAGS */ -#endif /* HAVE_NDO_SET_FEATURES */ -#ifdef ETHTOOL_SADV_COAL -static int igb_set_adv_coal(struct net_device *netdev, struct ethtool_value *edata) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - - switch (edata->data) { - case IGB_DMAC_DISABLE: - adapter->dmac = edata->data; - break; - case IGB_DMAC_MIN: - adapter->dmac = edata->data; - break; - case IGB_DMAC_500: - adapter->dmac = edata->data; - break; - case IGB_DMAC_EN_DEFAULT: - adapter->dmac = edata->data; - break; - case IGB_DMAC_2000: - adapter->dmac = edata->data; - break; - case IGB_DMAC_3000: - adapter->dmac = edata->data; - break; - case IGB_DMAC_4000: - adapter->dmac = edata->data; - break; - case IGB_DMAC_5000: - adapter->dmac = edata->data; - break; - case IGB_DMAC_6000: - adapter->dmac = edata->data; - break; - case IGB_DMAC_7000: - adapter->dmac = edata->data; - break; - case IGB_DMAC_8000: - adapter->dmac = edata->data; - break; - case IGB_DMAC_9000: - adapter->dmac = edata->data; - break; - case IGB_DMAC_MAX: - adapter->dmac = edata->data; - break; - default: - adapter->dmac = IGB_DMAC_DISABLE; - printk("set_dmac: invalid setting, setting DMAC to %d\n", - adapter->dmac); - } - printk("%s: setting DMAC to %d\n", netdev->name, adapter->dmac); - return 0; -} -#endif /* ETHTOOL_SADV_COAL */ -#ifdef ETHTOOL_GADV_COAL -static void igb_get_dmac(struct net_device *netdev, - struct ethtool_value *edata) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - edata->data = adapter->dmac; - - return; -} -#endif - -#ifdef ETHTOOL_GEEE -static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 ret_val; - u16 phy_data; - - if ((hw->mac.type < e1000_i350) || - (hw->phy.media_type != e1000_media_type_copper)) - return -EOPNOTSUPP; - - edata->supported = (SUPPORTED_1000baseT_Full | - SUPPORTED_100baseT_Full); - - if (!hw->dev_spec._82575.eee_disable) - edata->advertised = - mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); - - /* The IPCNFG and EEER registers are not supported on I354. */ - if (hw->mac.type == e1000_i354) { - e1000_get_eee_status_i354(hw, (bool *)&edata->eee_active); - } else { - u32 eeer; - - eeer = E1000_READ_REG(hw, E1000_EEER); - - /* EEE status on negotiated link */ - if (eeer & E1000_EEER_EEE_NEG) - edata->eee_active = true; - - if (eeer & E1000_EEER_TX_LPI_EN) - edata->tx_lpi_enabled = true; - } - - /* EEE Link Partner Advertised */ - switch (hw->mac.type) { - case e1000_i350: - ret_val = e1000_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350, - &phy_data); - if (ret_val) - return -ENODATA; - - edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); - - break; - case e1000_i354: - case e1000_i210: - case e1000_i211: - ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210, - E1000_EEE_LP_ADV_DEV_I210, - &phy_data); - if (ret_val) - return -ENODATA; - - edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); - - break; - default: - break; - } - - edata->eee_enabled = !hw->dev_spec._82575.eee_disable; - - if ((hw->mac.type == e1000_i354) && - (edata->eee_enabled)) - edata->tx_lpi_enabled = true; - - /* - * report correct negotiated EEE status for devices that - * wrongly report EEE at half-duplex - */ - if (adapter->link_duplex == HALF_DUPLEX) { - edata->eee_enabled = false; - edata->eee_active = false; - edata->tx_lpi_enabled = false; - edata->advertised &= ~edata->advertised; - } - - return 0; -} -#endif - -#ifdef ETHTOOL_SEEE -static int igb_set_eee(struct net_device *netdev, - struct ethtool_eee *edata) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - struct ethtool_eee eee_curr; - s32 ret_val; - - if ((hw->mac.type < e1000_i350) || - (hw->phy.media_type != e1000_media_type_copper)) - return -EOPNOTSUPP; - - ret_val = igb_get_eee(netdev, &eee_curr); - if (ret_val) - return ret_val; - - if (eee_curr.eee_enabled) { - if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { - dev_err(pci_dev_to_dev(adapter->pdev), - "Setting EEE tx-lpi is not supported\n"); - return -EINVAL; - } - - /* Tx LPI time is not implemented currently */ - if (edata->tx_lpi_timer) { - dev_err(pci_dev_to_dev(adapter->pdev), - "Setting EEE Tx LPI timer is not supported\n"); - return -EINVAL; - } - - if (edata->advertised & - ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { - dev_err(pci_dev_to_dev(adapter->pdev), - "EEE Advertisement supports only 100Tx and or 100T full duplex\n"); - return -EINVAL; - } - - } else if (!edata->eee_enabled) { - dev_err(pci_dev_to_dev(adapter->pdev), - "Setting EEE options is not supported with EEE disabled\n"); - return -EINVAL; - } - - adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); - - if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) { - hw->dev_spec._82575.eee_disable = !edata->eee_enabled; - - /* reset link */ - if (netif_running(netdev)) - igb_reinit_locked(adapter); - else - igb_reset(adapter); - } - - return 0; -} -#endif /* ETHTOOL_SEEE */ - -#ifdef ETHTOOL_GRXRINGS -static int igb_get_rss_hash_opts(struct igb_adapter *adapter, - struct ethtool_rxnfc *cmd) -{ - cmd->data = 0; - - /* Report default options for RSS on igb */ - switch (cmd->flow_type) { - case TCP_V4_FLOW: - cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; - case UDP_V4_FLOW: - if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) - cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; - case SCTP_V4_FLOW: - case AH_ESP_V4_FLOW: - case AH_V4_FLOW: - case ESP_V4_FLOW: - case IPV4_FLOW: - cmd->data |= RXH_IP_SRC | RXH_IP_DST; - break; - case TCP_V6_FLOW: - cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; - case UDP_V6_FLOW: - if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) - cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; - case SCTP_V6_FLOW: - case AH_ESP_V6_FLOW: - case AH_V6_FLOW: - case ESP_V6_FLOW: - case IPV6_FLOW: - cmd->data |= RXH_IP_SRC | RXH_IP_DST; - break; - default: - return -EINVAL; - } - - return 0; -} - -static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, -#ifdef HAVE_ETHTOOL_GET_RXNFC_VOID_RULE_LOCS - void *rule_locs) -#else - u32 *rule_locs) -#endif -{ - struct igb_adapter *adapter = netdev_priv(dev); - int ret = -EOPNOTSUPP; - - switch (cmd->cmd) { - case ETHTOOL_GRXRINGS: - cmd->data = adapter->num_rx_queues; - ret = 0; - break; - case ETHTOOL_GRXFH: - ret = igb_get_rss_hash_opts(adapter, cmd); - break; - default: - break; - } - - return ret; -} - -#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \ - IGB_FLAG_RSS_FIELD_IPV6_UDP) -static int igb_set_rss_hash_opt(struct igb_adapter *adapter, - struct ethtool_rxnfc *nfc) -{ - u32 flags = adapter->flags; - - /* - * RSS does not support anything other than hashing - * to queues on src and dst IPs and ports - */ - if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST | - RXH_L4_B_0_1 | RXH_L4_B_2_3)) - return -EINVAL; - - switch (nfc->flow_type) { - case TCP_V4_FLOW: - case TCP_V6_FLOW: - if (!(nfc->data & RXH_IP_SRC) || - !(nfc->data & RXH_IP_DST) || - !(nfc->data & RXH_L4_B_0_1) || - !(nfc->data & RXH_L4_B_2_3)) - return -EINVAL; - break; - case UDP_V4_FLOW: - if (!(nfc->data & RXH_IP_SRC) || - !(nfc->data & RXH_IP_DST)) - return -EINVAL; - switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { - case 0: - flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP; - break; - case (RXH_L4_B_0_1 | RXH_L4_B_2_3): - flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP; - break; - default: - return -EINVAL; - } - break; - case UDP_V6_FLOW: - if (!(nfc->data & RXH_IP_SRC) || - !(nfc->data & RXH_IP_DST)) - return -EINVAL; - switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { - case 0: - flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP; - break; - case (RXH_L4_B_0_1 | RXH_L4_B_2_3): - flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP; - break; - default: - return -EINVAL; - } - break; - case AH_ESP_V4_FLOW: - case AH_V4_FLOW: - case ESP_V4_FLOW: - case SCTP_V4_FLOW: - case AH_ESP_V6_FLOW: - case AH_V6_FLOW: - case ESP_V6_FLOW: - case SCTP_V6_FLOW: - if (!(nfc->data & RXH_IP_SRC) || - !(nfc->data & RXH_IP_DST) || - (nfc->data & RXH_L4_B_0_1) || - (nfc->data & RXH_L4_B_2_3)) - return -EINVAL; - break; - default: - return -EINVAL; - } - - /* if we changed something we need to update flags */ - if (flags != adapter->flags) { - struct e1000_hw *hw = &adapter->hw; - u32 mrqc = E1000_READ_REG(hw, E1000_MRQC); - - if ((flags & UDP_RSS_FLAGS) && - !(adapter->flags & UDP_RSS_FLAGS)) - DPRINTK(DRV, WARNING, - "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n"); - - adapter->flags = flags; - - /* Perform hash on these packet types */ - mrqc |= E1000_MRQC_RSS_FIELD_IPV4 | - E1000_MRQC_RSS_FIELD_IPV4_TCP | - E1000_MRQC_RSS_FIELD_IPV6 | - E1000_MRQC_RSS_FIELD_IPV6_TCP; - - mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP | - E1000_MRQC_RSS_FIELD_IPV6_UDP); - - if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) - mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; - - if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) - mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; - - E1000_WRITE_REG(hw, E1000_MRQC, mrqc); - } - - return 0; -} - -static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) -{ - struct igb_adapter *adapter = netdev_priv(dev); - int ret = -EOPNOTSUPP; - - switch (cmd->cmd) { - case ETHTOOL_SRXFH: - ret = igb_set_rss_hash_opt(adapter, cmd); - break; - default: - break; - } - - return ret; -} -#endif /* ETHTOOL_GRXRINGS */ - -static const struct ethtool_ops igb_ethtool_ops = { - .get_settings = igb_get_settings, - .set_settings = igb_set_settings, - .get_drvinfo = igb_get_drvinfo, - .get_regs_len = igb_get_regs_len, - .get_regs = igb_get_regs, - .get_wol = igb_get_wol, - .set_wol = igb_set_wol, - .get_msglevel = igb_get_msglevel, - .set_msglevel = igb_set_msglevel, - .nway_reset = igb_nway_reset, - .get_link = igb_get_link, - .get_eeprom_len = igb_get_eeprom_len, - .get_eeprom = igb_get_eeprom, - .set_eeprom = igb_set_eeprom, - .get_ringparam = igb_get_ringparam, - .set_ringparam = igb_set_ringparam, - .get_pauseparam = igb_get_pauseparam, - .set_pauseparam = igb_set_pauseparam, - .self_test = igb_diag_test, - .get_strings = igb_get_strings, -#ifndef HAVE_RHEL6_ETHTOOL_OPS_EXT_STRUCT -#ifdef HAVE_ETHTOOL_SET_PHYS_ID - .set_phys_id = igb_set_phys_id, -#else - .phys_id = igb_phys_id, -#endif /* HAVE_ETHTOOL_SET_PHYS_ID */ -#endif /* HAVE_RHEL6_ETHTOOL_OPS_EXT_STRUCT */ -#ifdef HAVE_ETHTOOL_GET_SSET_COUNT - .get_sset_count = igb_get_sset_count, -#else - .get_stats_count = igb_get_stats_count, - .self_test_count = igb_diag_test_count, -#endif - .get_ethtool_stats = igb_get_ethtool_stats, -#ifdef HAVE_ETHTOOL_GET_PERM_ADDR - .get_perm_addr = ethtool_op_get_perm_addr, -#endif - .get_coalesce = igb_get_coalesce, - .set_coalesce = igb_set_coalesce, -#ifndef HAVE_RHEL6_ETHTOOL_OPS_EXT_STRUCT -#ifdef HAVE_ETHTOOL_GET_TS_INFO - .get_ts_info = igb_get_ts_info, -#endif /* HAVE_ETHTOOL_GET_TS_INFO */ -#endif /* HAVE_RHEL6_ETHTOOL_OPS_EXT_STRUCT */ -#ifdef CONFIG_PM_RUNTIME - .begin = igb_ethtool_begin, - .complete = igb_ethtool_complete, -#endif /* CONFIG_PM_RUNTIME */ -#ifndef HAVE_NDO_SET_FEATURES - .get_rx_csum = igb_get_rx_csum, - .set_rx_csum = igb_set_rx_csum, - .get_tx_csum = ethtool_op_get_tx_csum, - .set_tx_csum = igb_set_tx_csum, - .get_sg = ethtool_op_get_sg, - .set_sg = ethtool_op_set_sg, -#ifdef NETIF_F_TSO - .get_tso = ethtool_op_get_tso, - .set_tso = igb_set_tso, -#endif -#ifdef ETHTOOL_GFLAGS - .get_flags = ethtool_op_get_flags, - .set_flags = igb_set_flags, -#endif /* ETHTOOL_GFLAGS */ -#endif /* HAVE_NDO_SET_FEATURES */ -#ifdef ETHTOOL_GADV_COAL - .get_advcoal = igb_get_adv_coal, - .set_advcoal = igb_set_dmac_coal, -#endif /* ETHTOOL_GADV_COAL */ -#ifndef HAVE_RHEL6_ETHTOOL_OPS_EXT_STRUCT -#ifdef ETHTOOL_GEEE - .get_eee = igb_get_eee, -#endif -#ifdef ETHTOOL_SEEE - .set_eee = igb_set_eee, -#endif -#endif /* HAVE_RHEL6_ETHTOOL_OPS_EXT_STRUCT */ -#ifdef ETHTOOL_GRXRINGS - .get_rxnfc = igb_get_rxnfc, - .set_rxnfc = igb_set_rxnfc, -#endif -}; - -#ifdef HAVE_RHEL6_ETHTOOL_OPS_EXT_STRUCT -static const struct ethtool_ops_ext igb_ethtool_ops_ext = { - .size = sizeof(struct ethtool_ops_ext), - .get_ts_info = igb_get_ts_info, - .set_phys_id = igb_set_phys_id, - .get_eee = igb_get_eee, - .set_eee = igb_set_eee, -}; - -void igb_set_ethtool_ops(struct net_device *netdev) -{ - SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops); - set_ethtool_ops_ext(netdev, &igb_ethtool_ops_ext); -} -#else -void igb_set_ethtool_ops(struct net_device *netdev) -{ - /* have to "undeclare" const on this struct to remove warnings */ - SET_ETHTOOL_OPS(netdev, (struct ethtool_ops *)&igb_ethtool_ops); -} -#endif /* HAVE_RHEL6_ETHTOOL_OPS_EXT_STRUCT */ -#endif /* SIOCETHTOOL */ diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/igb_main.c b/lib/librte_eal/linuxapp/kni/ethtool/igb/igb_main.c deleted file mode 100644 index af378d2f..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/igb_main.c +++ /dev/null @@ -1,10344 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/init.h> -#include <linux/vmalloc.h> -#include <linux/pagemap.h> -#include <linux/netdevice.h> -#include <linux/tcp.h> -#ifdef NETIF_F_TSO -#include <net/checksum.h> -#ifdef NETIF_F_TSO6 -#include <linux/ipv6.h> -#include <net/ip6_checksum.h> -#endif -#endif -#ifdef SIOCGMIIPHY -#include <linux/mii.h> -#endif -#ifdef SIOCETHTOOL -#include <linux/ethtool.h> -#endif -#include <linux/if_vlan.h> -#ifdef CONFIG_PM_RUNTIME -#include <linux/pm_runtime.h> -#endif /* CONFIG_PM_RUNTIME */ - -#include <linux/if_bridge.h> -#include "igb.h" -#include "igb_vmdq.h" - -#include <linux/uio_driver.h> - -#if defined(DEBUG) || defined (DEBUG_DUMP) || defined (DEBUG_ICR) || defined(DEBUG_ITR) -#define DRV_DEBUG "_debug" -#else -#define DRV_DEBUG -#endif -#define DRV_HW_PERF -#define VERSION_SUFFIX - -#define MAJ 5 -#define MIN 0 -#define BUILD 6 -#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." __stringify(BUILD) VERSION_SUFFIX DRV_DEBUG DRV_HW_PERF - -char igb_driver_name[] = "igb"; -char igb_driver_version[] = DRV_VERSION; -static const char igb_driver_string[] = - "Intel(R) Gigabit Ethernet Network Driver"; -static const char igb_copyright[] = - "Copyright (c) 2007-2013 Intel Corporation."; - -const struct pci_device_id igb_pci_tbl[] = { - { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES) }, - { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER) }, - /* required last entry */ - {0, } -}; - -//MODULE_DEVICE_TABLE(pci, igb_pci_tbl); -static void igb_set_sriov_capability(struct igb_adapter *adapter) __attribute__((__unused__)); -void igb_reset(struct igb_adapter *); -static int igb_setup_all_tx_resources(struct igb_adapter *); -static int igb_setup_all_rx_resources(struct igb_adapter *); -static void igb_free_all_tx_resources(struct igb_adapter *); -static void igb_free_all_rx_resources(struct igb_adapter *); -static void igb_setup_mrqc(struct igb_adapter *); -void igb_update_stats(struct igb_adapter *); -static int igb_probe(struct pci_dev *, const struct pci_device_id *); -static void __devexit igb_remove(struct pci_dev *pdev); -static int igb_sw_init(struct igb_adapter *); -static int igb_open(struct net_device *); -static int igb_close(struct net_device *); -static void igb_configure(struct igb_adapter *); -static void igb_configure_tx(struct igb_adapter *); -static void igb_configure_rx(struct igb_adapter *); -static void igb_clean_all_tx_rings(struct igb_adapter *); -static void igb_clean_all_rx_rings(struct igb_adapter *); -static void igb_clean_tx_ring(struct igb_ring *); -static void igb_set_rx_mode(struct net_device *); -#ifdef HAVE_TIMER_SETUP -static void igb_update_phy_info(struct timer_list *); -static void igb_watchdog(struct timer_list *); -#else -static void igb_update_phy_info(unsigned long); -static void igb_watchdog(unsigned long); -#endif -static void igb_watchdog_task(struct work_struct *); -static void igb_dma_err_task(struct work_struct *); -#ifdef HAVE_TIMER_SETUP -static void igb_dma_err_timer(struct timer_list *); -#else -static void igb_dma_err_timer(unsigned long data); -#endif -static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *); -static struct net_device_stats *igb_get_stats(struct net_device *); -static int igb_change_mtu(struct net_device *, int); -void igb_full_sync_mac_table(struct igb_adapter *adapter); -static int igb_set_mac(struct net_device *, void *); -static void igb_set_uta(struct igb_adapter *adapter); -static irqreturn_t igb_intr(int irq, void *); -static irqreturn_t igb_intr_msi(int irq, void *); -static irqreturn_t igb_msix_other(int irq, void *); -static irqreturn_t igb_msix_ring(int irq, void *); -#ifdef IGB_DCA -static void igb_update_dca(struct igb_q_vector *); -static void igb_setup_dca(struct igb_adapter *); -#endif /* IGB_DCA */ -static int igb_poll(struct napi_struct *, int); -static bool igb_clean_tx_irq(struct igb_q_vector *); -static bool igb_clean_rx_irq(struct igb_q_vector *, int); -static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); -static void igb_tx_timeout(struct net_device *); -static void igb_reset_task(struct work_struct *); -#ifdef HAVE_VLAN_RX_REGISTER -static void igb_vlan_mode(struct net_device *, struct vlan_group *); -#endif -#ifdef HAVE_VLAN_PROTOCOL -static int igb_vlan_rx_add_vid(struct net_device *, - __be16 proto, u16); -static int igb_vlan_rx_kill_vid(struct net_device *, - __be16 proto, u16); -#elif defined HAVE_INT_NDO_VLAN_RX_ADD_VID -#ifdef NETIF_F_HW_VLAN_CTAG_RX -static int igb_vlan_rx_add_vid(struct net_device *, - __always_unused __be16 proto, u16); -static int igb_vlan_rx_kill_vid(struct net_device *, - __always_unused __be16 proto, u16); -#else -static int igb_vlan_rx_add_vid(struct net_device *, u16); -static int igb_vlan_rx_kill_vid(struct net_device *, u16); -#endif -#else -static void igb_vlan_rx_add_vid(struct net_device *, u16); -static void igb_vlan_rx_kill_vid(struct net_device *, u16); -#endif -static void igb_restore_vlan(struct igb_adapter *); -void igb_rar_set(struct igb_adapter *adapter, u32 index); -static void igb_ping_all_vfs(struct igb_adapter *); -static void igb_msg_task(struct igb_adapter *); -static void igb_vmm_control(struct igb_adapter *); -static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); -static void igb_restore_vf_multicasts(struct igb_adapter *adapter); -static void igb_process_mdd_event(struct igb_adapter *); -#ifdef IFLA_VF_MAX -static int igb_ndo_set_vf_mac( struct net_device *netdev, int vf, u8 *mac); -static int igb_ndo_set_vf_vlan(struct net_device *netdev, -#ifdef HAVE_VF_VLAN_PROTO - int vf, u16 vlan, u8 qos, __be16 vlan_proto); -#else - int vf, u16 vlan, u8 qos); -#endif -#ifdef HAVE_VF_SPOOFCHK_CONFIGURE -static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, - bool setting); -#endif -#ifdef HAVE_VF_MIN_MAX_TXRATE -static int igb_ndo_set_vf_bw(struct net_device *, int, int, int); -#else /* HAVE_VF_MIN_MAX_TXRATE */ -static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate); -#endif /* HAVE_VF_MIN_MAX_TXRATE */ -static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, - struct ifla_vf_info *ivi); -static void igb_check_vf_rate_limit(struct igb_adapter *); -#endif -static int igb_vf_configure(struct igb_adapter *adapter, int vf); -#ifdef CONFIG_PM -#ifdef HAVE_SYSTEM_SLEEP_PM_OPS -static int igb_suspend(struct device *dev); -static int igb_resume(struct device *dev); -#ifdef CONFIG_PM_RUNTIME -static int igb_runtime_suspend(struct device *dev); -static int igb_runtime_resume(struct device *dev); -static int igb_runtime_idle(struct device *dev); -#endif /* CONFIG_PM_RUNTIME */ -static const struct dev_pm_ops igb_pm_ops = { -#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,34) - .suspend = igb_suspend, - .resume = igb_resume, - .freeze = igb_suspend, - .thaw = igb_resume, - .poweroff = igb_suspend, - .restore = igb_resume, -#ifdef CONFIG_PM_RUNTIME - .runtime_suspend = igb_runtime_suspend, - .runtime_resume = igb_runtime_resume, - .runtime_idle = igb_runtime_idle, -#endif -#else /* Linux >= 2.6.34 */ - SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume) -#ifdef CONFIG_PM_RUNTIME - SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume, - igb_runtime_idle) -#endif /* CONFIG_PM_RUNTIME */ -#endif /* Linux version */ -}; -#else -static int igb_suspend(struct pci_dev *pdev, pm_message_t state); -static int igb_resume(struct pci_dev *pdev); -#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */ -#endif /* CONFIG_PM */ -#ifndef USE_REBOOT_NOTIFIER -static void igb_shutdown(struct pci_dev *); -#else -static int igb_notify_reboot(struct notifier_block *, unsigned long, void *); -static struct notifier_block igb_notifier_reboot = { - .notifier_call = igb_notify_reboot, - .next = NULL, - .priority = 0 -}; -#endif -#ifdef IGB_DCA -static int igb_notify_dca(struct notifier_block *, unsigned long, void *); -static struct notifier_block dca_notifier = { - .notifier_call = igb_notify_dca, - .next = NULL, - .priority = 0 -}; -#endif -#ifdef CONFIG_NET_POLL_CONTROLLER -/* for netdump / net console */ -static void igb_netpoll(struct net_device *); -#endif - -#ifdef HAVE_PCI_ERS -static pci_ers_result_t igb_io_error_detected(struct pci_dev *, - pci_channel_state_t); -static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); -static void igb_io_resume(struct pci_dev *); - -static struct pci_error_handlers igb_err_handler = { - .error_detected = igb_io_error_detected, - .slot_reset = igb_io_slot_reset, - .resume = igb_io_resume, -}; -#endif - -static void igb_init_fw(struct igb_adapter *adapter); -static void igb_init_dmac(struct igb_adapter *adapter, u32 pba); - -static struct pci_driver igb_driver = { - .name = igb_driver_name, - .id_table = igb_pci_tbl, - .probe = igb_probe, - .remove = __devexit_p(igb_remove), -#ifdef CONFIG_PM -#ifdef HAVE_SYSTEM_SLEEP_PM_OPS - .driver.pm = &igb_pm_ops, -#else - .suspend = igb_suspend, - .resume = igb_resume, -#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */ -#endif /* CONFIG_PM */ -#ifndef USE_REBOOT_NOTIFIER - .shutdown = igb_shutdown, -#endif -#ifdef HAVE_PCI_ERS - .err_handler = &igb_err_handler -#endif -}; - -//MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); -//MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); -//MODULE_LICENSE("GPL"); -//MODULE_VERSION(DRV_VERSION); - -static void igb_vfta_set(struct igb_adapter *adapter, u32 vid, bool add) -{ - struct e1000_hw *hw = &adapter->hw; - struct e1000_host_mng_dhcp_cookie *mng_cookie = &hw->mng_cookie; - u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK; - u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK); - u32 vfta; - - /* - * if this is the management vlan the only option is to add it in so - * that the management pass through will continue to work - */ - if ((mng_cookie->status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && - (vid == mng_cookie->vlan_id)) - add = TRUE; - - vfta = adapter->shadow_vfta[index]; - - if (add) - vfta |= mask; - else - vfta &= ~mask; - - e1000_write_vfta(hw, index, vfta); - adapter->shadow_vfta[index] = vfta; -} - -static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE; -//module_param(debug, int, 0); -//MODULE_PARM_DESC(debug, "Debug level (0=none, ..., 16=all)"); - -/** - * igb_init_module - Driver Registration Routine - * - * igb_init_module is the first routine called when the driver is - * loaded. All it does is register with the PCI subsystem. - **/ -static int __init igb_init_module(void) -{ - int ret; - - printk(KERN_INFO "%s - version %s\n", - igb_driver_string, igb_driver_version); - - printk(KERN_INFO "%s\n", igb_copyright); -#ifdef IGB_HWMON -/* only use IGB_PROCFS if IGB_HWMON is not defined */ -#else -#ifdef IGB_PROCFS - if (igb_procfs_topdir_init()) - printk(KERN_INFO "Procfs failed to initialize topdir\n"); -#endif /* IGB_PROCFS */ -#endif /* IGB_HWMON */ - -#ifdef IGB_DCA - dca_register_notify(&dca_notifier); -#endif - ret = pci_register_driver(&igb_driver); -#ifdef USE_REBOOT_NOTIFIER - if (ret >= 0) { - register_reboot_notifier(&igb_notifier_reboot); - } -#endif - return ret; -} - -#undef module_init -#define module_init(x) static int x(void) __attribute__((__unused__)); -module_init(igb_init_module); - -/** - * igb_exit_module - Driver Exit Cleanup Routine - * - * igb_exit_module is called just before the driver is removed - * from memory. - **/ -static void __exit igb_exit_module(void) -{ -#ifdef IGB_DCA - dca_unregister_notify(&dca_notifier); -#endif -#ifdef USE_REBOOT_NOTIFIER - unregister_reboot_notifier(&igb_notifier_reboot); -#endif - pci_unregister_driver(&igb_driver); - -#ifdef IGB_HWMON -/* only compile IGB_PROCFS if IGB_HWMON is not defined */ -#else -#ifdef IGB_PROCFS - igb_procfs_topdir_exit(); -#endif /* IGB_PROCFS */ -#endif /* IGB_HWMON */ -} - -#undef module_exit -#define module_exit(x) static void x(void) __attribute__((__unused__)); -module_exit(igb_exit_module); - -#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) -/** - * igb_cache_ring_register - Descriptor ring to register mapping - * @adapter: board private structure to initialize - * - * Once we know the feature-set enabled for the device, we'll cache - * the register offset the descriptor ring is assigned to. - **/ -static void igb_cache_ring_register(struct igb_adapter *adapter) -{ - int i = 0, j = 0; - u32 rbase_offset = adapter->vfs_allocated_count; - - switch (adapter->hw.mac.type) { - case e1000_82576: - /* The queues are allocated for virtualization such that VF 0 - * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. - * In order to avoid collision we start at the first free queue - * and continue consuming queues in the same sequence - */ - if ((adapter->rss_queues > 1) && adapter->vmdq_pools) { - for (; i < adapter->rss_queues; i++) - adapter->rx_ring[i]->reg_idx = rbase_offset + - Q_IDX_82576(i); - } - case e1000_82575: - case e1000_82580: - case e1000_i350: - case e1000_i354: - case e1000_i210: - case e1000_i211: - default: - for (; i < adapter->num_rx_queues; i++) - adapter->rx_ring[i]->reg_idx = rbase_offset + i; - for (; j < adapter->num_tx_queues; j++) - adapter->tx_ring[j]->reg_idx = rbase_offset + j; - break; - } -} - -static void igb_configure_lli(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u16 port; - - /* LLI should only be enabled for MSI-X or MSI interrupts */ - if (!adapter->msix_entries && !(adapter->flags & IGB_FLAG_HAS_MSI)) - return; - - if (adapter->lli_port) { - /* use filter 0 for port */ - port = htons((u16)adapter->lli_port); - E1000_WRITE_REG(hw, E1000_IMIR(0), - (port | E1000_IMIR_PORT_IM_EN)); - E1000_WRITE_REG(hw, E1000_IMIREXT(0), - (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP)); - } - - if (adapter->flags & IGB_FLAG_LLI_PUSH) { - /* use filter 1 for push flag */ - E1000_WRITE_REG(hw, E1000_IMIR(1), - (E1000_IMIR_PORT_BP | E1000_IMIR_PORT_IM_EN)); - E1000_WRITE_REG(hw, E1000_IMIREXT(1), - (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_PSH)); - } - - if (adapter->lli_size) { - /* use filter 2 for size */ - E1000_WRITE_REG(hw, E1000_IMIR(2), - (E1000_IMIR_PORT_BP | E1000_IMIR_PORT_IM_EN)); - E1000_WRITE_REG(hw, E1000_IMIREXT(2), - (adapter->lli_size | E1000_IMIREXT_CTRL_BP)); - } - -} - -/** - * igb_write_ivar - configure ivar for given MSI-X vector - * @hw: pointer to the HW structure - * @msix_vector: vector number we are allocating to a given ring - * @index: row index of IVAR register to write within IVAR table - * @offset: column offset of in IVAR, should be multiple of 8 - * - * This function is intended to handle the writing of the IVAR register - * for adapters 82576 and newer. The IVAR table consists of 2 columns, - * each containing an cause allocation for an Rx and Tx ring, and a - * variable number of rows depending on the number of queues supported. - **/ -static void igb_write_ivar(struct e1000_hw *hw, int msix_vector, - int index, int offset) -{ - u32 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); - - /* clear any bits that are currently set */ - ivar &= ~((u32)0xFF << offset); - - /* write vector and valid bit */ - ivar |= (msix_vector | E1000_IVAR_VALID) << offset; - - E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); -} - -#define IGB_N0_QUEUE -1 -static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) -{ - struct igb_adapter *adapter = q_vector->adapter; - struct e1000_hw *hw = &adapter->hw; - int rx_queue = IGB_N0_QUEUE; - int tx_queue = IGB_N0_QUEUE; - u32 msixbm = 0; - - if (q_vector->rx.ring) - rx_queue = q_vector->rx.ring->reg_idx; - if (q_vector->tx.ring) - tx_queue = q_vector->tx.ring->reg_idx; - - switch (hw->mac.type) { - case e1000_82575: - /* The 82575 assigns vectors using a bitmask, which matches the - bitmask for the EICR/EIMS/EIMC registers. To assign one - or more queues to a vector, we write the appropriate bits - into the MSIXBM register for that vector. */ - if (rx_queue > IGB_N0_QUEUE) - msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; - if (tx_queue > IGB_N0_QUEUE) - msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; - if (!adapter->msix_entries && msix_vector == 0) - msixbm |= E1000_EIMS_OTHER; - E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), msix_vector, msixbm); - q_vector->eims_value = msixbm; - break; - case e1000_82576: - /* - * 82576 uses a table that essentially consists of 2 columns - * with 8 rows. The ordering is column-major so we use the - * lower 3 bits as the row index, and the 4th bit as the - * column offset. - */ - if (rx_queue > IGB_N0_QUEUE) - igb_write_ivar(hw, msix_vector, - rx_queue & 0x7, - (rx_queue & 0x8) << 1); - if (tx_queue > IGB_N0_QUEUE) - igb_write_ivar(hw, msix_vector, - tx_queue & 0x7, - ((tx_queue & 0x8) << 1) + 8); - q_vector->eims_value = 1 << msix_vector; - break; - case e1000_82580: - case e1000_i350: - case e1000_i354: - case e1000_i210: - case e1000_i211: - /* - * On 82580 and newer adapters the scheme is similar to 82576 - * however instead of ordering column-major we have things - * ordered row-major. So we traverse the table by using - * bit 0 as the column offset, and the remaining bits as the - * row index. - */ - if (rx_queue > IGB_N0_QUEUE) - igb_write_ivar(hw, msix_vector, - rx_queue >> 1, - (rx_queue & 0x1) << 4); - if (tx_queue > IGB_N0_QUEUE) - igb_write_ivar(hw, msix_vector, - tx_queue >> 1, - ((tx_queue & 0x1) << 4) + 8); - q_vector->eims_value = 1 << msix_vector; - break; - default: - BUG(); - break; - } - - /* add q_vector eims value to global eims_enable_mask */ - adapter->eims_enable_mask |= q_vector->eims_value; - - /* configure q_vector to set itr on first interrupt */ - q_vector->set_itr = 1; -} - -/** - * igb_configure_msix - Configure MSI-X hardware - * - * igb_configure_msix sets up the hardware to properly - * generate MSI-X interrupts. - **/ -static void igb_configure_msix(struct igb_adapter *adapter) -{ - u32 tmp; - int i, vector = 0; - struct e1000_hw *hw = &adapter->hw; - - adapter->eims_enable_mask = 0; - - /* set vector for other causes, i.e. link changes */ - switch (hw->mac.type) { - case e1000_82575: - tmp = E1000_READ_REG(hw, E1000_CTRL_EXT); - /* enable MSI-X PBA support*/ - tmp |= E1000_CTRL_EXT_PBA_CLR; - - /* Auto-Mask interrupts upon ICR read. */ - tmp |= E1000_CTRL_EXT_EIAME; - tmp |= E1000_CTRL_EXT_IRCA; - - E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp); - - /* enable msix_other interrupt */ - E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), vector++, - E1000_EIMS_OTHER); - adapter->eims_other = E1000_EIMS_OTHER; - - break; - - case e1000_82576: - case e1000_82580: - case e1000_i350: - case e1000_i354: - case e1000_i210: - case e1000_i211: - /* Turn on MSI-X capability first, or our settings - * won't stick. And it will take days to debug. */ - E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE | - E1000_GPIE_PBA | E1000_GPIE_EIAME | - E1000_GPIE_NSICR); - - /* enable msix_other interrupt */ - adapter->eims_other = 1 << vector; - tmp = (vector++ | E1000_IVAR_VALID) << 8; - - E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmp); - break; - default: - /* do nothing, since nothing else supports MSI-X */ - break; - } /* switch (hw->mac.type) */ - - adapter->eims_enable_mask |= adapter->eims_other; - - for (i = 0; i < adapter->num_q_vectors; i++) - igb_assign_vector(adapter->q_vector[i], vector++); - - E1000_WRITE_FLUSH(hw); -} - -/** - * igb_request_msix - Initialize MSI-X interrupts - * - * igb_request_msix allocates MSI-X vectors and requests interrupts from the - * kernel. - **/ -static int igb_request_msix(struct igb_adapter *adapter) -{ - struct net_device *netdev = adapter->netdev; - struct e1000_hw *hw = &adapter->hw; - int i, err = 0, vector = 0, free_vector = 0; - - err = request_irq(adapter->msix_entries[vector].vector, - &igb_msix_other, 0, netdev->name, adapter); - if (err) - goto err_out; - - for (i = 0; i < adapter->num_q_vectors; i++) { - struct igb_q_vector *q_vector = adapter->q_vector[i]; - - vector++; - - q_vector->itr_register = hw->hw_addr + E1000_EITR(vector); - - if (q_vector->rx.ring && q_vector->tx.ring) - sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, - q_vector->rx.ring->queue_index); - else if (q_vector->tx.ring) - sprintf(q_vector->name, "%s-tx-%u", netdev->name, - q_vector->tx.ring->queue_index); - else if (q_vector->rx.ring) - sprintf(q_vector->name, "%s-rx-%u", netdev->name, - q_vector->rx.ring->queue_index); - else - sprintf(q_vector->name, "%s-unused", netdev->name); - - err = request_irq(adapter->msix_entries[vector].vector, - igb_msix_ring, 0, q_vector->name, - q_vector); - if (err) - goto err_free; - } - - igb_configure_msix(adapter); - return 0; - -err_free: - /* free already assigned IRQs */ - free_irq(adapter->msix_entries[free_vector++].vector, adapter); - - vector--; - for (i = 0; i < vector; i++) { - free_irq(adapter->msix_entries[free_vector++].vector, - adapter->q_vector[i]); - } -err_out: - return err; -} - -static void igb_reset_interrupt_capability(struct igb_adapter *adapter) -{ - if (adapter->msix_entries) { - pci_disable_msix(adapter->pdev); - kfree(adapter->msix_entries); - adapter->msix_entries = NULL; - } else if (adapter->flags & IGB_FLAG_HAS_MSI) { - pci_disable_msi(adapter->pdev); - } -} - -/** - * igb_free_q_vector - Free memory allocated for specific interrupt vector - * @adapter: board private structure to initialize - * @v_idx: Index of vector to be freed - * - * This function frees the memory allocated to the q_vector. In addition if - * NAPI is enabled it will delete any references to the NAPI struct prior - * to freeing the q_vector. - **/ -static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx) -{ - struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; - - if (q_vector->tx.ring) - adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; - - if (q_vector->rx.ring) - adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL; - - adapter->q_vector[v_idx] = NULL; - netif_napi_del(&q_vector->napi); -#ifndef IGB_NO_LRO - __skb_queue_purge(&q_vector->lrolist.active); -#endif - kfree(q_vector); -} - -/** - * igb_free_q_vectors - Free memory allocated for interrupt vectors - * @adapter: board private structure to initialize - * - * This function frees the memory allocated to the q_vectors. In addition if - * NAPI is enabled it will delete any references to the NAPI struct prior - * to freeing the q_vector. - **/ -static void igb_free_q_vectors(struct igb_adapter *adapter) -{ - int v_idx = adapter->num_q_vectors; - - adapter->num_tx_queues = 0; - adapter->num_rx_queues = 0; - adapter->num_q_vectors = 0; - - while (v_idx--) - igb_free_q_vector(adapter, v_idx); -} - -/** - * igb_clear_interrupt_scheme - reset the device to a state of no interrupts - * - * This function resets the device so that it has 0 rx queues, tx queues, and - * MSI-X interrupts allocated. - */ -static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) -{ - igb_free_q_vectors(adapter); - igb_reset_interrupt_capability(adapter); -} - -/** - * igb_process_mdd_event - * @adapter - board private structure - * - * Identify a malicious VF, disable the VF TX/RX queues and log a message. - */ -static void igb_process_mdd_event(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 lvmmc, vfte, vfre, mdfb; - u8 vf_queue; - - lvmmc = E1000_READ_REG(hw, E1000_LVMMC); - vf_queue = lvmmc >> 29; - - /* VF index cannot be bigger or equal to VFs allocated */ - if (vf_queue >= adapter->vfs_allocated_count) - return; - - netdev_info(adapter->netdev, - "VF %d misbehaved. VF queues are disabled. " - "VM misbehavior code is 0x%x\n", vf_queue, lvmmc); - - /* Disable VFTE and VFRE related bits */ - vfte = E1000_READ_REG(hw, E1000_VFTE); - vfte &= ~(1 << vf_queue); - E1000_WRITE_REG(hw, E1000_VFTE, vfte); - - vfre = E1000_READ_REG(hw, E1000_VFRE); - vfre &= ~(1 << vf_queue); - E1000_WRITE_REG(hw, E1000_VFRE, vfre); - - /* Disable MDFB related bit. Clear on write */ - mdfb = E1000_READ_REG(hw, E1000_MDFB); - mdfb |= (1 << vf_queue); - E1000_WRITE_REG(hw, E1000_MDFB, mdfb); - - /* Reset the specific VF */ - E1000_WRITE_REG(hw, E1000_VTCTRL(vf_queue), E1000_VTCTRL_RST); -} - -/** - * igb_disable_mdd - * @adapter - board private structure - * - * Disable MDD behavior in the HW - **/ -static void igb_disable_mdd(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 reg; - - if ((hw->mac.type != e1000_i350) || - (hw->mac.type != e1000_i354)) - return; - - reg = E1000_READ_REG(hw, E1000_DTXCTL); - reg &= (~E1000_DTXCTL_MDP_EN); - E1000_WRITE_REG(hw, E1000_DTXCTL, reg); -} - -/** - * igb_enable_mdd - * @adapter - board private structure - * - * Enable the HW to detect malicious driver and sends an interrupt to - * the driver. - **/ -static void igb_enable_mdd(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 reg; - - /* Only available on i350 device */ - if (hw->mac.type != e1000_i350) - return; - - reg = E1000_READ_REG(hw, E1000_DTXCTL); - reg |= E1000_DTXCTL_MDP_EN; - E1000_WRITE_REG(hw, E1000_DTXCTL, reg); -} - -/** - * igb_reset_sriov_capability - disable SR-IOV if enabled - * - * Attempt to disable single root IO virtualization capabilites present in the - * kernel. - **/ -static void igb_reset_sriov_capability(struct igb_adapter *adapter) -{ - struct pci_dev *pdev = adapter->pdev; - struct e1000_hw *hw = &adapter->hw; - - /* reclaim resources allocated to VFs */ - if (adapter->vf_data) { - if (!pci_vfs_assigned(pdev)) { - /* - * disable iov and allow time for transactions to - * clear - */ - pci_disable_sriov(pdev); - msleep(500); - - dev_info(pci_dev_to_dev(pdev), "IOV Disabled\n"); - } else { - dev_info(pci_dev_to_dev(pdev), "IOV Not Disabled\n " - "VF(s) are assigned to guests!\n"); - } - /* Disable Malicious Driver Detection */ - igb_disable_mdd(adapter); - - /* free vf data storage */ - kfree(adapter->vf_data); - adapter->vf_data = NULL; - - /* switch rings back to PF ownership */ - E1000_WRITE_REG(hw, E1000_IOVCTL, - E1000_IOVCTL_REUSE_VFQ); - E1000_WRITE_FLUSH(hw); - msleep(100); - } - - adapter->vfs_allocated_count = 0; -} - -/** - * igb_set_sriov_capability - setup SR-IOV if supported - * - * Attempt to enable single root IO virtualization capabilites present in the - * kernel. - **/ -static void igb_set_sriov_capability(struct igb_adapter *adapter) -{ - struct pci_dev *pdev = adapter->pdev; - int old_vfs = 0; - int i; - - old_vfs = pci_num_vf(pdev); - if (old_vfs) { - dev_info(pci_dev_to_dev(pdev), - "%d pre-allocated VFs found - override " - "max_vfs setting of %d\n", old_vfs, - adapter->vfs_allocated_count); - adapter->vfs_allocated_count = old_vfs; - } - /* no VFs requested, do nothing */ - if (!adapter->vfs_allocated_count) - return; - - /* allocate vf data storage */ - adapter->vf_data = kcalloc(adapter->vfs_allocated_count, - sizeof(struct vf_data_storage), - GFP_KERNEL); - - if (adapter->vf_data) { - if (!old_vfs) { - if (pci_enable_sriov(pdev, - adapter->vfs_allocated_count)) - goto err_out; - } - for (i = 0; i < adapter->vfs_allocated_count; i++) - igb_vf_configure(adapter, i); - - switch (adapter->hw.mac.type) { - case e1000_82576: - case e1000_i350: - /* Enable VM to VM loopback by default */ - adapter->flags |= IGB_FLAG_LOOPBACK_ENABLE; - break; - default: - /* Currently no other hardware supports loopback */ - break; - } - - /* DMA Coalescing is not supported in IOV mode. */ - if (adapter->hw.mac.type >= e1000_i350) - adapter->dmac = IGB_DMAC_DISABLE; - if (adapter->hw.mac.type < e1000_i350) - adapter->flags |= IGB_FLAG_DETECT_BAD_DMA; - return; - - } - -err_out: - kfree(adapter->vf_data); - adapter->vf_data = NULL; - adapter->vfs_allocated_count = 0; - dev_warn(pci_dev_to_dev(pdev), - "Failed to initialize SR-IOV virtualization\n"); -} - -/** - * igb_set_interrupt_capability - set MSI or MSI-X if supported - * - * Attempt to configure interrupts using the best available - * capabilities of the hardware and kernel. - **/ -static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix) -{ - struct pci_dev *pdev = adapter->pdev; - int err; - int numvecs, i; - - if (!msix) - adapter->int_mode = IGB_INT_MODE_MSI; - - /* Number of supported queues. */ - adapter->num_rx_queues = adapter->rss_queues; - - if (adapter->vmdq_pools > 1) - adapter->num_rx_queues += adapter->vmdq_pools - 1; - -#ifdef HAVE_TX_MQ - if (adapter->vmdq_pools) - adapter->num_tx_queues = adapter->vmdq_pools; - else - adapter->num_tx_queues = adapter->num_rx_queues; -#else - adapter->num_tx_queues = max_t(u32, 1, adapter->vmdq_pools); -#endif - - switch (adapter->int_mode) { - case IGB_INT_MODE_MSIX: - /* start with one vector for every rx queue */ - numvecs = adapter->num_rx_queues; - - /* if tx handler is separate add 1 for every tx queue */ - if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) - numvecs += adapter->num_tx_queues; - - /* store the number of vectors reserved for queues */ - adapter->num_q_vectors = numvecs; - - /* add 1 vector for link status interrupts */ - numvecs++; - adapter->msix_entries = kcalloc(numvecs, - sizeof(struct msix_entry), - GFP_KERNEL); - if (adapter->msix_entries) { - for (i = 0; i < numvecs; i++) - adapter->msix_entries[i].entry = i; - -#ifdef HAVE_PCI_ENABLE_MSIX - err = pci_enable_msix(pdev, - adapter->msix_entries, numvecs); -#else - err = pci_enable_msix_range(pdev, - adapter->msix_entries, - numvecs, - numvecs); -#endif - if (err == 0) - break; - } - /* MSI-X failed, so fall through and try MSI */ - dev_warn(pci_dev_to_dev(pdev), "Failed to initialize MSI-X interrupts. " - "Falling back to MSI interrupts.\n"); - igb_reset_interrupt_capability(adapter); - case IGB_INT_MODE_MSI: - if (!pci_enable_msi(pdev)) - adapter->flags |= IGB_FLAG_HAS_MSI; - else - dev_warn(pci_dev_to_dev(pdev), "Failed to initialize MSI " - "interrupts. Falling back to legacy " - "interrupts.\n"); - /* Fall through */ - case IGB_INT_MODE_LEGACY: - /* disable advanced features and set number of queues to 1 */ - igb_reset_sriov_capability(adapter); - adapter->vmdq_pools = 0; - adapter->rss_queues = 1; - adapter->flags |= IGB_FLAG_QUEUE_PAIRS; - adapter->num_rx_queues = 1; - adapter->num_tx_queues = 1; - adapter->num_q_vectors = 1; - /* Don't do anything; this is system default */ - break; - } -} - -static void igb_add_ring(struct igb_ring *ring, - struct igb_ring_container *head) -{ - head->ring = ring; - head->count++; -} - -/** - * igb_alloc_q_vector - Allocate memory for a single interrupt vector - * @adapter: board private structure to initialize - * @v_count: q_vectors allocated on adapter, used for ring interleaving - * @v_idx: index of vector in adapter struct - * @txr_count: total number of Tx rings to allocate - * @txr_idx: index of first Tx ring to allocate - * @rxr_count: total number of Rx rings to allocate - * @rxr_idx: index of first Rx ring to allocate - * - * We allocate one q_vector. If allocation fails we return -ENOMEM. - **/ -static int igb_alloc_q_vector(struct igb_adapter *adapter, - unsigned int v_count, unsigned int v_idx, - unsigned int txr_count, unsigned int txr_idx, - unsigned int rxr_count, unsigned int rxr_idx) -{ - struct igb_q_vector *q_vector; - struct igb_ring *ring; - int ring_count, size; - - /* igb only supports 1 Tx and/or 1 Rx queue per vector */ - if (txr_count > 1 || rxr_count > 1) - return -ENOMEM; - - ring_count = txr_count + rxr_count; - size = sizeof(struct igb_q_vector) + - (sizeof(struct igb_ring) * ring_count); - - /* allocate q_vector and rings */ - q_vector = kzalloc(size, GFP_KERNEL); - if (!q_vector) - return -ENOMEM; - -#ifndef IGB_NO_LRO - /* initialize LRO */ - __skb_queue_head_init(&q_vector->lrolist.active); - -#endif - /* initialize NAPI */ - netif_napi_add(adapter->netdev, &q_vector->napi, - igb_poll, 64); - - /* tie q_vector and adapter together */ - adapter->q_vector[v_idx] = q_vector; - q_vector->adapter = adapter; - - /* initialize work limits */ - q_vector->tx.work_limit = adapter->tx_work_limit; - - /* initialize ITR configuration */ - q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0); - q_vector->itr_val = IGB_START_ITR; - - /* initialize pointer to rings */ - ring = q_vector->ring; - - /* initialize ITR */ - if (rxr_count) { - /* rx or rx/tx vector */ - if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) - q_vector->itr_val = adapter->rx_itr_setting; - } else { - /* tx only vector */ - if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) - q_vector->itr_val = adapter->tx_itr_setting; - } - - if (txr_count) { - /* assign generic ring traits */ - ring->dev = &adapter->pdev->dev; - ring->netdev = adapter->netdev; - - /* configure backlink on ring */ - ring->q_vector = q_vector; - - /* update q_vector Tx values */ - igb_add_ring(ring, &q_vector->tx); - - /* For 82575, context index must be unique per ring. */ - if (adapter->hw.mac.type == e1000_82575) - set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags); - - /* apply Tx specific ring traits */ - ring->count = adapter->tx_ring_count; - ring->queue_index = txr_idx; - - /* assign ring to adapter */ - adapter->tx_ring[txr_idx] = ring; - - /* push pointer to next ring */ - ring++; - } - - if (rxr_count) { - /* assign generic ring traits */ - ring->dev = &adapter->pdev->dev; - ring->netdev = adapter->netdev; - - /* configure backlink on ring */ - ring->q_vector = q_vector; - - /* update q_vector Rx values */ - igb_add_ring(ring, &q_vector->rx); - -#ifndef HAVE_NDO_SET_FEATURES - /* enable rx checksum */ - set_bit(IGB_RING_FLAG_RX_CSUM, &ring->flags); - -#endif - /* set flag indicating ring supports SCTP checksum offload */ - if (adapter->hw.mac.type >= e1000_82576) - set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags); - - if ((adapter->hw.mac.type == e1000_i350) || - (adapter->hw.mac.type == e1000_i354)) - set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags); - - /* apply Rx specific ring traits */ - ring->count = adapter->rx_ring_count; - ring->queue_index = rxr_idx; - - /* assign ring to adapter */ - adapter->rx_ring[rxr_idx] = ring; - } - - return 0; -} - -/** - * igb_alloc_q_vectors - Allocate memory for interrupt vectors - * @adapter: board private structure to initialize - * - * We allocate one q_vector per queue interrupt. If allocation fails we - * return -ENOMEM. - **/ -static int igb_alloc_q_vectors(struct igb_adapter *adapter) -{ - int q_vectors = adapter->num_q_vectors; - int rxr_remaining = adapter->num_rx_queues; - int txr_remaining = adapter->num_tx_queues; - int rxr_idx = 0, txr_idx = 0, v_idx = 0; - int err; - - if (q_vectors >= (rxr_remaining + txr_remaining)) { - for (; rxr_remaining; v_idx++) { - err = igb_alloc_q_vector(adapter, q_vectors, v_idx, - 0, 0, 1, rxr_idx); - - if (err) - goto err_out; - - /* update counts and index */ - rxr_remaining--; - rxr_idx++; - } - } - - for (; v_idx < q_vectors; v_idx++) { - int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); - int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); - err = igb_alloc_q_vector(adapter, q_vectors, v_idx, - tqpv, txr_idx, rqpv, rxr_idx); - - if (err) - goto err_out; - - /* update counts and index */ - rxr_remaining -= rqpv; - txr_remaining -= tqpv; - rxr_idx++; - txr_idx++; - } - - return 0; - -err_out: - adapter->num_tx_queues = 0; - adapter->num_rx_queues = 0; - adapter->num_q_vectors = 0; - - while (v_idx--) - igb_free_q_vector(adapter, v_idx); - - return -ENOMEM; -} - -/** - * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors - * - * This function initializes the interrupts and allocates all of the queues. - **/ -static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix) -{ - struct pci_dev *pdev = adapter->pdev; - int err; - - igb_set_interrupt_capability(adapter, msix); - - err = igb_alloc_q_vectors(adapter); - if (err) { - dev_err(pci_dev_to_dev(pdev), "Unable to allocate memory for vectors\n"); - goto err_alloc_q_vectors; - } - - igb_cache_ring_register(adapter); - - return 0; - -err_alloc_q_vectors: - igb_reset_interrupt_capability(adapter); - return err; -} - -/** - * igb_request_irq - initialize interrupts - * - * Attempts to configure interrupts using the best available - * capabilities of the hardware and kernel. - **/ -static int igb_request_irq(struct igb_adapter *adapter) -{ - struct net_device *netdev = adapter->netdev; - struct pci_dev *pdev = adapter->pdev; - int err = 0; - - if (adapter->msix_entries) { - err = igb_request_msix(adapter); - if (!err) - goto request_done; - /* fall back to MSI */ - igb_free_all_tx_resources(adapter); - igb_free_all_rx_resources(adapter); - - igb_clear_interrupt_scheme(adapter); - igb_reset_sriov_capability(adapter); - err = igb_init_interrupt_scheme(adapter, false); - if (err) - goto request_done; - igb_setup_all_tx_resources(adapter); - igb_setup_all_rx_resources(adapter); - igb_configure(adapter); - } - - igb_assign_vector(adapter->q_vector[0], 0); - - if (adapter->flags & IGB_FLAG_HAS_MSI) { - err = request_irq(pdev->irq, &igb_intr_msi, 0, - netdev->name, adapter); - if (!err) - goto request_done; - - /* fall back to legacy interrupts */ - igb_reset_interrupt_capability(adapter); - adapter->flags &= ~IGB_FLAG_HAS_MSI; - } - - err = request_irq(pdev->irq, &igb_intr, IRQF_SHARED, - netdev->name, adapter); - - if (err) - dev_err(pci_dev_to_dev(pdev), "Error %d getting interrupt\n", - err); - -request_done: - return err; -} - -static void igb_free_irq(struct igb_adapter *adapter) -{ - if (adapter->msix_entries) { - int vector = 0, i; - - free_irq(adapter->msix_entries[vector++].vector, adapter); - - for (i = 0; i < adapter->num_q_vectors; i++) - free_irq(adapter->msix_entries[vector++].vector, - adapter->q_vector[i]); - } else { - free_irq(adapter->pdev->irq, adapter); - } -} - -/** - * igb_irq_disable - Mask off interrupt generation on the NIC - * @adapter: board private structure - **/ -static void igb_irq_disable(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - - /* - * we need to be careful when disabling interrupts. The VFs are also - * mapped into these registers and so clearing the bits can cause - * issues on the VF drivers so we only need to clear what we set - */ - if (adapter->msix_entries) { - u32 regval = E1000_READ_REG(hw, E1000_EIAM); - E1000_WRITE_REG(hw, E1000_EIAM, regval & ~adapter->eims_enable_mask); - E1000_WRITE_REG(hw, E1000_EIMC, adapter->eims_enable_mask); - regval = E1000_READ_REG(hw, E1000_EIAC); - E1000_WRITE_REG(hw, E1000_EIAC, regval & ~adapter->eims_enable_mask); - } - - E1000_WRITE_REG(hw, E1000_IAM, 0); - E1000_WRITE_REG(hw, E1000_IMC, ~0); - E1000_WRITE_FLUSH(hw); - - if (adapter->msix_entries) { - int vector = 0, i; - - synchronize_irq(adapter->msix_entries[vector++].vector); - - for (i = 0; i < adapter->num_q_vectors; i++) - synchronize_irq(adapter->msix_entries[vector++].vector); - } else { - synchronize_irq(adapter->pdev->irq); - } -} - -/** - * igb_irq_enable - Enable default interrupt generation settings - * @adapter: board private structure - **/ -static void igb_irq_enable(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - - if (adapter->msix_entries) { - u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA; - u32 regval = E1000_READ_REG(hw, E1000_EIAC); - E1000_WRITE_REG(hw, E1000_EIAC, regval | adapter->eims_enable_mask); - regval = E1000_READ_REG(hw, E1000_EIAM); - E1000_WRITE_REG(hw, E1000_EIAM, regval | adapter->eims_enable_mask); - E1000_WRITE_REG(hw, E1000_EIMS, adapter->eims_enable_mask); - if (adapter->vfs_allocated_count) { - E1000_WRITE_REG(hw, E1000_MBVFIMR, 0xFF); - ims |= E1000_IMS_VMMB; - if (adapter->mdd) - if ((adapter->hw.mac.type == e1000_i350) || - (adapter->hw.mac.type == e1000_i354)) - ims |= E1000_IMS_MDDET; - } - E1000_WRITE_REG(hw, E1000_IMS, ims); - } else { - E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK | - E1000_IMS_DRSTA); - E1000_WRITE_REG(hw, E1000_IAM, IMS_ENABLE_MASK | - E1000_IMS_DRSTA); - } -} - -static void igb_update_mng_vlan(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u16 vid = adapter->hw.mng_cookie.vlan_id; - u16 old_vid = adapter->mng_vlan_id; - - if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { - /* add VID to filter table */ - igb_vfta_set(adapter, vid, TRUE); - adapter->mng_vlan_id = vid; - } else { - adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; - } - - if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && - (vid != old_vid) && -#ifdef HAVE_VLAN_RX_REGISTER - !vlan_group_get_device(adapter->vlgrp, old_vid)) { -#else - !test_bit(old_vid, adapter->active_vlans)) { -#endif - /* remove VID from filter table */ - igb_vfta_set(adapter, old_vid, FALSE); - } -} - -/** - * igb_release_hw_control - release control of the h/w to f/w - * @adapter: address of board private structure - * - * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. - * For ASF and Pass Through versions of f/w this means that the - * driver is no longer loaded. - * - **/ -static void igb_release_hw_control(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 ctrl_ext; - - /* Let firmware take over control of h/w */ - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - E1000_WRITE_REG(hw, E1000_CTRL_EXT, - ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); -} - -/** - * igb_get_hw_control - get control of the h/w from f/w - * @adapter: address of board private structure - * - * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. - * For ASF and Pass Through versions of f/w this means that - * the driver is loaded. - * - **/ -static void igb_get_hw_control(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 ctrl_ext; - - /* Let firmware know the driver has taken over */ - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - E1000_WRITE_REG(hw, E1000_CTRL_EXT, - ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); -} - -/** - * igb_configure - configure the hardware for RX and TX - * @adapter: private board structure - **/ -static void igb_configure(struct igb_adapter *adapter) -{ - struct net_device *netdev = adapter->netdev; - int i; - - igb_get_hw_control(adapter); - igb_set_rx_mode(netdev); - - igb_restore_vlan(adapter); - - igb_setup_tctl(adapter); - igb_setup_mrqc(adapter); - igb_setup_rctl(adapter); - - igb_configure_tx(adapter); - igb_configure_rx(adapter); - - e1000_rx_fifo_flush_82575(&adapter->hw); -#ifdef CONFIG_NETDEVICES_MULTIQUEUE - if (adapter->num_tx_queues > 1) - netdev->features |= NETIF_F_MULTI_QUEUE; - else - netdev->features &= ~NETIF_F_MULTI_QUEUE; -#endif - - /* call igb_desc_unused which always leaves - * at least 1 descriptor unused to make sure - * next_to_use != next_to_clean */ - for (i = 0; i < adapter->num_rx_queues; i++) { - struct igb_ring *ring = adapter->rx_ring[i]; - igb_alloc_rx_buffers(ring, igb_desc_unused(ring)); - } -} - -/** - * igb_power_up_link - Power up the phy/serdes link - * @adapter: address of board private structure - **/ -void igb_power_up_link(struct igb_adapter *adapter) -{ - e1000_phy_hw_reset(&adapter->hw); - - if (adapter->hw.phy.media_type == e1000_media_type_copper) - e1000_power_up_phy(&adapter->hw); - else - e1000_power_up_fiber_serdes_link(&adapter->hw); -} - -/** - * igb_power_down_link - Power down the phy/serdes link - * @adapter: address of board private structure - */ -static void igb_power_down_link(struct igb_adapter *adapter) -{ - if (adapter->hw.phy.media_type == e1000_media_type_copper) - e1000_power_down_phy(&adapter->hw); - else - e1000_shutdown_fiber_serdes_link(&adapter->hw); -} - -/* Detect and switch function for Media Auto Sense */ -static void igb_check_swap_media(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 ctrl_ext, connsw; - bool swap_now = false; - bool link; - - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - connsw = E1000_READ_REG(hw, E1000_CONNSW); - link = igb_has_link(adapter); - (void) link; - - /* need to live swap if current media is copper and we have fiber/serdes - * to go to. - */ - - if ((hw->phy.media_type == e1000_media_type_copper) && - (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) { - swap_now = true; - } else if (!(connsw & E1000_CONNSW_SERDESD)) { - /* copper signal takes time to appear */ - if (adapter->copper_tries < 2) { - adapter->copper_tries++; - connsw |= E1000_CONNSW_AUTOSENSE_CONF; - E1000_WRITE_REG(hw, E1000_CONNSW, connsw); - return; - } else { - adapter->copper_tries = 0; - if ((connsw & E1000_CONNSW_PHYSD) && - (!(connsw & E1000_CONNSW_PHY_PDN))) { - swap_now = true; - connsw &= ~E1000_CONNSW_AUTOSENSE_CONF; - E1000_WRITE_REG(hw, E1000_CONNSW, connsw); - } - } - } - - if (swap_now) { - switch (hw->phy.media_type) { - case e1000_media_type_copper: - dev_info(pci_dev_to_dev(adapter->pdev), - "%s:MAS: changing media to fiber/serdes\n", - adapter->netdev->name); - ctrl_ext |= - E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; - adapter->flags |= IGB_FLAG_MEDIA_RESET; - adapter->copper_tries = 0; - break; - case e1000_media_type_internal_serdes: - case e1000_media_type_fiber: - dev_info(pci_dev_to_dev(adapter->pdev), - "%s:MAS: changing media to copper\n", - adapter->netdev->name); - ctrl_ext &= - ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; - adapter->flags |= IGB_FLAG_MEDIA_RESET; - break; - default: - /* shouldn't get here during regular operation */ - dev_err(pci_dev_to_dev(adapter->pdev), - "%s:AMS: Invalid media type found, returning\n", - adapter->netdev->name); - break; - } - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - } -} - -#ifdef HAVE_I2C_SUPPORT -/* igb_get_i2c_data - Reads the I2C SDA data bit - * @hw: pointer to hardware structure - * @i2cctl: Current value of I2CCTL register - * - * Returns the I2C data bit value - */ -static int igb_get_i2c_data(void *data) -{ - struct igb_adapter *adapter = data; - struct e1000_hw *hw = &adapter->hw; - s32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - - return (i2cctl & E1000_I2C_DATA_IN) != 0; -} - -/* igb_set_i2c_data - Sets the I2C data bit - * @data: pointer to hardware structure - * @state: I2C data value (0 or 1) to set - * - * Sets the I2C data bit - */ -static void igb_set_i2c_data(void *data, int state) -{ - struct igb_adapter *adapter = data; - struct e1000_hw *hw = &adapter->hw; - s32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - - if (state) - i2cctl |= E1000_I2C_DATA_OUT; - else - i2cctl &= ~E1000_I2C_DATA_OUT; - - i2cctl &= ~E1000_I2C_DATA_OE_N; - i2cctl |= E1000_I2C_CLK_OE_N; - - E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl); - E1000_WRITE_FLUSH(hw); - -} - -/* igb_set_i2c_clk - Sets the I2C SCL clock - * @data: pointer to hardware structure - * @state: state to set clock - * - * Sets the I2C clock line to state - */ -static void igb_set_i2c_clk(void *data, int state) -{ - struct igb_adapter *adapter = data; - struct e1000_hw *hw = &adapter->hw; - s32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - - if (state) { - i2cctl |= E1000_I2C_CLK_OUT; - i2cctl &= ~E1000_I2C_CLK_OE_N; - } else { - i2cctl &= ~E1000_I2C_CLK_OUT; - i2cctl &= ~E1000_I2C_CLK_OE_N; - } - E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl); - E1000_WRITE_FLUSH(hw); -} - -/* igb_get_i2c_clk - Gets the I2C SCL clock state - * @data: pointer to hardware structure - * - * Gets the I2C clock state - */ -static int igb_get_i2c_clk(void *data) -{ - struct igb_adapter *adapter = data; - struct e1000_hw *hw = &adapter->hw; - s32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - - return (i2cctl & E1000_I2C_CLK_IN) != 0; -} - -static const struct i2c_algo_bit_data igb_i2c_algo = { - .setsda = igb_set_i2c_data, - .setscl = igb_set_i2c_clk, - .getsda = igb_get_i2c_data, - .getscl = igb_get_i2c_clk, - .udelay = 5, - .timeout = 20, -}; - -/* igb_init_i2c - Init I2C interface - * @adapter: pointer to adapter structure - * - */ -static s32 igb_init_i2c(struct igb_adapter *adapter) -{ - s32 status = E1000_SUCCESS; - - /* I2C interface supported on i350 devices */ - if (adapter->hw.mac.type != e1000_i350) - return E1000_SUCCESS; - - /* Initialize the i2c bus which is controlled by the registers. - * This bus will use the i2c_algo_bit structue that implements - * the protocol through toggling of the 4 bits in the register. - */ - adapter->i2c_adap.owner = THIS_MODULE; - adapter->i2c_algo = igb_i2c_algo; - adapter->i2c_algo.data = adapter; - adapter->i2c_adap.algo_data = &adapter->i2c_algo; - adapter->i2c_adap.dev.parent = &adapter->pdev->dev; - strlcpy(adapter->i2c_adap.name, "igb BB", - sizeof(adapter->i2c_adap.name)); - status = i2c_bit_add_bus(&adapter->i2c_adap); - return status; -} - -#endif /* HAVE_I2C_SUPPORT */ -/** - * igb_up - Open the interface and prepare it to handle traffic - * @adapter: board private structure - **/ -int igb_up(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - int i; - - /* hardware has been reset, we need to reload some things */ - igb_configure(adapter); - - clear_bit(__IGB_DOWN, &adapter->state); - - for (i = 0; i < adapter->num_q_vectors; i++) - napi_enable(&(adapter->q_vector[i]->napi)); - - if (adapter->msix_entries) - igb_configure_msix(adapter); - else - igb_assign_vector(adapter->q_vector[0], 0); - - igb_configure_lli(adapter); - - /* Clear any pending interrupts. */ - E1000_READ_REG(hw, E1000_ICR); - igb_irq_enable(adapter); - - /* notify VFs that reset has been completed */ - if (adapter->vfs_allocated_count) { - u32 reg_data = E1000_READ_REG(hw, E1000_CTRL_EXT); - reg_data |= E1000_CTRL_EXT_PFRSTD; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg_data); - } - - netif_tx_start_all_queues(adapter->netdev); - - if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA) - schedule_work(&adapter->dma_err_task); - /* start the watchdog. */ - hw->mac.get_link_status = 1; - schedule_work(&adapter->watchdog_task); - - if ((adapter->flags & IGB_FLAG_EEE) && - (!hw->dev_spec._82575.eee_disable)) - adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; - - return 0; -} - -void igb_down(struct igb_adapter *adapter) -{ - struct net_device *netdev = adapter->netdev; - struct e1000_hw *hw = &adapter->hw; - u32 tctl, rctl; - int i; - - /* signal that we're down so the interrupt handler does not - * reschedule our watchdog timer */ - set_bit(__IGB_DOWN, &adapter->state); - - /* disable receives in the hardware */ - rctl = E1000_READ_REG(hw, E1000_RCTL); - E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); - /* flush and sleep below */ - - netif_tx_stop_all_queues(netdev); - - /* disable transmits in the hardware */ - tctl = E1000_READ_REG(hw, E1000_TCTL); - tctl &= ~E1000_TCTL_EN; - E1000_WRITE_REG(hw, E1000_TCTL, tctl); - /* flush both disables and wait for them to finish */ - E1000_WRITE_FLUSH(hw); - usleep_range(10000, 20000); - - for (i = 0; i < adapter->num_q_vectors; i++) - napi_disable(&(adapter->q_vector[i]->napi)); - - igb_irq_disable(adapter); - - adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; - - del_timer_sync(&adapter->watchdog_timer); - if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA) - del_timer_sync(&adapter->dma_err_timer); - del_timer_sync(&adapter->phy_info_timer); - - netif_carrier_off(netdev); - - /* record the stats before reset*/ - igb_update_stats(adapter); - - adapter->link_speed = 0; - adapter->link_duplex = 0; - -#ifdef HAVE_PCI_ERS - if (!pci_channel_offline(adapter->pdev)) - igb_reset(adapter); -#else - igb_reset(adapter); -#endif - igb_clean_all_tx_rings(adapter); - igb_clean_all_rx_rings(adapter); -#ifdef IGB_DCA - /* since we reset the hardware DCA settings were cleared */ - igb_setup_dca(adapter); -#endif -} - -void igb_reinit_locked(struct igb_adapter *adapter) -{ - WARN_ON(in_interrupt()); - while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) - usleep_range(1000, 2000); - igb_down(adapter); - igb_up(adapter); - clear_bit(__IGB_RESETTING, &adapter->state); -} - -/** - * igb_enable_mas - Media Autosense re-enable after swap - * - * @adapter: adapter struct - **/ -static s32 igb_enable_mas(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 connsw; - s32 ret_val = E1000_SUCCESS; - - connsw = E1000_READ_REG(hw, E1000_CONNSW); - if (hw->phy.media_type == e1000_media_type_copper) { - /* configure for SerDes media detect */ - if (!(connsw & E1000_CONNSW_SERDESD)) { - connsw |= E1000_CONNSW_ENRGSRC; - connsw |= E1000_CONNSW_AUTOSENSE_EN; - E1000_WRITE_REG(hw, E1000_CONNSW, connsw); - E1000_WRITE_FLUSH(hw); - } else if (connsw & E1000_CONNSW_SERDESD) { - /* already SerDes, no need to enable anything */ - return ret_val; - } else { - dev_info(pci_dev_to_dev(adapter->pdev), - "%s:MAS: Unable to configure feature, disabling..\n", - adapter->netdev->name); - adapter->flags &= ~IGB_FLAG_MAS_ENABLE; - } - } - return ret_val; -} - -void igb_reset(struct igb_adapter *adapter) -{ - struct pci_dev *pdev = adapter->pdev; - struct e1000_hw *hw = &adapter->hw; - struct e1000_mac_info *mac = &hw->mac; - struct e1000_fc_info *fc = &hw->fc; - u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm; - - /* Repartition Pba for greater than 9k mtu - * To take effect CTRL.RST is required. - */ - switch (mac->type) { - case e1000_i350: - case e1000_82580: - case e1000_i354: - pba = E1000_READ_REG(hw, E1000_RXPBS); - pba = e1000_rxpbs_adjust_82580(pba); - break; - case e1000_82576: - pba = E1000_READ_REG(hw, E1000_RXPBS); - pba &= E1000_RXPBS_SIZE_MASK_82576; - break; - case e1000_82575: - case e1000_i210: - case e1000_i211: - default: - pba = E1000_PBA_34K; - break; - } - - if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) && - (mac->type < e1000_82576)) { - /* adjust PBA for jumbo frames */ - E1000_WRITE_REG(hw, E1000_PBA, pba); - - /* To maintain wire speed transmits, the Tx FIFO should be - * large enough to accommodate two full transmit packets, - * rounded up to the next 1KB and expressed in KB. Likewise, - * the Rx FIFO should be large enough to accommodate at least - * one full receive packet and is similarly rounded up and - * expressed in KB. */ - pba = E1000_READ_REG(hw, E1000_PBA); - /* upper 16 bits has Tx packet buffer allocation size in KB */ - tx_space = pba >> 16; - /* lower 16 bits has Rx packet buffer allocation size in KB */ - pba &= 0xffff; - /* the tx fifo also stores 16 bytes of information about the tx - * but don't include ethernet FCS because hardware appends it */ - min_tx_space = (adapter->max_frame_size + - sizeof(union e1000_adv_tx_desc) - - ETH_FCS_LEN) * 2; - min_tx_space = ALIGN(min_tx_space, 1024); - min_tx_space >>= 10; - /* software strips receive CRC, so leave room for it */ - min_rx_space = adapter->max_frame_size; - min_rx_space = ALIGN(min_rx_space, 1024); - min_rx_space >>= 10; - - /* If current Tx allocation is less than the min Tx FIFO size, - * and the min Tx FIFO size is less than the current Rx FIFO - * allocation, take space away from current Rx allocation */ - if (tx_space < min_tx_space && - ((min_tx_space - tx_space) < pba)) { - pba = pba - (min_tx_space - tx_space); - - /* if short on rx space, rx wins and must trump tx - * adjustment */ - if (pba < min_rx_space) - pba = min_rx_space; - } - E1000_WRITE_REG(hw, E1000_PBA, pba); - } - - /* flow control settings */ - /* The high water mark must be low enough to fit one full frame - * (or the size used for early receive) above it in the Rx FIFO. - * Set it to the lower of: - * - 90% of the Rx FIFO size, or - * - the full Rx FIFO size minus one full frame */ - hwm = min(((pba << 10) * 9 / 10), - ((pba << 10) - 2 * adapter->max_frame_size)); - - fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ - fc->low_water = fc->high_water - 16; - fc->pause_time = 0xFFFF; - fc->send_xon = 1; - fc->current_mode = fc->requested_mode; - - /* disable receive for all VFs and wait one second */ - if (adapter->vfs_allocated_count) { - int i; - /* - * Clear all flags except indication that the PF has set - * the VF MAC addresses administratively - */ - for (i = 0 ; i < adapter->vfs_allocated_count; i++) - adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; - - /* ping all the active vfs to let them know we are going down */ - igb_ping_all_vfs(adapter); - - /* disable transmits and receives */ - E1000_WRITE_REG(hw, E1000_VFRE, 0); - E1000_WRITE_REG(hw, E1000_VFTE, 0); - } - - /* Allow time for pending master requests to run */ - e1000_reset_hw(hw); - E1000_WRITE_REG(hw, E1000_WUC, 0); - - if (adapter->flags & IGB_FLAG_MEDIA_RESET) { - e1000_setup_init_funcs(hw, TRUE); - igb_check_options(adapter); - e1000_get_bus_info(hw); - adapter->flags &= ~IGB_FLAG_MEDIA_RESET; - } - if (adapter->flags & IGB_FLAG_MAS_ENABLE) { - if (igb_enable_mas(adapter)) - dev_err(pci_dev_to_dev(pdev), - "Error enabling Media Auto Sense\n"); - } - if (e1000_init_hw(hw)) - dev_err(pci_dev_to_dev(pdev), "Hardware Error\n"); - - /* - * Flow control settings reset on hardware reset, so guarantee flow - * control is off when forcing speed. - */ - if (!hw->mac.autoneg) - e1000_force_mac_fc(hw); - - igb_init_dmac(adapter, pba); - /* Re-initialize the thermal sensor on i350 devices. */ - if (mac->type == e1000_i350 && hw->bus.func == 0) { - /* - * If present, re-initialize the external thermal sensor - * interface. - */ - if (adapter->ets) - e1000_set_i2c_bb(hw); - e1000_init_thermal_sensor_thresh(hw); - } - - /*Re-establish EEE setting */ - if (hw->phy.media_type == e1000_media_type_copper) { - switch (mac->type) { - case e1000_i350: - case e1000_i210: - case e1000_i211: - e1000_set_eee_i350(hw); - break; - case e1000_i354: - e1000_set_eee_i354(hw); - break; - default: - break; - } - } - - if (!netif_running(adapter->netdev)) - igb_power_down_link(adapter); - - igb_update_mng_vlan(adapter); - - /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ - E1000_WRITE_REG(hw, E1000_VET, ETHERNET_IEEE_VLAN_TYPE); - - -#ifdef HAVE_PTP_1588_CLOCK - /* Re-enable PTP, where applicable. */ - igb_ptp_reset(adapter); -#endif /* HAVE_PTP_1588_CLOCK */ - - e1000_get_phy_info(hw); - - adapter->devrc++; -} - -#ifdef HAVE_NDO_SET_FEATURES -static kni_netdev_features_t igb_fix_features(struct net_device *netdev, - kni_netdev_features_t features) -{ - /* - * Since there is no support for separate tx vlan accel - * enabled make sure tx flag is cleared if rx is. - */ -#ifdef NETIF_F_HW_VLAN_CTAG_RX - if (!(features & NETIF_F_HW_VLAN_CTAG_RX)) - features &= ~NETIF_F_HW_VLAN_CTAG_TX; -#else - if (!(features & NETIF_F_HW_VLAN_RX)) - features &= ~NETIF_F_HW_VLAN_TX; -#endif - - /* If Rx checksum is disabled, then LRO should also be disabled */ - if (!(features & NETIF_F_RXCSUM)) - features &= ~NETIF_F_LRO; - - return features; -} - -static int igb_set_features(struct net_device *netdev, - kni_netdev_features_t features) -{ - u32 changed = netdev->features ^ features; - -#ifdef NETIF_F_HW_VLAN_CTAG_RX - if (changed & NETIF_F_HW_VLAN_CTAG_RX) -#else - if (changed & NETIF_F_HW_VLAN_RX) -#endif - igb_vlan_mode(netdev, features); - - return 0; -} - -#ifdef NTF_SELF -#ifdef USE_CONST_DEV_UC_CHAR -static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], - struct net_device *dev, - const unsigned char *addr, -#ifdef HAVE_NDO_FDB_ADD_VID - u16 vid, -#endif - u16 flags) -#else -static int igb_ndo_fdb_add(struct ndmsg *ndm, - struct net_device *dev, - unsigned char *addr, - u16 flags) -#endif -{ - struct igb_adapter *adapter = netdev_priv(dev); - struct e1000_hw *hw = &adapter->hw; - int err; - - if (!(adapter->vfs_allocated_count)) - return -EOPNOTSUPP; - - /* Hardware does not support aging addresses so if a - * ndm_state is given only allow permanent addresses - */ - if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { - pr_info("%s: FDB only supports static addresses\n", - igb_driver_name); - return -EINVAL; - } - - if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) { - u32 rar_uc_entries = hw->mac.rar_entry_count - - (adapter->vfs_allocated_count + 1); - - if (netdev_uc_count(dev) < rar_uc_entries) - err = dev_uc_add_excl(dev, addr); - else - err = -ENOMEM; - } else if (is_multicast_ether_addr(addr)) { - err = dev_mc_add_excl(dev, addr); - } else { - err = -EINVAL; - } - - /* Only return duplicate errors if NLM_F_EXCL is set */ - if (err == -EEXIST && !(flags & NLM_F_EXCL)) - err = 0; - - return err; -} - -#ifndef USE_DEFAULT_FDB_DEL_DUMP -#ifdef USE_CONST_DEV_UC_CHAR -static int igb_ndo_fdb_del(struct ndmsg *ndm, - struct net_device *dev, - const unsigned char *addr) -#else -static int igb_ndo_fdb_del(struct ndmsg *ndm, - struct net_device *dev, - unsigned char *addr) -#endif -{ - struct igb_adapter *adapter = netdev_priv(dev); - int err = -EOPNOTSUPP; - - if (ndm->ndm_state & NUD_PERMANENT) { - pr_info("%s: FDB only supports static addresses\n", - igb_driver_name); - return -EINVAL; - } - - if (adapter->vfs_allocated_count) { - if (is_unicast_ether_addr(addr)) - err = dev_uc_del(dev, addr); - else if (is_multicast_ether_addr(addr)) - err = dev_mc_del(dev, addr); - else - err = -EINVAL; - } - - return err; -} - -static int igb_ndo_fdb_dump(struct sk_buff *skb, - struct netlink_callback *cb, - struct net_device *dev, - int idx) -{ - struct igb_adapter *adapter = netdev_priv(dev); - - if (adapter->vfs_allocated_count) - idx = ndo_dflt_fdb_dump(skb, cb, dev, idx); - - return idx; -} -#endif /* USE_DEFAULT_FDB_DEL_DUMP */ - -#ifdef HAVE_BRIDGE_ATTRIBS -#ifdef HAVE_NDO_BRIDGE_SET_DEL_LINK_FLAGS -static int igb_ndo_bridge_setlink(struct net_device *dev, - struct nlmsghdr *nlh, - u16 flags) -#else -static int igb_ndo_bridge_setlink(struct net_device *dev, - struct nlmsghdr *nlh) -#endif /* HAVE_NDO_BRIDGE_SET_DEL_LINK_FLAGS */ -{ - struct igb_adapter *adapter = netdev_priv(dev); - struct e1000_hw *hw = &adapter->hw; - struct nlattr *attr, *br_spec; - int rem; - - if (!(adapter->vfs_allocated_count)) - return -EOPNOTSUPP; - - switch (adapter->hw.mac.type) { - case e1000_82576: - case e1000_i350: - case e1000_i354: - break; - default: - return -EOPNOTSUPP; - } - - br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); - - nla_for_each_nested(attr, br_spec, rem) { - __u16 mode; - - if (nla_type(attr) != IFLA_BRIDGE_MODE) - continue; - - mode = nla_get_u16(attr); - if (mode == BRIDGE_MODE_VEPA) { - e1000_vmdq_set_loopback_pf(hw, 0); - adapter->flags &= ~IGB_FLAG_LOOPBACK_ENABLE; - } else if (mode == BRIDGE_MODE_VEB) { - e1000_vmdq_set_loopback_pf(hw, 1); - adapter->flags |= IGB_FLAG_LOOPBACK_ENABLE; - } else - return -EINVAL; - - netdev_info(adapter->netdev, "enabling bridge mode: %s\n", - mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB"); - } - - return 0; -} - -#ifdef HAVE_BRIDGE_FILTER -#ifdef HAVE_NDO_BRIDGE_GETLINK_NLFLAGS -static int igb_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, - struct net_device *dev, u32 filter_mask, - int nlflags) -#else -static int igb_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, - struct net_device *dev, u32 filter_mask) -#endif /* HAVE_NDO_BRIDGE_GETLINK_NLFLAGS */ -#else -static int igb_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, - struct net_device *dev) -#endif -{ - struct igb_adapter *adapter = netdev_priv(dev); - u16 mode; - - if (!(adapter->vfs_allocated_count)) - return -EOPNOTSUPP; - - if (adapter->flags & IGB_FLAG_LOOPBACK_ENABLE) - mode = BRIDGE_MODE_VEB; - else - mode = BRIDGE_MODE_VEPA; - -#ifdef HAVE_NDO_DFLT_BRIDGE_ADD_MASK -#ifdef HAVE_NDO_BRIDGE_GETLINK_NLFLAGS -#ifdef HAVE_NDO_BRIDGE_GETLINK_FILTER_MASK_VLAN_FILL - return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 0, 0, - nlflags, filter_mask, NULL); -#else - return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 0, 0, nlflags); -#endif /* HAVE_NDO_BRIDGE_GETLINK_FILTER_MASK_VLAN_FILL */ -#else - return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode, 0, 0); -#endif /* HAVE_NDO_BRIDGE_GETLINK_NLFLAGS */ -#else - return ndo_dflt_bridge_getlink(skb, pid, seq, dev, mode); -#endif /* HAVE_NDO_DFLT_BRIDGE_ADD_MASK */ -} -#endif /* HAVE_BRIDGE_ATTRIBS */ -#endif /* NTF_SELF */ - -#endif /* HAVE_NDO_SET_FEATURES */ -#ifdef HAVE_NET_DEVICE_OPS -static const struct net_device_ops igb_netdev_ops = { - .ndo_open = igb_open, - .ndo_stop = igb_close, - .ndo_start_xmit = igb_xmit_frame, - .ndo_get_stats = igb_get_stats, - .ndo_set_rx_mode = igb_set_rx_mode, - .ndo_set_mac_address = igb_set_mac, - .ndo_change_mtu = igb_change_mtu, - .ndo_do_ioctl = igb_ioctl, - .ndo_tx_timeout = igb_tx_timeout, - .ndo_validate_addr = eth_validate_addr, - .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, - .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, -#ifdef IFLA_VF_MAX - .ndo_set_vf_mac = igb_ndo_set_vf_mac, - .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, -#ifdef HAVE_VF_MIN_MAX_TXRATE - .ndo_set_vf_rate = igb_ndo_set_vf_bw, -#else /* HAVE_VF_MIN_MAX_TXRATE */ - .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw, -#endif /* HAVE_VF_MIN_MAX_TXRATE */ - .ndo_get_vf_config = igb_ndo_get_vf_config, -#ifdef HAVE_VF_SPOOFCHK_CONFIGURE - .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk, -#endif /* HAVE_VF_SPOOFCHK_CONFIGURE */ -#endif /* IFLA_VF_MAX */ -#ifdef CONFIG_NET_POLL_CONTROLLER - .ndo_poll_controller = igb_netpoll, -#endif -#ifdef HAVE_NDO_SET_FEATURES - .ndo_fix_features = igb_fix_features, - .ndo_set_features = igb_set_features, -#endif -#ifdef HAVE_VLAN_RX_REGISTER - .ndo_vlan_rx_register = igb_vlan_mode, -#endif -#ifndef HAVE_RHEL6_NETDEV_OPS_EXT_FDB -#ifdef NTF_SELF - .ndo_fdb_add = igb_ndo_fdb_add, -#ifndef USE_DEFAULT_FDB_DEL_DUMP - .ndo_fdb_del = igb_ndo_fdb_del, - .ndo_fdb_dump = igb_ndo_fdb_dump, -#endif -#endif /* ! HAVE_RHEL6_NETDEV_OPS_EXT_FDB */ -#ifdef HAVE_BRIDGE_ATTRIBS - .ndo_bridge_setlink = igb_ndo_bridge_setlink, - .ndo_bridge_getlink = igb_ndo_bridge_getlink, -#endif /* HAVE_BRIDGE_ATTRIBS */ -#endif -}; - -#ifdef CONFIG_IGB_VMDQ_NETDEV -static const struct net_device_ops igb_vmdq_ops = { - .ndo_open = &igb_vmdq_open, - .ndo_stop = &igb_vmdq_close, - .ndo_start_xmit = &igb_vmdq_xmit_frame, - .ndo_get_stats = &igb_vmdq_get_stats, - .ndo_set_rx_mode = &igb_vmdq_set_rx_mode, - .ndo_validate_addr = eth_validate_addr, - .ndo_set_mac_address = &igb_vmdq_set_mac, - .ndo_change_mtu = &igb_vmdq_change_mtu, - .ndo_tx_timeout = &igb_vmdq_tx_timeout, - .ndo_vlan_rx_register = &igb_vmdq_vlan_rx_register, - .ndo_vlan_rx_add_vid = &igb_vmdq_vlan_rx_add_vid, - .ndo_vlan_rx_kill_vid = &igb_vmdq_vlan_rx_kill_vid, -}; - -#endif /* CONFIG_IGB_VMDQ_NETDEV */ -#endif /* HAVE_NET_DEVICE_OPS */ -#ifdef CONFIG_IGB_VMDQ_NETDEV -void igb_assign_vmdq_netdev_ops(struct net_device *vnetdev) -{ -#ifdef HAVE_NET_DEVICE_OPS - vnetdev->netdev_ops = &igb_vmdq_ops; -#else - dev->open = &igb_vmdq_open; - dev->stop = &igb_vmdq_close; - dev->hard_start_xmit = &igb_vmdq_xmit_frame; - dev->get_stats = &igb_vmdq_get_stats; -#ifdef HAVE_SET_RX_MODE - dev->set_rx_mode = &igb_vmdq_set_rx_mode; -#endif - dev->set_multicast_list = &igb_vmdq_set_rx_mode; - dev->set_mac_address = &igb_vmdq_set_mac; - dev->change_mtu = &igb_vmdq_change_mtu; -#ifdef HAVE_TX_TIMEOUT - dev->tx_timeout = &igb_vmdq_tx_timeout; -#endif -#if defined(NETIF_F_HW_VLAN_TX) || defined(NETIF_F_HW_VLAN_CTAG_TX) - dev->vlan_rx_register = &igb_vmdq_vlan_rx_register; - dev->vlan_rx_add_vid = &igb_vmdq_vlan_rx_add_vid; - dev->vlan_rx_kill_vid = &igb_vmdq_vlan_rx_kill_vid; -#endif -#endif - igb_vmdq_set_ethtool_ops(vnetdev); - vnetdev->watchdog_timeo = 5 * HZ; - -} - -int igb_init_vmdq_netdevs(struct igb_adapter *adapter) -{ - int pool, err = 0, base_queue; - struct net_device *vnetdev; - struct igb_vmdq_adapter *vmdq_adapter; - - for (pool = 1; pool < adapter->vmdq_pools; pool++) { - int qpp = (!adapter->rss_queues ? 1 : adapter->rss_queues); - base_queue = pool * qpp; - vnetdev = alloc_etherdev(sizeof(struct igb_vmdq_adapter)); - if (!vnetdev) { - err = -ENOMEM; - break; - } - vmdq_adapter = netdev_priv(vnetdev); - vmdq_adapter->vnetdev = vnetdev; - vmdq_adapter->real_adapter = adapter; - vmdq_adapter->rx_ring = adapter->rx_ring[base_queue]; - vmdq_adapter->tx_ring = adapter->tx_ring[base_queue]; - igb_assign_vmdq_netdev_ops(vnetdev); - snprintf(vnetdev->name, IFNAMSIZ, "%sv%d", - adapter->netdev->name, pool); - vnetdev->features = adapter->netdev->features; -#ifdef HAVE_NETDEV_VLAN_FEATURES - vnetdev->vlan_features = adapter->netdev->vlan_features; -#endif - adapter->vmdq_netdev[pool-1] = vnetdev; - err = register_netdev(vnetdev); - if (err) - break; - } - return err; -} - -int igb_remove_vmdq_netdevs(struct igb_adapter *adapter) -{ - int pool, err = 0; - - for (pool = 1; pool < adapter->vmdq_pools; pool++) { - unregister_netdev(adapter->vmdq_netdev[pool-1]); - free_netdev(adapter->vmdq_netdev[pool-1]); - adapter->vmdq_netdev[pool-1] = NULL; - } - return err; -} -#endif /* CONFIG_IGB_VMDQ_NETDEV */ - -/** - * igb_set_fw_version - Configure version string for ethtool - * @adapter: adapter struct - * - **/ -static void igb_set_fw_version(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - struct e1000_fw_version fw; - - e1000_get_fw_version(hw, &fw); - - switch (hw->mac.type) { - case e1000_i210: - case e1000_i211: - if (!(e1000_get_flash_presence_i210(hw))) { - snprintf(adapter->fw_version, - sizeof(adapter->fw_version), - "%2d.%2d-%d", - fw.invm_major, fw.invm_minor, fw.invm_img_type); - break; - } - /* fall through */ - default: - /* if option rom is valid, display its version too*/ - if (fw.or_valid) { - snprintf(adapter->fw_version, - sizeof(adapter->fw_version), - "%d.%d, 0x%08x, %d.%d.%d", - fw.eep_major, fw.eep_minor, fw.etrack_id, - fw.or_major, fw.or_build, fw.or_patch); - /* no option rom */ - } else { - if (fw.etrack_id != 0X0000) { - snprintf(adapter->fw_version, - sizeof(adapter->fw_version), - "%d.%d, 0x%08x", - fw.eep_major, fw.eep_minor, fw.etrack_id); - } else { - snprintf(adapter->fw_version, - sizeof(adapter->fw_version), - "%d.%d.%d", - fw.eep_major, fw.eep_minor, fw.eep_build); - } - } - break; - } - - return; -} - -/** - * igb_init_mas - init Media Autosense feature if enabled in the NVM - * - * @adapter: adapter struct - **/ -static void igb_init_mas(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u16 eeprom_data; - - e1000_read_nvm(hw, NVM_COMPAT, 1, &eeprom_data); - switch (hw->bus.func) { - case E1000_FUNC_0: - if (eeprom_data & IGB_MAS_ENABLE_0) - adapter->flags |= IGB_FLAG_MAS_ENABLE; - break; - case E1000_FUNC_1: - if (eeprom_data & IGB_MAS_ENABLE_1) - adapter->flags |= IGB_FLAG_MAS_ENABLE; - break; - case E1000_FUNC_2: - if (eeprom_data & IGB_MAS_ENABLE_2) - adapter->flags |= IGB_FLAG_MAS_ENABLE; - break; - case E1000_FUNC_3: - if (eeprom_data & IGB_MAS_ENABLE_3) - adapter->flags |= IGB_FLAG_MAS_ENABLE; - break; - default: - /* Shouldn't get here */ - dev_err(pci_dev_to_dev(adapter->pdev), - "%s:AMS: Invalid port configuration, returning\n", - adapter->netdev->name); - break; - } -} - -/** - * igb_probe - Device Initialization Routine - * @pdev: PCI device information struct - * @ent: entry in igb_pci_tbl - * - * Returns 0 on success, negative on failure - * - * igb_probe initializes an adapter identified by a pci_dev structure. - * The OS initialization, configuring of the adapter private structure, - * and a hardware reset occur. - **/ -static int __devinit igb_probe(struct pci_dev *pdev, - const struct pci_device_id *ent) -{ - struct net_device *netdev; - struct igb_adapter *adapter; - struct e1000_hw *hw; - u16 eeprom_data = 0; - u8 pba_str[E1000_PBANUM_LENGTH]; - s32 ret_val; - static int global_quad_port_a; /* global quad port a indication */ - int i, err, pci_using_dac; - static int cards_found; - - err = pci_enable_device_mem(pdev); - if (err) - return err; - - pci_using_dac = 0; - err = dma_set_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(64)); - if (!err) { - err = dma_set_coherent_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(64)); - if (!err) - pci_using_dac = 1; - } else { - err = dma_set_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(32)); - if (err) { - err = dma_set_coherent_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(32)); - if (err) { - IGB_ERR("No usable DMA configuration, " - "aborting\n"); - goto err_dma; - } - } - } - -#ifndef HAVE_ASPM_QUIRKS - /* 82575 requires that the pci-e link partner disable the L0s state */ - switch (pdev->device) { - case E1000_DEV_ID_82575EB_COPPER: - case E1000_DEV_ID_82575EB_FIBER_SERDES: - case E1000_DEV_ID_82575GB_QUAD_COPPER: - pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S); - default: - break; - } - -#endif /* HAVE_ASPM_QUIRKS */ - err = pci_request_selected_regions(pdev, - pci_select_bars(pdev, - IORESOURCE_MEM), - igb_driver_name); - if (err) - goto err_pci_reg; - - pci_enable_pcie_error_reporting(pdev); - - pci_set_master(pdev); - - err = -ENOMEM; -#ifdef HAVE_TX_MQ - netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), - IGB_MAX_TX_QUEUES); -#else - netdev = alloc_etherdev(sizeof(struct igb_adapter)); -#endif /* HAVE_TX_MQ */ - if (!netdev) - goto err_alloc_etherdev; - - SET_MODULE_OWNER(netdev); - SET_NETDEV_DEV(netdev, &pdev->dev); - - pci_set_drvdata(pdev, netdev); - adapter = netdev_priv(netdev); - adapter->netdev = netdev; - adapter->pdev = pdev; - hw = &adapter->hw; - hw->back = adapter; - adapter->port_num = hw->bus.func; - adapter->msg_enable = (1 << debug) - 1; - -#ifdef HAVE_PCI_ERS - err = pci_save_state(pdev); - if (err) - goto err_ioremap; -#endif - err = -EIO; - hw->hw_addr = ioremap(pci_resource_start(pdev, 0), - pci_resource_len(pdev, 0)); - if (!hw->hw_addr) - goto err_ioremap; - -#ifdef HAVE_NET_DEVICE_OPS - netdev->netdev_ops = &igb_netdev_ops; -#else /* HAVE_NET_DEVICE_OPS */ - netdev->open = &igb_open; - netdev->stop = &igb_close; - netdev->get_stats = &igb_get_stats; -#ifdef HAVE_SET_RX_MODE - netdev->set_rx_mode = &igb_set_rx_mode; -#endif - netdev->set_multicast_list = &igb_set_rx_mode; - netdev->set_mac_address = &igb_set_mac; - netdev->change_mtu = &igb_change_mtu; - netdev->do_ioctl = &igb_ioctl; -#ifdef HAVE_TX_TIMEOUT - netdev->tx_timeout = &igb_tx_timeout; -#endif - netdev->vlan_rx_register = igb_vlan_mode; - netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid; - netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid; -#ifdef CONFIG_NET_POLL_CONTROLLER - netdev->poll_controller = igb_netpoll; -#endif - netdev->hard_start_xmit = &igb_xmit_frame; -#endif /* HAVE_NET_DEVICE_OPS */ - igb_set_ethtool_ops(netdev); -#ifdef HAVE_TX_TIMEOUT - netdev->watchdog_timeo = 5 * HZ; -#endif - - strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); - - adapter->bd_number = cards_found; - - /* setup the private structure */ - err = igb_sw_init(adapter); - if (err) - goto err_sw_init; - - e1000_get_bus_info(hw); - - hw->phy.autoneg_wait_to_complete = FALSE; - hw->mac.adaptive_ifs = FALSE; - - /* Copper options */ - if (hw->phy.media_type == e1000_media_type_copper) { - hw->phy.mdix = AUTO_ALL_MODES; - hw->phy.disable_polarity_correction = FALSE; - hw->phy.ms_type = e1000_ms_hw_default; - } - - if (e1000_check_reset_block(hw)) - dev_info(pci_dev_to_dev(pdev), - "PHY reset is blocked due to SOL/IDER session.\n"); - - /* - * features is initialized to 0 in allocation, it might have bits - * set by igb_sw_init so we should use an or instead of an - * assignment. - */ - netdev->features |= NETIF_F_SG | - NETIF_F_IP_CSUM | -#ifdef NETIF_F_IPV6_CSUM - NETIF_F_IPV6_CSUM | -#endif -#ifdef NETIF_F_TSO - NETIF_F_TSO | -#ifdef NETIF_F_TSO6 - NETIF_F_TSO6 | -#endif -#endif /* NETIF_F_TSO */ -#ifdef NETIF_F_RXHASH - NETIF_F_RXHASH | -#endif - NETIF_F_RXCSUM | -#ifdef NETIF_F_HW_VLAN_CTAG_RX - NETIF_F_HW_VLAN_CTAG_RX | - NETIF_F_HW_VLAN_CTAG_TX; -#else - NETIF_F_HW_VLAN_RX | - NETIF_F_HW_VLAN_TX; -#endif - - if (hw->mac.type >= e1000_82576) - netdev->features |= NETIF_F_SCTP_CSUM; - -#ifdef HAVE_NDO_SET_FEATURES - /* copy netdev features into list of user selectable features */ - netdev->hw_features |= netdev->features; -#ifndef IGB_NO_LRO - - /* give us the option of enabling LRO later */ - netdev->hw_features |= NETIF_F_LRO; -#endif -#else -#ifdef NETIF_F_GRO - - /* this is only needed on kernels prior to 2.6.39 */ - netdev->features |= NETIF_F_GRO; -#endif -#endif - - /* set this bit last since it cannot be part of hw_features */ -#ifdef NETIF_F_HW_VLAN_CTAG_FILTER - netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; -#else - netdev->features |= NETIF_F_HW_VLAN_FILTER; -#endif - -#ifdef HAVE_NETDEV_VLAN_FEATURES - netdev->vlan_features |= NETIF_F_TSO | - NETIF_F_TSO6 | - NETIF_F_IP_CSUM | - NETIF_F_IPV6_CSUM | - NETIF_F_SG; - -#endif - if (pci_using_dac) - netdev->features |= NETIF_F_HIGHDMA; - - adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); -#ifdef DEBUG - if (adapter->dmac != IGB_DMAC_DISABLE) - printk("%s: DMA Coalescing is enabled..\n", netdev->name); -#endif - - /* before reading the NVM, reset the controller to put the device in a - * known good starting state */ - e1000_reset_hw(hw); - - /* make sure the NVM is good */ - if (e1000_validate_nvm_checksum(hw) < 0) { - dev_err(pci_dev_to_dev(pdev), "The NVM Checksum Is Not" - " Valid\n"); - err = -EIO; - goto err_eeprom; - } - - /* copy the MAC address out of the NVM */ - if (e1000_read_mac_addr(hw)) - dev_err(pci_dev_to_dev(pdev), "NVM Read Error\n"); - memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); -#ifdef ETHTOOL_GPERMADDR - memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len); - - if (!is_valid_ether_addr(netdev->perm_addr)) { -#else - if (!is_valid_ether_addr(netdev->dev_addr)) { -#endif - dev_err(pci_dev_to_dev(pdev), "Invalid MAC Address\n"); - err = -EIO; - goto err_eeprom; - } - - memcpy(&adapter->mac_table[0].addr, hw->mac.addr, netdev->addr_len); - adapter->mac_table[0].queue = adapter->vfs_allocated_count; - adapter->mac_table[0].state = (IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE); - igb_rar_set(adapter, 0); - - /* get firmware version for ethtool -i */ - igb_set_fw_version(adapter); - - /* Check if Media Autosense is enabled */ - if (hw->mac.type == e1000_82580) - igb_init_mas(adapter); -#ifdef HAVE_TIMER_SETUP - timer_setup(&adapter->watchdog_timer, &igb_watchdog, 0); - if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA) - timer_setup(&adapter->dma_err_timer, &igb_dma_err_timer, 0); - timer_setup(&adapter->phy_info_timer, &igb_update_phy_info, 0); -#else - setup_timer(&adapter->watchdog_timer, &igb_watchdog, - (unsigned long) adapter); - if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA) - setup_timer(&adapter->dma_err_timer, &igb_dma_err_timer, - (unsigned long) adapter); - setup_timer(&adapter->phy_info_timer, &igb_update_phy_info, - (unsigned long) adapter); -#endif - - INIT_WORK(&adapter->reset_task, igb_reset_task); - INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); - if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA) - INIT_WORK(&adapter->dma_err_task, igb_dma_err_task); - - /* Initialize link properties that are user-changeable */ - adapter->fc_autoneg = true; - hw->mac.autoneg = true; - hw->phy.autoneg_advertised = 0x2f; - - hw->fc.requested_mode = e1000_fc_default; - hw->fc.current_mode = e1000_fc_default; - - e1000_validate_mdi_setting(hw); - - /* By default, support wake on port A */ - if (hw->bus.func == 0) - adapter->flags |= IGB_FLAG_WOL_SUPPORTED; - - /* Check the NVM for wake support for non-port A ports */ - if (hw->mac.type >= e1000_82580) - hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + - NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, - &eeprom_data); - else if (hw->bus.func == 1) - e1000_read_nvm(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); - - if (eeprom_data & IGB_EEPROM_APME) - adapter->flags |= IGB_FLAG_WOL_SUPPORTED; - - /* now that we have the eeprom settings, apply the special cases where - * the eeprom may be wrong or the board simply won't support wake on - * lan on a particular port */ - switch (pdev->device) { - case E1000_DEV_ID_82575GB_QUAD_COPPER: - adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; - break; - case E1000_DEV_ID_82575EB_FIBER_SERDES: - case E1000_DEV_ID_82576_FIBER: - case E1000_DEV_ID_82576_SERDES: - /* Wake events only supported on port A for dual fiber - * regardless of eeprom setting */ - if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FUNC_1) - adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; - break; - case E1000_DEV_ID_82576_QUAD_COPPER: - case E1000_DEV_ID_82576_QUAD_COPPER_ET2: - /* if quad port adapter, disable WoL on all but port A */ - if (global_quad_port_a != 0) - adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; - else - adapter->flags |= IGB_FLAG_QUAD_PORT_A; - /* Reset for multiple quad port adapters */ - if (++global_quad_port_a == 4) - global_quad_port_a = 0; - break; - default: - /* If the device can't wake, don't set software support */ - if (!device_can_wakeup(&adapter->pdev->dev)) - adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; - break; - } - - /* initialize the wol settings based on the eeprom settings */ - if (adapter->flags & IGB_FLAG_WOL_SUPPORTED) - adapter->wol |= E1000_WUFC_MAG; - - /* Some vendors want WoL disabled by default, but still supported */ - if ((hw->mac.type == e1000_i350) && - (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) { - adapter->flags |= IGB_FLAG_WOL_SUPPORTED; - adapter->wol = 0; - } - - device_set_wakeup_enable(pci_dev_to_dev(adapter->pdev), - adapter->flags & IGB_FLAG_WOL_SUPPORTED); - - /* reset the hardware with the new settings */ - igb_reset(adapter); - adapter->devrc = 0; - -#ifdef HAVE_I2C_SUPPORT - /* Init the I2C interface */ - err = igb_init_i2c(adapter); - if (err) { - dev_err(&pdev->dev, "failed to init i2c interface\n"); - goto err_eeprom; - } -#endif /* HAVE_I2C_SUPPORT */ - - /* let the f/w know that the h/w is now under the control of the - * driver. */ - igb_get_hw_control(adapter); - - strncpy(netdev->name, "eth%d", IFNAMSIZ); - err = register_netdev(netdev); - if (err) - goto err_register; - -#ifdef CONFIG_IGB_VMDQ_NETDEV - err = igb_init_vmdq_netdevs(adapter); - if (err) - goto err_register; -#endif - /* carrier off reporting is important to ethtool even BEFORE open */ - netif_carrier_off(netdev); - -#ifdef IGB_DCA - if (dca_add_requester(&pdev->dev) == E1000_SUCCESS) { - adapter->flags |= IGB_FLAG_DCA_ENABLED; - dev_info(pci_dev_to_dev(pdev), "DCA enabled\n"); - igb_setup_dca(adapter); - } - -#endif -#ifdef HAVE_PTP_1588_CLOCK - /* do hw tstamp init after resetting */ - igb_ptp_init(adapter); -#endif /* HAVE_PTP_1588_CLOCK */ - - dev_info(pci_dev_to_dev(pdev), "Intel(R) Gigabit Ethernet Network Connection\n"); - /* print bus type/speed/width info */ - dev_info(pci_dev_to_dev(pdev), "%s: (PCIe:%s:%s) ", - netdev->name, - ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5GT/s" : - (hw->bus.speed == e1000_bus_speed_5000) ? "5.0GT/s" : - (hw->mac.type == e1000_i354) ? "integrated" : - "unknown"), - ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : - (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" : - (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" : - (hw->mac.type == e1000_i354) ? "integrated" : - "unknown")); - dev_info(pci_dev_to_dev(pdev), "%s: MAC: ", netdev->name); - for (i = 0; i < 6; i++) - printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':'); - - ret_val = e1000_read_pba_string(hw, pba_str, E1000_PBANUM_LENGTH); - if (ret_val) - strncpy(pba_str, "Unknown", sizeof(pba_str) - 1); - dev_info(pci_dev_to_dev(pdev), "%s: PBA No: %s\n", netdev->name, - pba_str); - - - /* Initialize the thermal sensor on i350 devices. */ - if (hw->mac.type == e1000_i350) { - if (hw->bus.func == 0) { - u16 ets_word; - - /* - * Read the NVM to determine if this i350 device - * supports an external thermal sensor. - */ - e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_word); - if (ets_word != 0x0000 && ets_word != 0xFFFF) - adapter->ets = true; - else - adapter->ets = false; - } -#ifdef IGB_HWMON - - igb_sysfs_init(adapter); -#else -#ifdef IGB_PROCFS - - igb_procfs_init(adapter); -#endif /* IGB_PROCFS */ -#endif /* IGB_HWMON */ - } else { - adapter->ets = false; - } - - if (hw->phy.media_type == e1000_media_type_copper) { - switch (hw->mac.type) { - case e1000_i350: - case e1000_i210: - case e1000_i211: - /* Enable EEE for internal copper PHY devices */ - err = e1000_set_eee_i350(hw); - if (!err && - (adapter->flags & IGB_FLAG_EEE)) - adapter->eee_advert = - MDIO_EEE_100TX | MDIO_EEE_1000T; - break; - case e1000_i354: - if ((E1000_READ_REG(hw, E1000_CTRL_EXT)) & - (E1000_CTRL_EXT_LINK_MODE_SGMII)) { - err = e1000_set_eee_i354(hw); - if ((!err) && - (adapter->flags & IGB_FLAG_EEE)) - adapter->eee_advert = - MDIO_EEE_100TX | MDIO_EEE_1000T; - } - break; - default: - break; - } - } - - /* send driver version info to firmware */ - if (hw->mac.type >= e1000_i350) - igb_init_fw(adapter); - -#ifndef IGB_NO_LRO - if (netdev->features & NETIF_F_LRO) - dev_info(pci_dev_to_dev(pdev), "Internal LRO is enabled \n"); - else - dev_info(pci_dev_to_dev(pdev), "LRO is disabled \n"); -#endif - dev_info(pci_dev_to_dev(pdev), - "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", - adapter->msix_entries ? "MSI-X" : - (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", - adapter->num_rx_queues, adapter->num_tx_queues); - - cards_found++; - - pm_runtime_put_noidle(&pdev->dev); - return 0; - -err_register: - igb_release_hw_control(adapter); -#ifdef HAVE_I2C_SUPPORT - memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap)); -#endif /* HAVE_I2C_SUPPORT */ -err_eeprom: - if (!e1000_check_reset_block(hw)) - e1000_phy_hw_reset(hw); - - if (hw->flash_address) - iounmap(hw->flash_address); -err_sw_init: - igb_clear_interrupt_scheme(adapter); - igb_reset_sriov_capability(adapter); - iounmap(hw->hw_addr); -err_ioremap: - free_netdev(netdev); -err_alloc_etherdev: - pci_release_selected_regions(pdev, - pci_select_bars(pdev, IORESOURCE_MEM)); -err_pci_reg: -err_dma: - pci_disable_device(pdev); - return err; -} -#ifdef HAVE_I2C_SUPPORT -/* - * igb_remove_i2c - Cleanup I2C interface - * @adapter: pointer to adapter structure - * - */ -static void igb_remove_i2c(struct igb_adapter *adapter) -{ - - /* free the adapter bus structure */ - i2c_del_adapter(&adapter->i2c_adap); -} -#endif /* HAVE_I2C_SUPPORT */ - -/** - * igb_remove - Device Removal Routine - * @pdev: PCI device information struct - * - * igb_remove is called by the PCI subsystem to alert the driver - * that it should release a PCI device. The could be caused by a - * Hot-Plug event, or because the driver is going to be removed from - * memory. - **/ -static void __devexit igb_remove(struct pci_dev *pdev) -{ - struct net_device *netdev = pci_get_drvdata(pdev); - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - pm_runtime_get_noresume(&pdev->dev); -#ifdef HAVE_I2C_SUPPORT - igb_remove_i2c(adapter); -#endif /* HAVE_I2C_SUPPORT */ -#ifdef HAVE_PTP_1588_CLOCK - igb_ptp_stop(adapter); -#endif /* HAVE_PTP_1588_CLOCK */ - - /* flush_scheduled work may reschedule our watchdog task, so - * explicitly disable watchdog tasks from being rescheduled */ - set_bit(__IGB_DOWN, &adapter->state); - del_timer_sync(&adapter->watchdog_timer); - if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA) - del_timer_sync(&adapter->dma_err_timer); - del_timer_sync(&adapter->phy_info_timer); - - flush_scheduled_work(); - -#ifdef IGB_DCA - if (adapter->flags & IGB_FLAG_DCA_ENABLED) { - dev_info(pci_dev_to_dev(pdev), "DCA disabled\n"); - dca_remove_requester(&pdev->dev); - adapter->flags &= ~IGB_FLAG_DCA_ENABLED; - E1000_WRITE_REG(hw, E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_DISABLE); - } -#endif - - /* Release control of h/w to f/w. If f/w is AMT enabled, this - * would have already happened in close and is redundant. */ - igb_release_hw_control(adapter); - - unregister_netdev(netdev); -#ifdef CONFIG_IGB_VMDQ_NETDEV - igb_remove_vmdq_netdevs(adapter); -#endif - - igb_clear_interrupt_scheme(adapter); - igb_reset_sriov_capability(adapter); - - iounmap(hw->hw_addr); - if (hw->flash_address) - iounmap(hw->flash_address); - pci_release_selected_regions(pdev, - pci_select_bars(pdev, IORESOURCE_MEM)); - -#ifdef IGB_HWMON - igb_sysfs_exit(adapter); -#else -#ifdef IGB_PROCFS - igb_procfs_exit(adapter); -#endif /* IGB_PROCFS */ -#endif /* IGB_HWMON */ - kfree(adapter->mac_table); - kfree(adapter->shadow_vfta); - free_netdev(netdev); - - pci_disable_pcie_error_reporting(pdev); - - pci_disable_device(pdev); -} - -/** - * igb_sw_init - Initialize general software structures (struct igb_adapter) - * @adapter: board private structure to initialize - * - * igb_sw_init initializes the Adapter private data structure. - * Fields are initialized based on PCI device information and - * OS network device settings (MTU size). - **/ -static int igb_sw_init(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - struct net_device *netdev = adapter->netdev; - struct pci_dev *pdev = adapter->pdev; - - /* PCI config space info */ - - hw->vendor_id = pdev->vendor; - hw->device_id = pdev->device; - hw->subsystem_vendor_id = pdev->subsystem_vendor; - hw->subsystem_device_id = pdev->subsystem_device; - - pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); - - pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); - - /* set default ring sizes */ - adapter->tx_ring_count = IGB_DEFAULT_TXD; - adapter->rx_ring_count = IGB_DEFAULT_RXD; - - /* set default work limits */ - adapter->tx_work_limit = IGB_DEFAULT_TX_WORK; - - adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + - VLAN_HLEN; - - /* Initialize the hardware-specific values */ - if (e1000_setup_init_funcs(hw, TRUE)) { - dev_err(pci_dev_to_dev(pdev), "Hardware Initialization Failure\n"); - return -EIO; - } - - adapter->mac_table = kzalloc(sizeof(struct igb_mac_addr) * - hw->mac.rar_entry_count, - GFP_ATOMIC); - - /* Setup and initialize a copy of the hw vlan table array */ - adapter->shadow_vfta = kzalloc(sizeof(u32) * E1000_VFTA_ENTRIES, - GFP_ATOMIC); -#ifdef NO_KNI - /* These calls may decrease the number of queues */ - if (hw->mac.type < e1000_i210) { - igb_set_sriov_capability(adapter); - } - - if (igb_init_interrupt_scheme(adapter, true)) { - dev_err(pci_dev_to_dev(pdev), "Unable to allocate memory for queues\n"); - return -ENOMEM; - } - - /* Explicitly disable IRQ since the NIC can be in any state. */ - igb_irq_disable(adapter); - - set_bit(__IGB_DOWN, &adapter->state); -#endif - return 0; -} - -/** - * igb_open - Called when a network interface is made active - * @netdev: network interface device structure - * - * Returns 0 on success, negative value on failure - * - * The open entry point is called when a network interface is made - * active by the system (IFF_UP). At this point all resources needed - * for transmit and receive operations are allocated, the interrupt - * handler is registered with the OS, the watchdog timer is started, - * and the stack is notified that the interface is ready. - **/ -static int __igb_open(struct net_device *netdev, bool resuming) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; -#ifdef CONFIG_PM_RUNTIME - struct pci_dev *pdev = adapter->pdev; -#endif /* CONFIG_PM_RUNTIME */ - int err; - int i; - - /* disallow open during test */ - if (test_bit(__IGB_TESTING, &adapter->state)) { - WARN_ON(resuming); - return -EBUSY; - } - -#ifdef CONFIG_PM_RUNTIME - if (!resuming) - pm_runtime_get_sync(&pdev->dev); -#endif /* CONFIG_PM_RUNTIME */ - - netif_carrier_off(netdev); - - /* allocate transmit descriptors */ - err = igb_setup_all_tx_resources(adapter); - if (err) - goto err_setup_tx; - - /* allocate receive descriptors */ - err = igb_setup_all_rx_resources(adapter); - if (err) - goto err_setup_rx; - - igb_power_up_link(adapter); - - /* before we allocate an interrupt, we must be ready to handle it. - * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt - * as soon as we call pci_request_irq, so we have to setup our - * clean_rx handler before we do so. */ - igb_configure(adapter); - - err = igb_request_irq(adapter); - if (err) - goto err_req_irq; - - /* Notify the stack of the actual queue counts. */ - netif_set_real_num_tx_queues(netdev, - adapter->vmdq_pools ? 1 : - adapter->num_tx_queues); - - err = netif_set_real_num_rx_queues(netdev, - adapter->vmdq_pools ? 1 : - adapter->num_rx_queues); - if (err) - goto err_set_queues; - - /* From here on the code is the same as igb_up() */ - clear_bit(__IGB_DOWN, &adapter->state); - - for (i = 0; i < adapter->num_q_vectors; i++) - napi_enable(&(adapter->q_vector[i]->napi)); - igb_configure_lli(adapter); - - /* Clear any pending interrupts. */ - E1000_READ_REG(hw, E1000_ICR); - - igb_irq_enable(adapter); - - /* notify VFs that reset has been completed */ - if (adapter->vfs_allocated_count) { - u32 reg_data = E1000_READ_REG(hw, E1000_CTRL_EXT); - reg_data |= E1000_CTRL_EXT_PFRSTD; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg_data); - } - - netif_tx_start_all_queues(netdev); - - if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA) - schedule_work(&adapter->dma_err_task); - - /* start the watchdog. */ - hw->mac.get_link_status = 1; - schedule_work(&adapter->watchdog_task); - - return E1000_SUCCESS; - -err_set_queues: - igb_free_irq(adapter); -err_req_irq: - igb_release_hw_control(adapter); - igb_power_down_link(adapter); - igb_free_all_rx_resources(adapter); -err_setup_rx: - igb_free_all_tx_resources(adapter); -err_setup_tx: - igb_reset(adapter); - -#ifdef CONFIG_PM_RUNTIME - if (!resuming) - pm_runtime_put(&pdev->dev); -#endif /* CONFIG_PM_RUNTIME */ - - return err; -} - -static int igb_open(struct net_device *netdev) -{ - return __igb_open(netdev, false); -} - -/** - * igb_close - Disables a network interface - * @netdev: network interface device structure - * - * Returns 0, this is not allowed to fail - * - * The close entry point is called when an interface is de-activated - * by the OS. The hardware is still under the driver's control, but - * needs to be disabled. A global MAC reset is issued to stop the - * hardware, and all transmit and receive resources are freed. - **/ -static int __igb_close(struct net_device *netdev, bool suspending) -{ - struct igb_adapter *adapter = netdev_priv(netdev); -#ifdef CONFIG_PM_RUNTIME - struct pci_dev *pdev = adapter->pdev; -#endif /* CONFIG_PM_RUNTIME */ - - WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); - -#ifdef CONFIG_PM_RUNTIME - if (!suspending) - pm_runtime_get_sync(&pdev->dev); -#endif /* CONFIG_PM_RUNTIME */ - - igb_down(adapter); - - igb_release_hw_control(adapter); - - igb_free_irq(adapter); - - igb_free_all_tx_resources(adapter); - igb_free_all_rx_resources(adapter); - -#ifdef CONFIG_PM_RUNTIME - if (!suspending) - pm_runtime_put_sync(&pdev->dev); -#endif /* CONFIG_PM_RUNTIME */ - - return 0; -} - -static int igb_close(struct net_device *netdev) -{ - return __igb_close(netdev, false); -} - -/** - * igb_setup_tx_resources - allocate Tx resources (Descriptors) - * @tx_ring: tx descriptor ring (for a specific queue) to setup - * - * Return 0 on success, negative on failure - **/ -int igb_setup_tx_resources(struct igb_ring *tx_ring) -{ - struct device *dev = tx_ring->dev; - int size; - - size = sizeof(struct igb_tx_buffer) * tx_ring->count; - tx_ring->tx_buffer_info = vzalloc(size); - if (!tx_ring->tx_buffer_info) - goto err; - - /* round up to nearest 4K */ - tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); - tx_ring->size = ALIGN(tx_ring->size, 4096); - - tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, - &tx_ring->dma, GFP_KERNEL); - - if (!tx_ring->desc) - goto err; - - tx_ring->next_to_use = 0; - tx_ring->next_to_clean = 0; - - return 0; - -err: - vfree(tx_ring->tx_buffer_info); - dev_err(dev, - "Unable to allocate memory for the transmit descriptor ring\n"); - return -ENOMEM; -} - -/** - * igb_setup_all_tx_resources - wrapper to allocate Tx resources - * (Descriptors) for all queues - * @adapter: board private structure - * - * Return 0 on success, negative on failure - **/ -static int igb_setup_all_tx_resources(struct igb_adapter *adapter) -{ - struct pci_dev *pdev = adapter->pdev; - int i, err = 0; - - for (i = 0; i < adapter->num_tx_queues; i++) { - err = igb_setup_tx_resources(adapter->tx_ring[i]); - if (err) { - dev_err(pci_dev_to_dev(pdev), - "Allocation for Tx Queue %u failed\n", i); - for (i--; i >= 0; i--) - igb_free_tx_resources(adapter->tx_ring[i]); - break; - } - } - - return err; -} - -/** - * igb_setup_tctl - configure the transmit control registers - * @adapter: Board private structure - **/ -void igb_setup_tctl(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 tctl; - - /* disable queue 0 which is enabled by default on 82575 and 82576 */ - E1000_WRITE_REG(hw, E1000_TXDCTL(0), 0); - - /* Program the Transmit Control Register */ - tctl = E1000_READ_REG(hw, E1000_TCTL); - tctl &= ~E1000_TCTL_CT; - tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | - (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); - - e1000_config_collision_dist(hw); - - /* Enable transmits */ - tctl |= E1000_TCTL_EN; - - E1000_WRITE_REG(hw, E1000_TCTL, tctl); -} - -static u32 igb_tx_wthresh(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - switch (hw->mac.type) { - case e1000_i354: - return 4; - case e1000_82576: - if (adapter->msix_entries) - return 1; - default: - break; - } - - return 16; -} - -/** - * igb_configure_tx_ring - Configure transmit ring after Reset - * @adapter: board private structure - * @ring: tx ring to configure - * - * Configure a transmit ring after a reset. - **/ -void igb_configure_tx_ring(struct igb_adapter *adapter, - struct igb_ring *ring) -{ - struct e1000_hw *hw = &adapter->hw; - u32 txdctl = 0; - u64 tdba = ring->dma; - int reg_idx = ring->reg_idx; - - /* disable the queue */ - E1000_WRITE_REG(hw, E1000_TXDCTL(reg_idx), 0); - E1000_WRITE_FLUSH(hw); - mdelay(10); - - E1000_WRITE_REG(hw, E1000_TDLEN(reg_idx), - ring->count * sizeof(union e1000_adv_tx_desc)); - E1000_WRITE_REG(hw, E1000_TDBAL(reg_idx), - tdba & 0x00000000ffffffffULL); - E1000_WRITE_REG(hw, E1000_TDBAH(reg_idx), tdba >> 32); - - ring->tail = hw->hw_addr + E1000_TDT(reg_idx); - E1000_WRITE_REG(hw, E1000_TDH(reg_idx), 0); - writel(0, ring->tail); - - txdctl |= IGB_TX_PTHRESH; - txdctl |= IGB_TX_HTHRESH << 8; - txdctl |= igb_tx_wthresh(adapter) << 16; - - txdctl |= E1000_TXDCTL_QUEUE_ENABLE; - E1000_WRITE_REG(hw, E1000_TXDCTL(reg_idx), txdctl); -} - -/** - * igb_configure_tx - Configure transmit Unit after Reset - * @adapter: board private structure - * - * Configure the Tx unit of the MAC after a reset. - **/ -static void igb_configure_tx(struct igb_adapter *adapter) -{ - int i; - - for (i = 0; i < adapter->num_tx_queues; i++) - igb_configure_tx_ring(adapter, adapter->tx_ring[i]); -} - -/** - * igb_setup_rx_resources - allocate Rx resources (Descriptors) - * @rx_ring: rx descriptor ring (for a specific queue) to setup - * - * Returns 0 on success, negative on failure - **/ -int igb_setup_rx_resources(struct igb_ring *rx_ring) -{ - struct device *dev = rx_ring->dev; - int size, desc_len; - - size = sizeof(struct igb_rx_buffer) * rx_ring->count; - rx_ring->rx_buffer_info = vzalloc(size); - if (!rx_ring->rx_buffer_info) - goto err; - - desc_len = sizeof(union e1000_adv_rx_desc); - - /* Round up to nearest 4K */ - rx_ring->size = rx_ring->count * desc_len; - rx_ring->size = ALIGN(rx_ring->size, 4096); - - rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, - &rx_ring->dma, GFP_KERNEL); - - if (!rx_ring->desc) - goto err; - - rx_ring->next_to_alloc = 0; - rx_ring->next_to_clean = 0; - rx_ring->next_to_use = 0; - - return 0; - -err: - vfree(rx_ring->rx_buffer_info); - rx_ring->rx_buffer_info = NULL; - dev_err(dev, "Unable to allocate memory for the receive descriptor" - " ring\n"); - return -ENOMEM; -} - -/** - * igb_setup_all_rx_resources - wrapper to allocate Rx resources - * (Descriptors) for all queues - * @adapter: board private structure - * - * Return 0 on success, negative on failure - **/ -static int igb_setup_all_rx_resources(struct igb_adapter *adapter) -{ - struct pci_dev *pdev = adapter->pdev; - int i, err = 0; - - for (i = 0; i < adapter->num_rx_queues; i++) { - err = igb_setup_rx_resources(adapter->rx_ring[i]); - if (err) { - dev_err(pci_dev_to_dev(pdev), - "Allocation for Rx Queue %u failed\n", i); - for (i--; i >= 0; i--) - igb_free_rx_resources(adapter->rx_ring[i]); - break; - } - } - - return err; -} - -/** - * igb_setup_mrqc - configure the multiple receive queue control registers - * @adapter: Board private structure - **/ -static void igb_setup_mrqc(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 mrqc, rxcsum; - u32 j, num_rx_queues, shift = 0, shift2 = 0; - static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741, - 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE, - 0xA32DCB77, 0x0CF23080, 0x3BB7426A, - 0xFA01ACBE }; - - /* Fill out hash function seeds */ - for (j = 0; j < 10; j++) - E1000_WRITE_REG(hw, E1000_RSSRK(j), rsskey[j]); - - num_rx_queues = adapter->rss_queues; - - /* 82575 and 82576 supports 2 RSS queues for VMDq */ - switch (hw->mac.type) { - case e1000_82575: - if (adapter->vmdq_pools) { - shift = 2; - shift2 = 6; - break; - } - shift = 6; - break; - case e1000_82576: - /* 82576 supports 2 RSS queues for SR-IOV */ - if (adapter->vfs_allocated_count || adapter->vmdq_pools) { - shift = 3; - num_rx_queues = 2; - } - break; - default: - break; - } - - /* - * Populate the redirection table 4 entries at a time. To do this - * we are generating the results for n and n+2 and then interleaving - * those with the results with n+1 and n+3. - */ - for (j = 0; j < 32; j++) { - /* first pass generates n and n+2 */ - u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues; - u32 reta = (base & 0x07800780) >> (7 - shift); - - /* second pass generates n+1 and n+3 */ - base += 0x00010001 * num_rx_queues; - reta |= (base & 0x07800780) << (1 + shift); - - /* generate 2nd table for 82575 based parts */ - if (shift2) - reta |= (0x01010101 * num_rx_queues) << shift2; - - E1000_WRITE_REG(hw, E1000_RETA(j), reta); - } - - /* - * Disable raw packet checksumming so that RSS hash is placed in - * descriptor on writeback. No need to enable TCP/UDP/IP checksum - * offloads as they are enabled by default - */ - rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); - rxcsum |= E1000_RXCSUM_PCSD; - - if (adapter->hw.mac.type >= e1000_82576) - /* Enable Receive Checksum Offload for SCTP */ - rxcsum |= E1000_RXCSUM_CRCOFL; - - /* Don't need to set TUOFL or IPOFL, they default to 1 */ - E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); - - /* Generate RSS hash based on packet types, TCP/UDP - * port numbers and/or IPv4/v6 src and dst addresses - */ - mrqc = E1000_MRQC_RSS_FIELD_IPV4 | - E1000_MRQC_RSS_FIELD_IPV4_TCP | - E1000_MRQC_RSS_FIELD_IPV6 | - E1000_MRQC_RSS_FIELD_IPV6_TCP | - E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; - - if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) - mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; - if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) - mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; - - /* If VMDq is enabled then we set the appropriate mode for that, else - * we default to RSS so that an RSS hash is calculated per packet even - * if we are only using one queue */ - if (adapter->vfs_allocated_count || adapter->vmdq_pools) { - if (hw->mac.type > e1000_82575) { - /* Set the default pool for the PF's first queue */ - u32 vtctl = E1000_READ_REG(hw, E1000_VT_CTL); - vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | - E1000_VT_CTL_DISABLE_DEF_POOL); - vtctl |= adapter->vfs_allocated_count << - E1000_VT_CTL_DEFAULT_POOL_SHIFT; - E1000_WRITE_REG(hw, E1000_VT_CTL, vtctl); - } else if (adapter->rss_queues > 1) { - /* set default queue for pool 1 to queue 2 */ - E1000_WRITE_REG(hw, E1000_VT_CTL, - adapter->rss_queues << 7); - } - if (adapter->rss_queues > 1) - mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q; - else - mrqc |= E1000_MRQC_ENABLE_VMDQ; - } else { - mrqc |= E1000_MRQC_ENABLE_RSS_4Q; - } - igb_vmm_control(adapter); - - E1000_WRITE_REG(hw, E1000_MRQC, mrqc); -} - -/** - * igb_setup_rctl - configure the receive control registers - * @adapter: Board private structure - **/ -void igb_setup_rctl(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 rctl; - - rctl = E1000_READ_REG(hw, E1000_RCTL); - - rctl &= ~(3 << E1000_RCTL_MO_SHIFT); - rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); - - rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | - (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); - - /* - * enable stripping of CRC. It's unlikely this will break BMC - * redirection as it did with e1000. Newer features require - * that the HW strips the CRC. - */ - rctl |= E1000_RCTL_SECRC; - - /* disable store bad packets and clear size bits. */ - rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); - - /* enable LPE to prevent packets larger than max_frame_size */ - rctl |= E1000_RCTL_LPE; - - /* disable queue 0 to prevent tail write w/o re-config */ - E1000_WRITE_REG(hw, E1000_RXDCTL(0), 0); - - /* Attention!!! For SR-IOV PF driver operations you must enable - * queue drop for all VF and PF queues to prevent head of line blocking - * if an un-trusted VF does not provide descriptors to hardware. - */ - if (adapter->vfs_allocated_count) { - /* set all queue drop enable bits */ - E1000_WRITE_REG(hw, E1000_QDE, ALL_QUEUES); - } - - E1000_WRITE_REG(hw, E1000_RCTL, rctl); -} - -static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, - int vfn) -{ - struct e1000_hw *hw = &adapter->hw; - u32 vmolr; - - /* if it isn't the PF check to see if VFs are enabled and - * increase the size to support vlan tags */ - if (vfn < adapter->vfs_allocated_count && - adapter->vf_data[vfn].vlans_enabled) - size += VLAN_HLEN; - -#ifdef CONFIG_IGB_VMDQ_NETDEV - if (vfn >= adapter->vfs_allocated_count) { - int queue = vfn - adapter->vfs_allocated_count; - struct igb_vmdq_adapter *vadapter; - - vadapter = netdev_priv(adapter->vmdq_netdev[queue-1]); - if (vadapter->vlgrp) - size += VLAN_HLEN; - } -#endif - vmolr = E1000_READ_REG(hw, E1000_VMOLR(vfn)); - vmolr &= ~E1000_VMOLR_RLPML_MASK; - vmolr |= size | E1000_VMOLR_LPE; - E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr); - - return 0; -} - -/** - * igb_rlpml_set - set maximum receive packet size - * @adapter: board private structure - * - * Configure maximum receivable packet size. - **/ -static void igb_rlpml_set(struct igb_adapter *adapter) -{ - u32 max_frame_size = adapter->max_frame_size; - struct e1000_hw *hw = &adapter->hw; - u16 pf_id = adapter->vfs_allocated_count; - - if (adapter->vmdq_pools && hw->mac.type != e1000_82575) { - int i; - for (i = 0; i < adapter->vmdq_pools; i++) - igb_set_vf_rlpml(adapter, max_frame_size, pf_id + i); - /* - * If we're in VMDQ or SR-IOV mode, then set global RLPML - * to our max jumbo frame size, in case we need to enable - * jumbo frames on one of the rings later. - * This will not pass over-length frames into the default - * queue because it's gated by the VMOLR.RLPML. - */ - max_frame_size = MAX_JUMBO_FRAME_SIZE; - } - /* Set VF RLPML for the PF device. */ - if (adapter->vfs_allocated_count) - igb_set_vf_rlpml(adapter, max_frame_size, pf_id); - - E1000_WRITE_REG(hw, E1000_RLPML, max_frame_size); -} - -static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter, - int vfn, bool enable) -{ - struct e1000_hw *hw = &adapter->hw; - u32 val; - void __iomem *reg; - - if (hw->mac.type < e1000_82576) - return; - - if (hw->mac.type == e1000_i350) - reg = hw->hw_addr + E1000_DVMOLR(vfn); - else - reg = hw->hw_addr + E1000_VMOLR(vfn); - - val = readl(reg); - if (enable) - val |= E1000_VMOLR_STRVLAN; - else - val &= ~(E1000_VMOLR_STRVLAN); - writel(val, reg); -} -static inline void igb_set_vmolr(struct igb_adapter *adapter, - int vfn, bool aupe) -{ - struct e1000_hw *hw = &adapter->hw; - u32 vmolr; - - /* - * This register exists only on 82576 and newer so if we are older then - * we should exit and do nothing - */ - if (hw->mac.type < e1000_82576) - return; - - vmolr = E1000_READ_REG(hw, E1000_VMOLR(vfn)); - - if (aupe) - vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ - else - vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ - - /* clear all bits that might not be set */ - vmolr &= ~E1000_VMOLR_RSSE; - - if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) - vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ - - vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ - vmolr |= E1000_VMOLR_LPE; /* Accept long packets */ - - E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr); -} - -/** - * igb_configure_rx_ring - Configure a receive ring after Reset - * @adapter: board private structure - * @ring: receive ring to be configured - * - * Configure the Rx unit of the MAC after a reset. - **/ -void igb_configure_rx_ring(struct igb_adapter *adapter, - struct igb_ring *ring) -{ - struct e1000_hw *hw = &adapter->hw; - u64 rdba = ring->dma; - int reg_idx = ring->reg_idx; - u32 srrctl = 0, rxdctl = 0; - -#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT - /* - * RLPML prevents us from receiving a frame larger than max_frame so - * it is safe to just set the rx_buffer_len to max_frame without the - * risk of an skb over panic. - */ - ring->rx_buffer_len = max_t(u32, adapter->max_frame_size, - MAXIMUM_ETHERNET_VLAN_SIZE); - -#endif - /* disable the queue */ - E1000_WRITE_REG(hw, E1000_RXDCTL(reg_idx), 0); - - /* Set DMA base address registers */ - E1000_WRITE_REG(hw, E1000_RDBAL(reg_idx), - rdba & 0x00000000ffffffffULL); - E1000_WRITE_REG(hw, E1000_RDBAH(reg_idx), rdba >> 32); - E1000_WRITE_REG(hw, E1000_RDLEN(reg_idx), - ring->count * sizeof(union e1000_adv_rx_desc)); - - /* initialize head and tail */ - ring->tail = hw->hw_addr + E1000_RDT(reg_idx); - E1000_WRITE_REG(hw, E1000_RDH(reg_idx), 0); - writel(0, ring->tail); - - /* reset next-to- use/clean to place SW in sync with hardwdare */ - ring->next_to_clean = 0; - ring->next_to_use = 0; -#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT - ring->next_to_alloc = 0; - -#endif - /* set descriptor configuration */ -#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT - srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; - srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT; -#else /* CONFIG_IGB_DISABLE_PACKET_SPLIT */ - srrctl = ALIGN(ring->rx_buffer_len, 1024) >> - E1000_SRRCTL_BSIZEPKT_SHIFT; -#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */ - srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; -#ifdef HAVE_PTP_1588_CLOCK - if (hw->mac.type >= e1000_82580) - srrctl |= E1000_SRRCTL_TIMESTAMP; -#endif /* HAVE_PTP_1588_CLOCK */ - /* - * We should set the drop enable bit if: - * SR-IOV is enabled - * or - * Flow Control is disabled and number of RX queues > 1 - * - * This allows us to avoid head of line blocking for security - * and performance reasons. - */ - if (adapter->vfs_allocated_count || - (adapter->num_rx_queues > 1 && - (hw->fc.requested_mode == e1000_fc_none || - hw->fc.requested_mode == e1000_fc_rx_pause))) - srrctl |= E1000_SRRCTL_DROP_EN; - - E1000_WRITE_REG(hw, E1000_SRRCTL(reg_idx), srrctl); - - /* set filtering for VMDQ pools */ - igb_set_vmolr(adapter, reg_idx & 0x7, true); - - rxdctl |= IGB_RX_PTHRESH; - rxdctl |= IGB_RX_HTHRESH << 8; - rxdctl |= IGB_RX_WTHRESH << 16; - - /* enable receive descriptor fetching */ - rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; - E1000_WRITE_REG(hw, E1000_RXDCTL(reg_idx), rxdctl); -} - -/** - * igb_configure_rx - Configure receive Unit after Reset - * @adapter: board private structure - * - * Configure the Rx unit of the MAC after a reset. - **/ -static void igb_configure_rx(struct igb_adapter *adapter) -{ - int i; - - /* set UTA to appropriate mode */ - igb_set_uta(adapter); - - igb_full_sync_mac_table(adapter); - /* Setup the HW Rx Head and Tail Descriptor Pointers and - * the Base and Length of the Rx Descriptor Ring */ - for (i = 0; i < adapter->num_rx_queues; i++) - igb_configure_rx_ring(adapter, adapter->rx_ring[i]); -} - -/** - * igb_free_tx_resources - Free Tx Resources per Queue - * @tx_ring: Tx descriptor ring for a specific queue - * - * Free all transmit software resources - **/ -void igb_free_tx_resources(struct igb_ring *tx_ring) -{ - igb_clean_tx_ring(tx_ring); - - vfree(tx_ring->tx_buffer_info); - tx_ring->tx_buffer_info = NULL; - - /* if not set, then don't free */ - if (!tx_ring->desc) - return; - - dma_free_coherent(tx_ring->dev, tx_ring->size, - tx_ring->desc, tx_ring->dma); - - tx_ring->desc = NULL; -} - -/** - * igb_free_all_tx_resources - Free Tx Resources for All Queues - * @adapter: board private structure - * - * Free all transmit software resources - **/ -static void igb_free_all_tx_resources(struct igb_adapter *adapter) -{ - int i; - - for (i = 0; i < adapter->num_tx_queues; i++) - igb_free_tx_resources(adapter->tx_ring[i]); -} - -void igb_unmap_and_free_tx_resource(struct igb_ring *ring, - struct igb_tx_buffer *tx_buffer) -{ - if (tx_buffer->skb) { - dev_kfree_skb_any(tx_buffer->skb); - if (dma_unmap_len(tx_buffer, len)) - dma_unmap_single(ring->dev, - dma_unmap_addr(tx_buffer, dma), - dma_unmap_len(tx_buffer, len), - DMA_TO_DEVICE); - } else if (dma_unmap_len(tx_buffer, len)) { - dma_unmap_page(ring->dev, - dma_unmap_addr(tx_buffer, dma), - dma_unmap_len(tx_buffer, len), - DMA_TO_DEVICE); - } - tx_buffer->next_to_watch = NULL; - tx_buffer->skb = NULL; - dma_unmap_len_set(tx_buffer, len, 0); - /* buffer_info must be completely set up in the transmit path */ -} - -/** - * igb_clean_tx_ring - Free Tx Buffers - * @tx_ring: ring to be cleaned - **/ -static void igb_clean_tx_ring(struct igb_ring *tx_ring) -{ - struct igb_tx_buffer *buffer_info; - unsigned long size; - u16 i; - - if (!tx_ring->tx_buffer_info) - return; - /* Free all the Tx ring sk_buffs */ - - for (i = 0; i < tx_ring->count; i++) { - buffer_info = &tx_ring->tx_buffer_info[i]; - igb_unmap_and_free_tx_resource(tx_ring, buffer_info); - } - - netdev_tx_reset_queue(txring_txq(tx_ring)); - - size = sizeof(struct igb_tx_buffer) * tx_ring->count; - memset(tx_ring->tx_buffer_info, 0, size); - - /* Zero out the descriptor ring */ - memset(tx_ring->desc, 0, tx_ring->size); - - tx_ring->next_to_use = 0; - tx_ring->next_to_clean = 0; -} - -/** - * igb_clean_all_tx_rings - Free Tx Buffers for all queues - * @adapter: board private structure - **/ -static void igb_clean_all_tx_rings(struct igb_adapter *adapter) -{ - int i; - - for (i = 0; i < adapter->num_tx_queues; i++) - igb_clean_tx_ring(adapter->tx_ring[i]); -} - -/** - * igb_free_rx_resources - Free Rx Resources - * @rx_ring: ring to clean the resources from - * - * Free all receive software resources - **/ -void igb_free_rx_resources(struct igb_ring *rx_ring) -{ - igb_clean_rx_ring(rx_ring); - - vfree(rx_ring->rx_buffer_info); - rx_ring->rx_buffer_info = NULL; - - /* if not set, then don't free */ - if (!rx_ring->desc) - return; - - dma_free_coherent(rx_ring->dev, rx_ring->size, - rx_ring->desc, rx_ring->dma); - - rx_ring->desc = NULL; -} - -/** - * igb_free_all_rx_resources - Free Rx Resources for All Queues - * @adapter: board private structure - * - * Free all receive software resources - **/ -static void igb_free_all_rx_resources(struct igb_adapter *adapter) -{ - int i; - - for (i = 0; i < adapter->num_rx_queues; i++) - igb_free_rx_resources(adapter->rx_ring[i]); -} - -/** - * igb_clean_rx_ring - Free Rx Buffers per Queue - * @rx_ring: ring to free buffers from - **/ -void igb_clean_rx_ring(struct igb_ring *rx_ring) -{ - unsigned long size; - u16 i; - - if (!rx_ring->rx_buffer_info) - return; - -#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT - if (rx_ring->skb) - dev_kfree_skb(rx_ring->skb); - rx_ring->skb = NULL; - -#endif - /* Free all the Rx ring sk_buffs */ - for (i = 0; i < rx_ring->count; i++) { - struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; -#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT - if (buffer_info->dma) { - dma_unmap_single(rx_ring->dev, - buffer_info->dma, - rx_ring->rx_buffer_len, - DMA_FROM_DEVICE); - buffer_info->dma = 0; - } - - if (buffer_info->skb) { - dev_kfree_skb(buffer_info->skb); - buffer_info->skb = NULL; - } -#else - if (!buffer_info->page) - continue; - - dma_unmap_page(rx_ring->dev, - buffer_info->dma, - PAGE_SIZE, - DMA_FROM_DEVICE); - __free_page(buffer_info->page); - - buffer_info->page = NULL; -#endif - } - - size = sizeof(struct igb_rx_buffer) * rx_ring->count; - memset(rx_ring->rx_buffer_info, 0, size); - - /* Zero out the descriptor ring */ - memset(rx_ring->desc, 0, rx_ring->size); - - rx_ring->next_to_alloc = 0; - rx_ring->next_to_clean = 0; - rx_ring->next_to_use = 0; -} - -/** - * igb_clean_all_rx_rings - Free Rx Buffers for all queues - * @adapter: board private structure - **/ -static void igb_clean_all_rx_rings(struct igb_adapter *adapter) -{ - int i; - - for (i = 0; i < adapter->num_rx_queues; i++) - igb_clean_rx_ring(adapter->rx_ring[i]); -} - -/** - * igb_set_mac - Change the Ethernet Address of the NIC - * @netdev: network interface device structure - * @p: pointer to an address structure - * - * Returns 0 on success, negative on failure - **/ -static int igb_set_mac(struct net_device *netdev, void *p) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - struct sockaddr *addr = p; - - if (!is_valid_ether_addr(addr->sa_data)) - return -EADDRNOTAVAIL; - - igb_del_mac_filter(adapter, hw->mac.addr, - adapter->vfs_allocated_count); - memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); - memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); - - /* set the correct pool for the new PF MAC address in entry 0 */ - return igb_add_mac_filter(adapter, hw->mac.addr, - adapter->vfs_allocated_count); -} - -/** - * igb_write_mc_addr_list - write multicast addresses to MTA - * @netdev: network interface device structure - * - * Writes multicast address list to the MTA hash table. - * Returns: -ENOMEM on failure - * 0 on no addresses written - * X on writing X addresses to MTA - **/ -int igb_write_mc_addr_list(struct net_device *netdev) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; -#ifdef NETDEV_HW_ADDR_T_MULTICAST - struct netdev_hw_addr *ha; -#else - struct dev_mc_list *ha; -#endif - u8 *mta_list; - int i, count; -#ifdef CONFIG_IGB_VMDQ_NETDEV - int vm; -#endif - count = netdev_mc_count(netdev); -#ifdef CONFIG_IGB_VMDQ_NETDEV - for (vm = 1; vm < adapter->vmdq_pools; vm++) { - if (!adapter->vmdq_netdev[vm]) - break; - if (!netif_running(adapter->vmdq_netdev[vm])) - continue; - count += netdev_mc_count(adapter->vmdq_netdev[vm]); - } -#endif - - if (!count) { - e1000_update_mc_addr_list(hw, NULL, 0); - return 0; - } - mta_list = kzalloc(count * 6, GFP_ATOMIC); - if (!mta_list) - return -ENOMEM; - - /* The shared function expects a packed array of only addresses. */ - i = 0; - netdev_for_each_mc_addr(ha, netdev) -#ifdef NETDEV_HW_ADDR_T_MULTICAST - memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); -#else - memcpy(mta_list + (i++ * ETH_ALEN), ha->dmi_addr, ETH_ALEN); -#endif -#ifdef CONFIG_IGB_VMDQ_NETDEV - for (vm = 1; vm < adapter->vmdq_pools; vm++) { - if (!adapter->vmdq_netdev[vm]) - break; - if (!netif_running(adapter->vmdq_netdev[vm]) || - !netdev_mc_count(adapter->vmdq_netdev[vm])) - continue; - netdev_for_each_mc_addr(ha, adapter->vmdq_netdev[vm]) -#ifdef NETDEV_HW_ADDR_T_MULTICAST - memcpy(mta_list + (i++ * ETH_ALEN), - ha->addr, ETH_ALEN); -#else - memcpy(mta_list + (i++ * ETH_ALEN), - ha->dmi_addr, ETH_ALEN); -#endif - } -#endif - e1000_update_mc_addr_list(hw, mta_list, i); - kfree(mta_list); - - return count; -} - -void igb_rar_set(struct igb_adapter *adapter, u32 index) -{ - u32 rar_low, rar_high; - struct e1000_hw *hw = &adapter->hw; - u8 *addr = adapter->mac_table[index].addr; - /* HW expects these in little endian so we reverse the byte order - * from network order (big endian) to little endian - */ - rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | - ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); - rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); - - /* Indicate to hardware the Address is Valid. */ - if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) - rar_high |= E1000_RAH_AV; - - if (hw->mac.type == e1000_82575) - rar_high |= E1000_RAH_POOL_1 * adapter->mac_table[index].queue; - else - rar_high |= E1000_RAH_POOL_1 << adapter->mac_table[index].queue; - - E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); - E1000_WRITE_FLUSH(hw); -} - -void igb_full_sync_mac_table(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - int i; - for (i = 0; i < hw->mac.rar_entry_count; i++) { - igb_rar_set(adapter, i); - } -} - -void igb_sync_mac_table(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - int i; - for (i = 0; i < hw->mac.rar_entry_count; i++) { - if (adapter->mac_table[i].state & IGB_MAC_STATE_MODIFIED) - igb_rar_set(adapter, i); - adapter->mac_table[i].state &= ~(IGB_MAC_STATE_MODIFIED); - } -} - -int igb_available_rars(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - int i, count = 0; - - for (i = 0; i < hw->mac.rar_entry_count; i++) { - if (adapter->mac_table[i].state == 0) - count++; - } - return count; -} - -#ifdef HAVE_SET_RX_MODE -/** - * igb_write_uc_addr_list - write unicast addresses to RAR table - * @netdev: network interface device structure - * - * Writes unicast address list to the RAR table. - * Returns: -ENOMEM on failure/insufficient address space - * 0 on no addresses written - * X on writing X addresses to the RAR table - **/ -static int igb_write_uc_addr_list(struct net_device *netdev) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - unsigned int vfn = adapter->vfs_allocated_count; - int count = 0; - - /* return ENOMEM indicating insufficient memory for addresses */ - if (netdev_uc_count(netdev) > igb_available_rars(adapter)) - return -ENOMEM; - if (!netdev_uc_empty(netdev)) { -#ifdef NETDEV_HW_ADDR_T_UNICAST - struct netdev_hw_addr *ha; -#else - struct dev_mc_list *ha; -#endif - netdev_for_each_uc_addr(ha, netdev) { -#ifdef NETDEV_HW_ADDR_T_UNICAST - igb_del_mac_filter(adapter, ha->addr, vfn); - igb_add_mac_filter(adapter, ha->addr, vfn); -#else - igb_del_mac_filter(adapter, ha->da_addr, vfn); - igb_add_mac_filter(adapter, ha->da_addr, vfn); -#endif - count++; - } - } - return count; -} - -#endif /* HAVE_SET_RX_MODE */ -/** - * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set - * @netdev: network interface device structure - * - * The set_rx_mode entry point is called whenever the unicast or multicast - * address lists or the network interface flags are updated. This routine is - * responsible for configuring the hardware for proper unicast, multicast, - * promiscuous mode, and all-multi behavior. - **/ -static void igb_set_rx_mode(struct net_device *netdev) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - unsigned int vfn = adapter->vfs_allocated_count; - u32 rctl, vmolr = 0; - int count; - - /* Check for Promiscuous and All Multicast modes */ - rctl = E1000_READ_REG(hw, E1000_RCTL); - - /* clear the effected bits */ - rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE); - - if (netdev->flags & IFF_PROMISC) { - rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); - vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME); - /* retain VLAN HW filtering if in VT mode */ - if (adapter->vfs_allocated_count || adapter->vmdq_pools) - rctl |= E1000_RCTL_VFE; - } else { - if (netdev->flags & IFF_ALLMULTI) { - rctl |= E1000_RCTL_MPE; - vmolr |= E1000_VMOLR_MPME; - } else { - /* - * Write addresses to the MTA, if the attempt fails - * then we should just turn on promiscuous mode so - * that we can at least receive multicast traffic - */ - count = igb_write_mc_addr_list(netdev); - if (count < 0) { - rctl |= E1000_RCTL_MPE; - vmolr |= E1000_VMOLR_MPME; - } else if (count) { - vmolr |= E1000_VMOLR_ROMPE; - } - } -#ifdef HAVE_SET_RX_MODE - /* - * Write addresses to available RAR registers, if there is not - * sufficient space to store all the addresses then enable - * unicast promiscuous mode - */ - count = igb_write_uc_addr_list(netdev); - if (count < 0) { - rctl |= E1000_RCTL_UPE; - vmolr |= E1000_VMOLR_ROPE; - } -#endif /* HAVE_SET_RX_MODE */ - rctl |= E1000_RCTL_VFE; - } - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - - /* - * In order to support SR-IOV and eventually VMDq it is necessary to set - * the VMOLR to enable the appropriate modes. Without this workaround - * we will have issues with VLAN tag stripping not being done for frames - * that are only arriving because we are the default pool - */ - if (hw->mac.type < e1000_82576) - return; - - vmolr |= E1000_READ_REG(hw, E1000_VMOLR(vfn)) & - ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); - E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr); - igb_restore_vf_multicasts(adapter); -} - -static void igb_check_wvbr(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 wvbr = 0; - - switch (hw->mac.type) { - case e1000_82576: - case e1000_i350: - if (!(wvbr = E1000_READ_REG(hw, E1000_WVBR))) - return; - break; - default: - break; - } - - adapter->wvbr |= wvbr; -} - -#define IGB_STAGGERED_QUEUE_OFFSET 8 - -static void igb_spoof_check(struct igb_adapter *adapter) -{ - int j; - - if (!adapter->wvbr) - return; - - switch (adapter->hw.mac.type) { - case e1000_82576: - for (j = 0; j < adapter->vfs_allocated_count; j++) { - if (adapter->wvbr & (1 << j) || - adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) { - DPRINTK(DRV, WARNING, - "Spoof event(s) detected on VF %d\n", j); - adapter->wvbr &= - ~((1 << j) | - (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))); - } - } - break; - case e1000_i350: - for (j = 0; j < adapter->vfs_allocated_count; j++) { - if (adapter->wvbr & (1 << j)) { - DPRINTK(DRV, WARNING, - "Spoof event(s) detected on VF %d\n", j); - adapter->wvbr &= ~(1 << j); - } - } - break; - default: - break; - } -} - -/* Need to wait a few seconds after link up to get diagnostic information from - * the phy */ -#ifdef HAVE_TIMER_SETUP -static void igb_update_phy_info(struct timer_list *t) -{ - struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer); -#else -static void igb_update_phy_info(unsigned long data) -{ - struct igb_adapter *adapter = (struct igb_adapter *) data; -#endif - e1000_get_phy_info(&adapter->hw); -} - -/** - * igb_has_link - check shared code for link and determine up/down - * @adapter: pointer to driver private info - **/ -bool igb_has_link(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - bool link_active = FALSE; - - /* get_link_status is set on LSC (link status) interrupt or - * rx sequence error interrupt. get_link_status will stay - * false until the e1000_check_for_link establishes link - * for copper adapters ONLY - */ - switch (hw->phy.media_type) { - case e1000_media_type_copper: - if (!hw->mac.get_link_status) - return true; - case e1000_media_type_internal_serdes: - e1000_check_for_link(hw); - link_active = !hw->mac.get_link_status; - break; - case e1000_media_type_unknown: - default: - break; - } - - if (((hw->mac.type == e1000_i210) || - (hw->mac.type == e1000_i211)) && - (hw->phy.id == I210_I_PHY_ID)) { - if (!netif_carrier_ok(adapter->netdev)) { - adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; - } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) { - adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE; - adapter->link_check_timeout = jiffies; - } - } - - return link_active; -} - -/** - * igb_watchdog - Timer Call-back - * @data: pointer to adapter cast into an unsigned long - **/ -#ifdef HAVE_TIMER_SETUP -static void igb_watchdog(struct timer_list *t) -{ - struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer); -#else -static void igb_watchdog(unsigned long data) -{ - struct igb_adapter *adapter = (struct igb_adapter *)data; -#endif - /* Do the rest outside of interrupt context */ - schedule_work(&adapter->watchdog_task); -} - -static void igb_watchdog_task(struct work_struct *work) -{ - struct igb_adapter *adapter = container_of(work, - struct igb_adapter, - watchdog_task); - struct e1000_hw *hw = &adapter->hw; - struct net_device *netdev = adapter->netdev; - u32 link; - int i; - u32 thstat, ctrl_ext; - u32 connsw; - - link = igb_has_link(adapter); - /* Force link down if we have fiber to swap to */ - if (adapter->flags & IGB_FLAG_MAS_ENABLE) { - if (hw->phy.media_type == e1000_media_type_copper) { - connsw = E1000_READ_REG(hw, E1000_CONNSW); - if (!(connsw & E1000_CONNSW_AUTOSENSE_EN)) - link = 0; - } - } - - if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) { - if (time_after(jiffies, (adapter->link_check_timeout + HZ))) - adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; - else - link = FALSE; - } - - if (link) { - /* Perform a reset if the media type changed. */ - if (hw->dev_spec._82575.media_changed) { - hw->dev_spec._82575.media_changed = false; - adapter->flags |= IGB_FLAG_MEDIA_RESET; - igb_reset(adapter); - } - - /* Cancel scheduled suspend requests. */ - pm_runtime_resume(netdev->dev.parent); - - if (!netif_carrier_ok(netdev)) { - u32 ctrl; - e1000_get_speed_and_duplex(hw, - &adapter->link_speed, - &adapter->link_duplex); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - /* Links status message must follow this format */ - printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, " - "Flow Control: %s\n", - netdev->name, - adapter->link_speed, - adapter->link_duplex == FULL_DUPLEX ? - "Full Duplex" : "Half Duplex", - ((ctrl & E1000_CTRL_TFCE) && - (ctrl & E1000_CTRL_RFCE)) ? "RX/TX": - ((ctrl & E1000_CTRL_RFCE) ? "RX" : - ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None"))); - /* adjust timeout factor according to speed/duplex */ - adapter->tx_timeout_factor = 1; - switch (adapter->link_speed) { - case SPEED_10: - adapter->tx_timeout_factor = 14; - break; - case SPEED_100: - /* maybe add some timeout factor ? */ - break; - default: - break; - } - - netif_carrier_on(netdev); - netif_tx_wake_all_queues(netdev); - - igb_ping_all_vfs(adapter); -#ifdef IFLA_VF_MAX - igb_check_vf_rate_limit(adapter); -#endif /* IFLA_VF_MAX */ - - /* link state has changed, schedule phy info update */ - if (!test_bit(__IGB_DOWN, &adapter->state)) - mod_timer(&adapter->phy_info_timer, - round_jiffies(jiffies + 2 * HZ)); - } - } else { - if (netif_carrier_ok(netdev)) { - adapter->link_speed = 0; - adapter->link_duplex = 0; - /* check for thermal sensor event on i350 */ - if (hw->mac.type == e1000_i350) { - thstat = E1000_READ_REG(hw, E1000_THSTAT); - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - if ((hw->phy.media_type == - e1000_media_type_copper) && - !(ctrl_ext & - E1000_CTRL_EXT_LINK_MODE_SGMII)) { - if (thstat & E1000_THSTAT_PWR_DOWN) { - printk(KERN_ERR "igb: %s The " - "network adapter was stopped " - "because it overheated.\n", - netdev->name); - } - if (thstat & E1000_THSTAT_LINK_THROTTLE) { - printk(KERN_INFO - "igb: %s The network " - "adapter supported " - "link speed " - "was downshifted " - "because it " - "overheated.\n", - netdev->name); - } - } - } - - /* Links status message must follow this format */ - printk(KERN_INFO "igb: %s NIC Link is Down\n", - netdev->name); - netif_carrier_off(netdev); - netif_tx_stop_all_queues(netdev); - - igb_ping_all_vfs(adapter); - - /* link state has changed, schedule phy info update */ - if (!test_bit(__IGB_DOWN, &adapter->state)) - mod_timer(&adapter->phy_info_timer, - round_jiffies(jiffies + 2 * HZ)); - /* link is down, time to check for alternate media */ - if (adapter->flags & IGB_FLAG_MAS_ENABLE) { - igb_check_swap_media(adapter); - if (adapter->flags & IGB_FLAG_MEDIA_RESET) { - schedule_work(&adapter->reset_task); - /* return immediately */ - return; - } - } - pm_schedule_suspend(netdev->dev.parent, - MSEC_PER_SEC * 5); - - /* also check for alternate media here */ - } else if (!netif_carrier_ok(netdev) && - (adapter->flags & IGB_FLAG_MAS_ENABLE)) { - hw->mac.ops.power_up_serdes(hw); - igb_check_swap_media(adapter); - if (adapter->flags & IGB_FLAG_MEDIA_RESET) { - schedule_work(&adapter->reset_task); - /* return immediately */ - return; - } - } - } - - igb_update_stats(adapter); - - for (i = 0; i < adapter->num_tx_queues; i++) { - struct igb_ring *tx_ring = adapter->tx_ring[i]; - if (!netif_carrier_ok(netdev)) { - /* We've lost link, so the controller stops DMA, - * but we've got queued Tx work that's never going - * to get done, so reset controller to flush Tx. - * (Do the reset outside of interrupt context). */ - if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { - adapter->tx_timeout_count++; - schedule_work(&adapter->reset_task); - /* return immediately since reset is imminent */ - return; - } - } - - /* Force detection of hung controller every watchdog period */ - set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); - } - - /* Cause software interrupt to ensure rx ring is cleaned */ - if (adapter->msix_entries) { - u32 eics = 0; - for (i = 0; i < adapter->num_q_vectors; i++) - eics |= adapter->q_vector[i]->eims_value; - E1000_WRITE_REG(hw, E1000_EICS, eics); - } else { - E1000_WRITE_REG(hw, E1000_ICS, E1000_ICS_RXDMT0); - } - - igb_spoof_check(adapter); - - /* Reset the timer */ - if (!test_bit(__IGB_DOWN, &adapter->state)) { - if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) - mod_timer(&adapter->watchdog_timer, - round_jiffies(jiffies + HZ)); - else - mod_timer(&adapter->watchdog_timer, - round_jiffies(jiffies + 2 * HZ)); - } -} - -static void igb_dma_err_task(struct work_struct *work) -{ - struct igb_adapter *adapter = container_of(work, - struct igb_adapter, - dma_err_task); - int vf; - struct e1000_hw *hw = &adapter->hw; - struct net_device *netdev = adapter->netdev; - u32 hgptc; - u32 ciaa, ciad; - - hgptc = E1000_READ_REG(hw, E1000_HGPTC); - if (hgptc) /* If incrementing then no need for the check below */ - goto dma_timer_reset; - /* - * Check to see if a bad DMA write target from an errant or - * malicious VF has caused a PCIe error. If so then we can - * issue a VFLR to the offending VF(s) and then resume without - * requesting a full slot reset. - */ - - for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { - ciaa = (vf << 16) | 0x80000000; - /* 32 bit read so align, we really want status at offset 6 */ - ciaa |= PCI_COMMAND; - E1000_WRITE_REG(hw, E1000_CIAA, ciaa); - ciad = E1000_READ_REG(hw, E1000_CIAD); - ciaa &= 0x7FFFFFFF; - /* disable debug mode asap after reading data */ - E1000_WRITE_REG(hw, E1000_CIAA, ciaa); - /* Get the upper 16 bits which will be the PCI status reg */ - ciad >>= 16; - if (ciad & (PCI_STATUS_REC_MASTER_ABORT | - PCI_STATUS_REC_TARGET_ABORT | - PCI_STATUS_SIG_SYSTEM_ERROR)) { - netdev_err(netdev, "VF %d suffered error\n", vf); - /* Issue VFLR */ - ciaa = (vf << 16) | 0x80000000; - ciaa |= 0xA8; - E1000_WRITE_REG(hw, E1000_CIAA, ciaa); - ciad = 0x00008000; /* VFLR */ - E1000_WRITE_REG(hw, E1000_CIAD, ciad); - ciaa &= 0x7FFFFFFF; - E1000_WRITE_REG(hw, E1000_CIAA, ciaa); - } - } -dma_timer_reset: - /* Reset the timer */ - if (!test_bit(__IGB_DOWN, &adapter->state)) - mod_timer(&adapter->dma_err_timer, - round_jiffies(jiffies + HZ / 10)); -} - -/** - * igb_dma_err_timer - Timer Call-back - * @data: pointer to adapter cast into an unsigned long - **/ -#ifdef HAVE_TIMER_SETUP -static void igb_dma_err_timer(struct timer_list *t) -{ - struct igb_adapter *adapter = from_timer(adapter, t, dma_err_timer); -#else -static void igb_dma_err_timer(unsigned long data) -{ - struct igb_adapter *adapter = (struct igb_adapter *)data; -#endif - /* Do the rest outside of interrupt context */ - schedule_work(&adapter->dma_err_task); -} - -enum latency_range { - lowest_latency = 0, - low_latency = 1, - bulk_latency = 2, - latency_invalid = 255 -}; - -/** - * igb_update_ring_itr - update the dynamic ITR value based on packet size - * - * Stores a new ITR value based on strictly on packet size. This - * algorithm is less sophisticated than that used in igb_update_itr, - * due to the difficulty of synchronizing statistics across multiple - * receive rings. The divisors and thresholds used by this function - * were determined based on theoretical maximum wire speed and testing - * data, in order to minimize response time while increasing bulk - * throughput. - * This functionality is controlled by the InterruptThrottleRate module - * parameter (see igb_param.c) - * NOTE: This function is called only when operating in a multiqueue - * receive environment. - * @q_vector: pointer to q_vector - **/ -static void igb_update_ring_itr(struct igb_q_vector *q_vector) -{ - int new_val = q_vector->itr_val; - int avg_wire_size = 0; - struct igb_adapter *adapter = q_vector->adapter; - unsigned int packets; - - /* For non-gigabit speeds, just fix the interrupt rate at 4000 - * ints/sec - ITR timer value of 120 ticks. - */ - switch (adapter->link_speed) { - case SPEED_10: - case SPEED_100: - new_val = IGB_4K_ITR; - goto set_itr_val; - default: - break; - } - - packets = q_vector->rx.total_packets; - if (packets) - avg_wire_size = q_vector->rx.total_bytes / packets; - - packets = q_vector->tx.total_packets; - if (packets) - avg_wire_size = max_t(u32, avg_wire_size, - q_vector->tx.total_bytes / packets); - - /* if avg_wire_size isn't set no work was done */ - if (!avg_wire_size) - goto clear_counts; - - /* Add 24 bytes to size to account for CRC, preamble, and gap */ - avg_wire_size += 24; - - /* Don't starve jumbo frames */ - avg_wire_size = min(avg_wire_size, 3000); - - /* Give a little boost to mid-size frames */ - if ((avg_wire_size > 300) && (avg_wire_size < 1200)) - new_val = avg_wire_size / 3; - else - new_val = avg_wire_size / 2; - - /* conservative mode (itr 3) eliminates the lowest_latency setting */ - if (new_val < IGB_20K_ITR && - ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || - (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) - new_val = IGB_20K_ITR; - -set_itr_val: - if (new_val != q_vector->itr_val) { - q_vector->itr_val = new_val; - q_vector->set_itr = 1; - } -clear_counts: - q_vector->rx.total_bytes = 0; - q_vector->rx.total_packets = 0; - q_vector->tx.total_bytes = 0; - q_vector->tx.total_packets = 0; -} - -/** - * igb_update_itr - update the dynamic ITR value based on statistics - * Stores a new ITR value based on packets and byte - * counts during the last interrupt. The advantage of per interrupt - * computation is faster updates and more accurate ITR for the current - * traffic pattern. Constants in this function were computed - * based on theoretical maximum wire speed and thresholds were set based - * on testing data as well as attempting to minimize response time - * while increasing bulk throughput. - * this functionality is controlled by the InterruptThrottleRate module - * parameter (see igb_param.c) - * NOTE: These calculations are only valid when operating in a single- - * queue environment. - * @q_vector: pointer to q_vector - * @ring_container: ring info to update the itr for - **/ -static void igb_update_itr(struct igb_q_vector *q_vector, - struct igb_ring_container *ring_container) -{ - unsigned int packets = ring_container->total_packets; - unsigned int bytes = ring_container->total_bytes; - u8 itrval = ring_container->itr; - - /* no packets, exit with status unchanged */ - if (packets == 0) - return; - - switch (itrval) { - case lowest_latency: - /* handle TSO and jumbo frames */ - if (bytes/packets > 8000) - itrval = bulk_latency; - else if ((packets < 5) && (bytes > 512)) - itrval = low_latency; - break; - case low_latency: /* 50 usec aka 20000 ints/s */ - if (bytes > 10000) { - /* this if handles the TSO accounting */ - if (bytes/packets > 8000) { - itrval = bulk_latency; - } else if ((packets < 10) || ((bytes/packets) > 1200)) { - itrval = bulk_latency; - } else if (packets > 35) { - itrval = lowest_latency; - } - } else if (bytes/packets > 2000) { - itrval = bulk_latency; - } else if (packets <= 2 && bytes < 512) { - itrval = lowest_latency; - } - break; - case bulk_latency: /* 250 usec aka 4000 ints/s */ - if (bytes > 25000) { - if (packets > 35) - itrval = low_latency; - } else if (bytes < 1500) { - itrval = low_latency; - } - break; - } - - /* clear work counters since we have the values we need */ - ring_container->total_bytes = 0; - ring_container->total_packets = 0; - - /* write updated itr to ring container */ - ring_container->itr = itrval; -} - -static void igb_set_itr(struct igb_q_vector *q_vector) -{ - struct igb_adapter *adapter = q_vector->adapter; - u32 new_itr = q_vector->itr_val; - u8 current_itr = 0; - - /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ - switch (adapter->link_speed) { - case SPEED_10: - case SPEED_100: - current_itr = 0; - new_itr = IGB_4K_ITR; - goto set_itr_now; - default: - break; - } - - igb_update_itr(q_vector, &q_vector->tx); - igb_update_itr(q_vector, &q_vector->rx); - - current_itr = max(q_vector->rx.itr, q_vector->tx.itr); - - /* conservative mode (itr 3) eliminates the lowest_latency setting */ - if (current_itr == lowest_latency && - ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || - (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) - current_itr = low_latency; - - switch (current_itr) { - /* counts and packets in update_itr are dependent on these numbers */ - case lowest_latency: - new_itr = IGB_70K_ITR; /* 70,000 ints/sec */ - break; - case low_latency: - new_itr = IGB_20K_ITR; /* 20,000 ints/sec */ - break; - case bulk_latency: - new_itr = IGB_4K_ITR; /* 4,000 ints/sec */ - break; - default: - break; - } - -set_itr_now: - if (new_itr != q_vector->itr_val) { - /* this attempts to bias the interrupt rate towards Bulk - * by adding intermediate steps when interrupt rate is - * increasing */ - new_itr = new_itr > q_vector->itr_val ? - max((new_itr * q_vector->itr_val) / - (new_itr + (q_vector->itr_val >> 2)), - new_itr) : - new_itr; - /* Don't write the value here; it resets the adapter's - * internal timer, and causes us to delay far longer than - * we should between interrupts. Instead, we write the ITR - * value at the beginning of the next interrupt so the timing - * ends up being correct. - */ - q_vector->itr_val = new_itr; - q_vector->set_itr = 1; - } -} - -void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens, - u32 type_tucmd, u32 mss_l4len_idx) -{ - struct e1000_adv_tx_context_desc *context_desc; - u16 i = tx_ring->next_to_use; - - context_desc = IGB_TX_CTXTDESC(tx_ring, i); - - i++; - tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; - - /* set bits to identify this as an advanced context descriptor */ - type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; - - /* For 82575, context index must be unique per ring. */ - if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) - mss_l4len_idx |= tx_ring->reg_idx << 4; - - context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); - context_desc->seqnum_seed = 0; - context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); - context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); -} - -static int igb_tso(struct igb_ring *tx_ring, - struct igb_tx_buffer *first, - u8 *hdr_len) -{ -#ifdef NETIF_F_TSO - struct sk_buff *skb = first->skb; - u32 vlan_macip_lens, type_tucmd; - u32 mss_l4len_idx, l4len; - - if (skb->ip_summed != CHECKSUM_PARTIAL) - return 0; - - if (!skb_is_gso(skb)) -#endif /* NETIF_F_TSO */ - return 0; -#ifdef NETIF_F_TSO - - if (skb_header_cloned(skb)) { - int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); - if (err) - return err; - } - - /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ - type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; - - if (first->protocol == __constant_htons(ETH_P_IP)) { - struct iphdr *iph = ip_hdr(skb); - iph->tot_len = 0; - iph->check = 0; - tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, - iph->daddr, 0, - IPPROTO_TCP, - 0); - type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; - first->tx_flags |= IGB_TX_FLAGS_TSO | - IGB_TX_FLAGS_CSUM | - IGB_TX_FLAGS_IPV4; -#ifdef NETIF_F_TSO6 - } else if (skb_is_gso_v6(skb)) { - ipv6_hdr(skb)->payload_len = 0; - tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, - &ipv6_hdr(skb)->daddr, - 0, IPPROTO_TCP, 0); - first->tx_flags |= IGB_TX_FLAGS_TSO | - IGB_TX_FLAGS_CSUM; -#endif - } - - /* compute header lengths */ - l4len = tcp_hdrlen(skb); - *hdr_len = skb_transport_offset(skb) + l4len; - - /* update gso size and bytecount with header size */ - first->gso_segs = skb_shinfo(skb)->gso_segs; - first->bytecount += (first->gso_segs - 1) * *hdr_len; - - /* MSS L4LEN IDX */ - mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT; - mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; - - /* VLAN MACLEN IPLEN */ - vlan_macip_lens = skb_network_header_len(skb); - vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; - vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; - - igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); - - return 1; -#endif /* NETIF_F_TSO */ -} - -static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first) -{ - struct sk_buff *skb = first->skb; - u32 vlan_macip_lens = 0; - u32 mss_l4len_idx = 0; - u32 type_tucmd = 0; - - if (skb->ip_summed != CHECKSUM_PARTIAL) { - if (!(first->tx_flags & IGB_TX_FLAGS_VLAN)) - return; - } else { - u8 nexthdr = 0; - switch (first->protocol) { - case __constant_htons(ETH_P_IP): - vlan_macip_lens |= skb_network_header_len(skb); - type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; - nexthdr = ip_hdr(skb)->protocol; - break; -#ifdef NETIF_F_IPV6_CSUM - case __constant_htons(ETH_P_IPV6): - vlan_macip_lens |= skb_network_header_len(skb); - nexthdr = ipv6_hdr(skb)->nexthdr; - break; -#endif - default: - if (unlikely(net_ratelimit())) { - dev_warn(tx_ring->dev, - "partial checksum but proto=%x!\n", - first->protocol); - } - break; - } - - switch (nexthdr) { - case IPPROTO_TCP: - type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP; - mss_l4len_idx = tcp_hdrlen(skb) << - E1000_ADVTXD_L4LEN_SHIFT; - break; -#ifdef HAVE_SCTP - case IPPROTO_SCTP: - type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; - mss_l4len_idx = sizeof(struct sctphdr) << - E1000_ADVTXD_L4LEN_SHIFT; - break; -#endif - case IPPROTO_UDP: - mss_l4len_idx = sizeof(struct udphdr) << - E1000_ADVTXD_L4LEN_SHIFT; - break; - default: - if (unlikely(net_ratelimit())) { - dev_warn(tx_ring->dev, - "partial checksum but l4 proto=%x!\n", - nexthdr); - } - break; - } - - /* update TX checksum flag */ - first->tx_flags |= IGB_TX_FLAGS_CSUM; - } - - vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; - vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; - - igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); -} - -#define IGB_SET_FLAG(_input, _flag, _result) \ - ((_flag <= _result) ? \ - ((u32)(_input & _flag) * (_result / _flag)) : \ - ((u32)(_input & _flag) / (_flag / _result))) - -static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) -{ - /* set type for advanced descriptor with frame checksum insertion */ - u32 cmd_type = E1000_ADVTXD_DTYP_DATA | - E1000_ADVTXD_DCMD_DEXT | - E1000_ADVTXD_DCMD_IFCS; - - /* set HW vlan bit if vlan is present */ - cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN, - (E1000_ADVTXD_DCMD_VLE)); - - /* set segmentation bits for TSO */ - cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO, - (E1000_ADVTXD_DCMD_TSE)); - - /* set timestamp bit if present */ - cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP, - (E1000_ADVTXD_MAC_TSTAMP)); - - return cmd_type; -} - -static void igb_tx_olinfo_status(struct igb_ring *tx_ring, - union e1000_adv_tx_desc *tx_desc, - u32 tx_flags, unsigned int paylen) -{ - u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT; - - /* 82575 requires a unique index per ring */ - if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) - olinfo_status |= tx_ring->reg_idx << 4; - - /* insert L4 checksum */ - olinfo_status |= IGB_SET_FLAG(tx_flags, - IGB_TX_FLAGS_CSUM, - (E1000_TXD_POPTS_TXSM << 8)); - - /* insert IPv4 checksum */ - olinfo_status |= IGB_SET_FLAG(tx_flags, - IGB_TX_FLAGS_IPV4, - (E1000_TXD_POPTS_IXSM << 8)); - - tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); -} - -static void igb_tx_map(struct igb_ring *tx_ring, - struct igb_tx_buffer *first, - const u8 hdr_len) -{ - struct sk_buff *skb = first->skb; - struct igb_tx_buffer *tx_buffer; - union e1000_adv_tx_desc *tx_desc; - struct skb_frag_struct *frag; - dma_addr_t dma; - unsigned int data_len, size; - u32 tx_flags = first->tx_flags; - u32 cmd_type = igb_tx_cmd_type(skb, tx_flags); - u16 i = tx_ring->next_to_use; - - tx_desc = IGB_TX_DESC(tx_ring, i); - - igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); - - size = skb_headlen(skb); - data_len = skb->data_len; - - dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); - - tx_buffer = first; - - for (frag = &skb_shinfo(skb)->frags[0];; frag++) { - if (dma_mapping_error(tx_ring->dev, dma)) - goto dma_error; - - /* record length, and DMA address */ - dma_unmap_len_set(tx_buffer, len, size); - dma_unmap_addr_set(tx_buffer, dma, dma); - - tx_desc->read.buffer_addr = cpu_to_le64(dma); - - while (unlikely(size > IGB_MAX_DATA_PER_TXD)) { - tx_desc->read.cmd_type_len = - cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD); - - i++; - tx_desc++; - if (i == tx_ring->count) { - tx_desc = IGB_TX_DESC(tx_ring, 0); - i = 0; - } - tx_desc->read.olinfo_status = 0; - - dma += IGB_MAX_DATA_PER_TXD; - size -= IGB_MAX_DATA_PER_TXD; - - tx_desc->read.buffer_addr = cpu_to_le64(dma); - } - - if (likely(!data_len)) - break; - - tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); - - i++; - tx_desc++; - if (i == tx_ring->count) { - tx_desc = IGB_TX_DESC(tx_ring, 0); - i = 0; - } - tx_desc->read.olinfo_status = 0; - - size = skb_frag_size(frag); - data_len -= size; - - dma = skb_frag_dma_map(tx_ring->dev, frag, 0, - size, DMA_TO_DEVICE); - - tx_buffer = &tx_ring->tx_buffer_info[i]; - } - - /* write last descriptor with RS and EOP bits */ - cmd_type |= size | IGB_TXD_DCMD; - tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); - - netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); - /* set the timestamp */ - first->time_stamp = jiffies; - - /* - * Force memory writes to complete before letting h/w know there - * are new descriptors to fetch. (Only applicable for weak-ordered - * memory model archs, such as IA-64). - * - * We also need this memory barrier to make certain all of the - * status bits have been updated before next_to_watch is written. - */ - wmb(); - - /* set next_to_watch value indicating a packet is present */ - first->next_to_watch = tx_desc; - - i++; - if (i == tx_ring->count) - i = 0; - - tx_ring->next_to_use = i; - - writel(i, tx_ring->tail); - - /* we need this if more than one processor can write to our tail - * at a time, it syncronizes IO on IA64/Altix systems */ - mmiowb(); - - return; - -dma_error: - dev_err(tx_ring->dev, "TX DMA map failed\n"); - - /* clear dma mappings for failed tx_buffer_info map */ - for (;;) { - tx_buffer = &tx_ring->tx_buffer_info[i]; - igb_unmap_and_free_tx_resource(tx_ring, tx_buffer); - if (tx_buffer == first) - break; - if (i == 0) - i = tx_ring->count; - i--; - } - - tx_ring->next_to_use = i; -} - -static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) -{ - struct net_device *netdev = netdev_ring(tx_ring); - - if (netif_is_multiqueue(netdev)) - netif_stop_subqueue(netdev, ring_queue_index(tx_ring)); - else - netif_stop_queue(netdev); - - /* Herbert's original patch had: - * smp_mb__after_netif_stop_queue(); - * but since that doesn't exist yet, just open code it. */ - smp_mb(); - - /* We need to check again in a case another CPU has just - * made room available. */ - if (igb_desc_unused(tx_ring) < size) - return -EBUSY; - - /* A reprieve! */ - if (netif_is_multiqueue(netdev)) - netif_wake_subqueue(netdev, ring_queue_index(tx_ring)); - else - netif_wake_queue(netdev); - - tx_ring->tx_stats.restart_queue++; - - return 0; -} - -static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) -{ - if (igb_desc_unused(tx_ring) >= size) - return 0; - return __igb_maybe_stop_tx(tx_ring, size); -} - -netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb, - struct igb_ring *tx_ring) -{ - struct igb_tx_buffer *first; - int tso; - u32 tx_flags = 0; -#if PAGE_SIZE > IGB_MAX_DATA_PER_TXD - unsigned short f; -#endif - u16 count = TXD_USE_COUNT(skb_headlen(skb)); - __be16 protocol = vlan_get_protocol(skb); - u8 hdr_len = 0; - - /* - * need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD, - * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD, - * + 2 desc gap to keep tail from touching head, - * + 1 desc for context descriptor, - * otherwise try next time - */ -#if PAGE_SIZE > IGB_MAX_DATA_PER_TXD - for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) - count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); -#else - count += skb_shinfo(skb)->nr_frags; -#endif - if (igb_maybe_stop_tx(tx_ring, count + 3)) { - /* this is a hard error */ - return NETDEV_TX_BUSY; - } - - /* record the location of the first descriptor for this packet */ - first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; - first->skb = skb; - first->bytecount = skb->len; - first->gso_segs = 1; - - skb_tx_timestamp(skb); - -#ifdef HAVE_PTP_1588_CLOCK - if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { - struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); - if (!adapter->ptp_tx_skb) { - skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; - tx_flags |= IGB_TX_FLAGS_TSTAMP; - - adapter->ptp_tx_skb = skb_get(skb); - adapter->ptp_tx_start = jiffies; - if (adapter->hw.mac.type == e1000_82576) - schedule_work(&adapter->ptp_tx_work); - } - } -#endif /* HAVE_PTP_1588_CLOCK */ - - if (vlan_tx_tag_present(skb)) { - tx_flags |= IGB_TX_FLAGS_VLAN; - tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); - } - - /* record initial flags and protocol */ - first->tx_flags = tx_flags; - first->protocol = protocol; - - tso = igb_tso(tx_ring, first, &hdr_len); - if (tso < 0) - goto out_drop; - else if (!tso) - igb_tx_csum(tx_ring, first); - - igb_tx_map(tx_ring, first, hdr_len); - -#ifndef HAVE_TRANS_START_IN_QUEUE - netdev_ring(tx_ring)->trans_start = jiffies; - -#endif - /* Make sure there is space in the ring for the next send. */ - igb_maybe_stop_tx(tx_ring, DESC_NEEDED); - - return NETDEV_TX_OK; - -out_drop: - igb_unmap_and_free_tx_resource(tx_ring, first); - - return NETDEV_TX_OK; -} - -#ifdef HAVE_TX_MQ -static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter, - struct sk_buff *skb) -{ - unsigned int r_idx = skb->queue_mapping; - - if (r_idx >= adapter->num_tx_queues) - r_idx = r_idx % adapter->num_tx_queues; - - return adapter->tx_ring[r_idx]; -} -#else -#define igb_tx_queue_mapping(_adapter, _skb) (_adapter)->tx_ring[0] -#endif - -static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, - struct net_device *netdev) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - - if (test_bit(__IGB_DOWN, &adapter->state)) { - dev_kfree_skb_any(skb); - return NETDEV_TX_OK; - } - - if (skb->len <= 0) { - dev_kfree_skb_any(skb); - return NETDEV_TX_OK; - } - - /* - * The minimum packet size with TCTL.PSP set is 17 so pad the skb - * in order to meet this minimum size requirement. - */ - if (skb->len < 17) { - if (skb_padto(skb, 17)) - return NETDEV_TX_OK; - skb->len = 17; - } - - return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb)); -} - -/** - * igb_tx_timeout - Respond to a Tx Hang - * @netdev: network interface device structure - **/ -static void igb_tx_timeout(struct net_device *netdev) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - /* Do the reset outside of interrupt context */ - adapter->tx_timeout_count++; - - if (hw->mac.type >= e1000_82580) - hw->dev_spec._82575.global_device_reset = true; - - schedule_work(&adapter->reset_task); - E1000_WRITE_REG(hw, E1000_EICS, - (adapter->eims_enable_mask & ~adapter->eims_other)); -} - -static void igb_reset_task(struct work_struct *work) -{ - struct igb_adapter *adapter; - adapter = container_of(work, struct igb_adapter, reset_task); - - igb_reinit_locked(adapter); -} - -/** - * igb_get_stats - Get System Network Statistics - * @netdev: network interface device structure - * - * Returns the address of the device statistics structure. - * The statistics are updated here and also from the timer callback. - **/ -static struct net_device_stats *igb_get_stats(struct net_device *netdev) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - - if (!test_bit(__IGB_RESETTING, &adapter->state)) - igb_update_stats(adapter); - -#ifdef HAVE_NETDEV_STATS_IN_NETDEV - /* only return the current stats */ - return &netdev->stats; -#else - /* only return the current stats */ - return &adapter->net_stats; -#endif /* HAVE_NETDEV_STATS_IN_NETDEV */ -} - -/** - * igb_change_mtu - Change the Maximum Transfer Unit - * @netdev: network interface device structure - * @new_mtu: new value for maximum frame size - * - * Returns 0 on success, negative on failure - **/ -static int igb_change_mtu(struct net_device *netdev, int new_mtu) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - struct pci_dev *pdev = adapter->pdev; - int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; - - if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { - dev_err(pci_dev_to_dev(pdev), "Invalid MTU setting\n"); - return -EINVAL; - } - -#define MAX_STD_JUMBO_FRAME_SIZE 9238 - if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { - dev_err(pci_dev_to_dev(pdev), "MTU > 9216 not supported.\n"); - return -EINVAL; - } - - /* adjust max frame to be at least the size of a standard frame */ - if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) - max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; - - while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) - usleep_range(1000, 2000); - - /* igb_down has a dependency on max_frame_size */ - adapter->max_frame_size = max_frame; - - if (netif_running(netdev)) - igb_down(adapter); - - dev_info(pci_dev_to_dev(pdev), "changing MTU from %d to %d\n", - netdev->mtu, new_mtu); - netdev->mtu = new_mtu; - hw->dev_spec._82575.mtu = new_mtu; - - if (netif_running(netdev)) - igb_up(adapter); - else - igb_reset(adapter); - - clear_bit(__IGB_RESETTING, &adapter->state); - - return 0; -} - -/** - * igb_update_stats - Update the board statistics counters - * @adapter: board private structure - **/ - -void igb_update_stats(struct igb_adapter *adapter) -{ -#ifdef HAVE_NETDEV_STATS_IN_NETDEV - struct net_device_stats *net_stats = &adapter->netdev->stats; -#else - struct net_device_stats *net_stats = &adapter->net_stats; -#endif /* HAVE_NETDEV_STATS_IN_NETDEV */ - struct e1000_hw *hw = &adapter->hw; -#ifdef HAVE_PCI_ERS - struct pci_dev *pdev = adapter->pdev; -#endif - u32 reg, mpc; - u16 phy_tmp; - int i; - u64 bytes, packets; -#ifndef IGB_NO_LRO - u32 flushed = 0, coal = 0; - struct igb_q_vector *q_vector; -#endif - -#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF - - /* - * Prevent stats update while adapter is being reset, or if the pci - * connection is down. - */ - if (adapter->link_speed == 0) - return; -#ifdef HAVE_PCI_ERS - if (pci_channel_offline(pdev)) - return; - -#endif -#ifndef IGB_NO_LRO - for (i = 0; i < adapter->num_q_vectors; i++) { - q_vector = adapter->q_vector[i]; - if (!q_vector) - continue; - flushed += q_vector->lrolist.stats.flushed; - coal += q_vector->lrolist.stats.coal; - } - adapter->lro_stats.flushed = flushed; - adapter->lro_stats.coal = coal; - -#endif - bytes = 0; - packets = 0; - for (i = 0; i < adapter->num_rx_queues; i++) { - u32 rqdpc_tmp = E1000_READ_REG(hw, E1000_RQDPC(i)) & 0x0FFF; - struct igb_ring *ring = adapter->rx_ring[i]; - ring->rx_stats.drops += rqdpc_tmp; - net_stats->rx_fifo_errors += rqdpc_tmp; -#ifdef CONFIG_IGB_VMDQ_NETDEV - if (!ring->vmdq_netdev) { - bytes += ring->rx_stats.bytes; - packets += ring->rx_stats.packets; - } -#else - bytes += ring->rx_stats.bytes; - packets += ring->rx_stats.packets; -#endif - } - - net_stats->rx_bytes = bytes; - net_stats->rx_packets = packets; - - bytes = 0; - packets = 0; - for (i = 0; i < adapter->num_tx_queues; i++) { - struct igb_ring *ring = adapter->tx_ring[i]; -#ifdef CONFIG_IGB_VMDQ_NETDEV - if (!ring->vmdq_netdev) { - bytes += ring->tx_stats.bytes; - packets += ring->tx_stats.packets; - } -#else - bytes += ring->tx_stats.bytes; - packets += ring->tx_stats.packets; -#endif - } - net_stats->tx_bytes = bytes; - net_stats->tx_packets = packets; - - /* read stats registers */ - adapter->stats.crcerrs += E1000_READ_REG(hw, E1000_CRCERRS); - adapter->stats.gprc += E1000_READ_REG(hw, E1000_GPRC); - adapter->stats.gorc += E1000_READ_REG(hw, E1000_GORCL); - E1000_READ_REG(hw, E1000_GORCH); /* clear GORCL */ - adapter->stats.bprc += E1000_READ_REG(hw, E1000_BPRC); - adapter->stats.mprc += E1000_READ_REG(hw, E1000_MPRC); - adapter->stats.roc += E1000_READ_REG(hw, E1000_ROC); - - adapter->stats.prc64 += E1000_READ_REG(hw, E1000_PRC64); - adapter->stats.prc127 += E1000_READ_REG(hw, E1000_PRC127); - adapter->stats.prc255 += E1000_READ_REG(hw, E1000_PRC255); - adapter->stats.prc511 += E1000_READ_REG(hw, E1000_PRC511); - adapter->stats.prc1023 += E1000_READ_REG(hw, E1000_PRC1023); - adapter->stats.prc1522 += E1000_READ_REG(hw, E1000_PRC1522); - adapter->stats.symerrs += E1000_READ_REG(hw, E1000_SYMERRS); - adapter->stats.sec += E1000_READ_REG(hw, E1000_SEC); - - mpc = E1000_READ_REG(hw, E1000_MPC); - adapter->stats.mpc += mpc; - net_stats->rx_fifo_errors += mpc; - adapter->stats.scc += E1000_READ_REG(hw, E1000_SCC); - adapter->stats.ecol += E1000_READ_REG(hw, E1000_ECOL); - adapter->stats.mcc += E1000_READ_REG(hw, E1000_MCC); - adapter->stats.latecol += E1000_READ_REG(hw, E1000_LATECOL); - adapter->stats.dc += E1000_READ_REG(hw, E1000_DC); - adapter->stats.rlec += E1000_READ_REG(hw, E1000_RLEC); - adapter->stats.xonrxc += E1000_READ_REG(hw, E1000_XONRXC); - adapter->stats.xontxc += E1000_READ_REG(hw, E1000_XONTXC); - adapter->stats.xoffrxc += E1000_READ_REG(hw, E1000_XOFFRXC); - adapter->stats.xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC); - adapter->stats.fcruc += E1000_READ_REG(hw, E1000_FCRUC); - adapter->stats.gptc += E1000_READ_REG(hw, E1000_GPTC); - adapter->stats.gotc += E1000_READ_REG(hw, E1000_GOTCL); - E1000_READ_REG(hw, E1000_GOTCH); /* clear GOTCL */ - adapter->stats.rnbc += E1000_READ_REG(hw, E1000_RNBC); - adapter->stats.ruc += E1000_READ_REG(hw, E1000_RUC); - adapter->stats.rfc += E1000_READ_REG(hw, E1000_RFC); - adapter->stats.rjc += E1000_READ_REG(hw, E1000_RJC); - adapter->stats.tor += E1000_READ_REG(hw, E1000_TORH); - adapter->stats.tot += E1000_READ_REG(hw, E1000_TOTH); - adapter->stats.tpr += E1000_READ_REG(hw, E1000_TPR); - - adapter->stats.ptc64 += E1000_READ_REG(hw, E1000_PTC64); - adapter->stats.ptc127 += E1000_READ_REG(hw, E1000_PTC127); - adapter->stats.ptc255 += E1000_READ_REG(hw, E1000_PTC255); - adapter->stats.ptc511 += E1000_READ_REG(hw, E1000_PTC511); - adapter->stats.ptc1023 += E1000_READ_REG(hw, E1000_PTC1023); - adapter->stats.ptc1522 += E1000_READ_REG(hw, E1000_PTC1522); - - adapter->stats.mptc += E1000_READ_REG(hw, E1000_MPTC); - adapter->stats.bptc += E1000_READ_REG(hw, E1000_BPTC); - - adapter->stats.tpt += E1000_READ_REG(hw, E1000_TPT); - adapter->stats.colc += E1000_READ_REG(hw, E1000_COLC); - - adapter->stats.algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC); - /* read internal phy sepecific stats */ - reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { - adapter->stats.rxerrc += E1000_READ_REG(hw, E1000_RXERRC); - - /* this stat has invalid values on i210/i211 */ - if ((hw->mac.type != e1000_i210) && - (hw->mac.type != e1000_i211)) - adapter->stats.tncrs += E1000_READ_REG(hw, E1000_TNCRS); - } - adapter->stats.tsctc += E1000_READ_REG(hw, E1000_TSCTC); - adapter->stats.tsctfc += E1000_READ_REG(hw, E1000_TSCTFC); - - adapter->stats.iac += E1000_READ_REG(hw, E1000_IAC); - adapter->stats.icrxoc += E1000_READ_REG(hw, E1000_ICRXOC); - adapter->stats.icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC); - adapter->stats.icrxatc += E1000_READ_REG(hw, E1000_ICRXATC); - adapter->stats.ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC); - adapter->stats.ictxatc += E1000_READ_REG(hw, E1000_ICTXATC); - adapter->stats.ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC); - adapter->stats.ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC); - adapter->stats.icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC); - - /* Fill out the OS statistics structure */ - net_stats->multicast = adapter->stats.mprc; - net_stats->collisions = adapter->stats.colc; - - /* Rx Errors */ - - /* RLEC on some newer hardware can be incorrect so build - * our own version based on RUC and ROC */ - net_stats->rx_errors = adapter->stats.rxerrc + - adapter->stats.crcerrs + adapter->stats.algnerrc + - adapter->stats.ruc + adapter->stats.roc + - adapter->stats.cexterr; - net_stats->rx_length_errors = adapter->stats.ruc + - adapter->stats.roc; - net_stats->rx_crc_errors = adapter->stats.crcerrs; - net_stats->rx_frame_errors = adapter->stats.algnerrc; - net_stats->rx_missed_errors = adapter->stats.mpc; - - /* Tx Errors */ - net_stats->tx_errors = adapter->stats.ecol + - adapter->stats.latecol; - net_stats->tx_aborted_errors = adapter->stats.ecol; - net_stats->tx_window_errors = adapter->stats.latecol; - net_stats->tx_carrier_errors = adapter->stats.tncrs; - - /* Tx Dropped needs to be maintained elsewhere */ - - /* Phy Stats */ - if (hw->phy.media_type == e1000_media_type_copper) { - if ((adapter->link_speed == SPEED_1000) && - (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { - phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; - adapter->phy_stats.idle_errors += phy_tmp; - } - } - - /* Management Stats */ - adapter->stats.mgptc += E1000_READ_REG(hw, E1000_MGTPTC); - adapter->stats.mgprc += E1000_READ_REG(hw, E1000_MGTPRC); - if (hw->mac.type > e1000_82580) { - adapter->stats.o2bgptc += E1000_READ_REG(hw, E1000_O2BGPTC); - adapter->stats.o2bspc += E1000_READ_REG(hw, E1000_O2BSPC); - adapter->stats.b2ospc += E1000_READ_REG(hw, E1000_B2OSPC); - adapter->stats.b2ogprc += E1000_READ_REG(hw, E1000_B2OGPRC); - } -} - -static irqreturn_t igb_msix_other(int irq, void *data) -{ - struct igb_adapter *adapter = data; - struct e1000_hw *hw = &adapter->hw; - u32 icr = E1000_READ_REG(hw, E1000_ICR); - /* reading ICR causes bit 31 of EICR to be cleared */ - - if (icr & E1000_ICR_DRSTA) - schedule_work(&adapter->reset_task); - - if (icr & E1000_ICR_DOUTSYNC) { - /* HW is reporting DMA is out of sync */ - adapter->stats.doosync++; - /* The DMA Out of Sync is also indication of a spoof event - * in IOV mode. Check the Wrong VM Behavior register to - * see if it is really a spoof event. */ - igb_check_wvbr(adapter); - } - - /* Check for a mailbox event */ - if (icr & E1000_ICR_VMMB) - igb_msg_task(adapter); - - if (icr & E1000_ICR_LSC) { - hw->mac.get_link_status = 1; - /* guard against interrupt when we're going down */ - if (!test_bit(__IGB_DOWN, &adapter->state)) - mod_timer(&adapter->watchdog_timer, jiffies + 1); - } - -#ifdef HAVE_PTP_1588_CLOCK - if (icr & E1000_ICR_TS) { - u32 tsicr = E1000_READ_REG(hw, E1000_TSICR); - - if (tsicr & E1000_TSICR_TXTS) { - /* acknowledge the interrupt */ - E1000_WRITE_REG(hw, E1000_TSICR, E1000_TSICR_TXTS); - /* retrieve hardware timestamp */ - schedule_work(&adapter->ptp_tx_work); - } - } -#endif /* HAVE_PTP_1588_CLOCK */ - - /* Check for MDD event */ - if (icr & E1000_ICR_MDDET) - igb_process_mdd_event(adapter); - - E1000_WRITE_REG(hw, E1000_EIMS, adapter->eims_other); - - return IRQ_HANDLED; -} - -static void igb_write_itr(struct igb_q_vector *q_vector) -{ - struct igb_adapter *adapter = q_vector->adapter; - u32 itr_val = q_vector->itr_val & 0x7FFC; - - if (!q_vector->set_itr) - return; - - if (!itr_val) - itr_val = 0x4; - - if (adapter->hw.mac.type == e1000_82575) - itr_val |= itr_val << 16; - else - itr_val |= E1000_EITR_CNT_IGNR; - - writel(itr_val, q_vector->itr_register); - q_vector->set_itr = 0; -} - -static irqreturn_t igb_msix_ring(int irq, void *data) -{ - struct igb_q_vector *q_vector = data; - - /* Write the ITR value calculated from the previous interrupt. */ - igb_write_itr(q_vector); - - napi_schedule(&q_vector->napi); - - return IRQ_HANDLED; -} - -#ifdef IGB_DCA -static void igb_update_tx_dca(struct igb_adapter *adapter, - struct igb_ring *tx_ring, - int cpu) -{ - struct e1000_hw *hw = &adapter->hw; - u32 txctrl = dca3_get_tag(tx_ring->dev, cpu); - - if (hw->mac.type != e1000_82575) - txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT_82576; - - /* - * We can enable relaxed ordering for reads, but not writes when - * DCA is enabled. This is due to a known issue in some chipsets - * which will cause the DCA tag to be cleared. - */ - txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN | - E1000_DCA_TXCTRL_DATA_RRO_EN | - E1000_DCA_TXCTRL_DESC_DCA_EN; - - E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl); -} - -static void igb_update_rx_dca(struct igb_adapter *adapter, - struct igb_ring *rx_ring, - int cpu) -{ - struct e1000_hw *hw = &adapter->hw; - u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu); - - if (hw->mac.type != e1000_82575) - rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT_82576; - - /* - * We can enable relaxed ordering for reads, but not writes when - * DCA is enabled. This is due to a known issue in some chipsets - * which will cause the DCA tag to be cleared. - */ - rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN | - E1000_DCA_RXCTRL_DESC_DCA_EN; - - E1000_WRITE_REG(hw, E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl); -} - -static void igb_update_dca(struct igb_q_vector *q_vector) -{ - struct igb_adapter *adapter = q_vector->adapter; - int cpu = get_cpu(); - - if (q_vector->cpu == cpu) - goto out_no_update; - - if (q_vector->tx.ring) - igb_update_tx_dca(adapter, q_vector->tx.ring, cpu); - - if (q_vector->rx.ring) - igb_update_rx_dca(adapter, q_vector->rx.ring, cpu); - - q_vector->cpu = cpu; -out_no_update: - put_cpu(); -} - -static void igb_setup_dca(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - int i; - - if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) - return; - - /* Always use CB2 mode, difference is masked in the CB driver. */ - E1000_WRITE_REG(hw, E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); - - for (i = 0; i < adapter->num_q_vectors; i++) { - adapter->q_vector[i]->cpu = -1; - igb_update_dca(adapter->q_vector[i]); - } -} - -static int __igb_notify_dca(struct device *dev, void *data) -{ - struct net_device *netdev = dev_get_drvdata(dev); - struct igb_adapter *adapter = netdev_priv(netdev); - struct pci_dev *pdev = adapter->pdev; - struct e1000_hw *hw = &adapter->hw; - unsigned long event = *(unsigned long *)data; - - switch (event) { - case DCA_PROVIDER_ADD: - /* if already enabled, don't do it again */ - if (adapter->flags & IGB_FLAG_DCA_ENABLED) - break; - if (dca_add_requester(dev) == E1000_SUCCESS) { - adapter->flags |= IGB_FLAG_DCA_ENABLED; - dev_info(pci_dev_to_dev(pdev), "DCA enabled\n"); - igb_setup_dca(adapter); - break; - } - /* Fall Through since DCA is disabled. */ - case DCA_PROVIDER_REMOVE: - if (adapter->flags & IGB_FLAG_DCA_ENABLED) { - /* without this a class_device is left - * hanging around in the sysfs model */ - dca_remove_requester(dev); - dev_info(pci_dev_to_dev(pdev), "DCA disabled\n"); - adapter->flags &= ~IGB_FLAG_DCA_ENABLED; - E1000_WRITE_REG(hw, E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_DISABLE); - } - break; - } - - return E1000_SUCCESS; -} - -static int igb_notify_dca(struct notifier_block *nb, unsigned long event, - void *p) -{ - int ret_val; - - ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, - __igb_notify_dca); - - return ret_val ? NOTIFY_BAD : NOTIFY_DONE; -} -#endif /* IGB_DCA */ - -static int igb_vf_configure(struct igb_adapter *adapter, int vf) -{ - unsigned char mac_addr[ETH_ALEN]; - - random_ether_addr(mac_addr); - igb_set_vf_mac(adapter, vf, mac_addr); - -#ifdef IFLA_VF_MAX -#ifdef HAVE_VF_SPOOFCHK_CONFIGURE - /* By default spoof check is enabled for all VFs */ - adapter->vf_data[vf].spoofchk_enabled = true; -#endif -#endif - - return true; -} - -static void igb_ping_all_vfs(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 ping; - int i; - - for (i = 0 ; i < adapter->vfs_allocated_count; i++) { - ping = E1000_PF_CONTROL_MSG; - if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) - ping |= E1000_VT_MSGTYPE_CTS; - e1000_write_mbx(hw, &ping, 1, i); - } -} - -/** - * igb_mta_set_ - Set multicast filter table address - * @adapter: pointer to the adapter structure - * @hash_value: determines the MTA register and bit to set - * - * The multicast table address is a register array of 32-bit registers. - * The hash_value is used to determine what register the bit is in, the - * current value is read, the new bit is OR'd in and the new value is - * written back into the register. - **/ -void igb_mta_set(struct igb_adapter *adapter, u32 hash_value) -{ - struct e1000_hw *hw = &adapter->hw; - u32 hash_bit, hash_reg, mta; - - /* - * The MTA is a register array of 32-bit registers. It is - * treated like an array of (32*mta_reg_count) bits. We want to - * set bit BitArray[hash_value]. So we figure out what register - * the bit is in, read it, OR in the new bit, then write - * back the new value. The (hw->mac.mta_reg_count - 1) serves as a - * mask to bits 31:5 of the hash value which gives us the - * register we're modifying. The hash bit within that register - * is determined by the lower 5 bits of the hash value. - */ - hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); - hash_bit = hash_value & 0x1F; - - mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg); - - mta |= (1 << hash_bit); - - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta); - E1000_WRITE_FLUSH(hw); -} - -static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) -{ - - struct e1000_hw *hw = &adapter->hw; - u32 vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf)); - struct vf_data_storage *vf_data = &adapter->vf_data[vf]; - - vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | - IGB_VF_FLAG_MULTI_PROMISC); - vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); - -#ifdef IGB_ENABLE_VF_PROMISC - if (*msgbuf & E1000_VF_SET_PROMISC_UNICAST) { - vmolr |= E1000_VMOLR_ROPE; - vf_data->flags |= IGB_VF_FLAG_UNI_PROMISC; - *msgbuf &= ~E1000_VF_SET_PROMISC_UNICAST; - } -#endif - if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { - vmolr |= E1000_VMOLR_MPME; - vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; - *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; - } else { - /* - * if we have hashes and we are clearing a multicast promisc - * flag we need to write the hashes to the MTA as this step - * was previously skipped - */ - if (vf_data->num_vf_mc_hashes > 30) { - vmolr |= E1000_VMOLR_MPME; - } else if (vf_data->num_vf_mc_hashes) { - int j; - vmolr |= E1000_VMOLR_ROMPE; - for (j = 0; j < vf_data->num_vf_mc_hashes; j++) - igb_mta_set(adapter, vf_data->vf_mc_hashes[j]); - } - } - - E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr); - - /* there are flags left unprocessed, likely not supported */ - if (*msgbuf & E1000_VT_MSGINFO_MASK) - return -EINVAL; - - return 0; - -} - -static int igb_set_vf_multicasts(struct igb_adapter *adapter, - u32 *msgbuf, u32 vf) -{ - int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; - u16 *hash_list = (u16 *)&msgbuf[1]; - struct vf_data_storage *vf_data = &adapter->vf_data[vf]; - int i; - - /* salt away the number of multicast addresses assigned - * to this VF for later use to restore when the PF multi cast - * list changes - */ - vf_data->num_vf_mc_hashes = n; - - /* only up to 30 hash values supported */ - if (n > 30) - n = 30; - - /* store the hashes for later use */ - for (i = 0; i < n; i++) - vf_data->vf_mc_hashes[i] = hash_list[i]; - - /* Flush and reset the mta with the new values */ - igb_set_rx_mode(adapter->netdev); - - return 0; -} - -static void igb_restore_vf_multicasts(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - struct vf_data_storage *vf_data; - int i, j; - - for (i = 0; i < adapter->vfs_allocated_count; i++) { - u32 vmolr = E1000_READ_REG(hw, E1000_VMOLR(i)); - vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); - - vf_data = &adapter->vf_data[i]; - - if ((vf_data->num_vf_mc_hashes > 30) || - (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { - vmolr |= E1000_VMOLR_MPME; - } else if (vf_data->num_vf_mc_hashes) { - vmolr |= E1000_VMOLR_ROMPE; - for (j = 0; j < vf_data->num_vf_mc_hashes; j++) - igb_mta_set(adapter, vf_data->vf_mc_hashes[j]); - } - E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr); - } -} - -static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) -{ - struct e1000_hw *hw = &adapter->hw; - u32 pool_mask, reg, vid; - u16 vlan_default; - int i; - - pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); - - /* Find the vlan filter for this id */ - for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { - reg = E1000_READ_REG(hw, E1000_VLVF(i)); - - /* remove the vf from the pool */ - reg &= ~pool_mask; - - /* if pool is empty then remove entry from vfta */ - if (!(reg & E1000_VLVF_POOLSEL_MASK) && - (reg & E1000_VLVF_VLANID_ENABLE)) { - reg = 0; - vid = reg & E1000_VLVF_VLANID_MASK; - igb_vfta_set(adapter, vid, FALSE); - } - - E1000_WRITE_REG(hw, E1000_VLVF(i), reg); - } - - adapter->vf_data[vf].vlans_enabled = 0; - - vlan_default = adapter->vf_data[vf].default_vf_vlan_id; - if (vlan_default) - igb_vlvf_set(adapter, vlan_default, true, vf); -} - -s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf) -{ - struct e1000_hw *hw = &adapter->hw; - u32 reg, i; - - /* The vlvf table only exists on 82576 hardware and newer */ - if (hw->mac.type < e1000_82576) - return -1; - - /* we only need to do this if VMDq is enabled */ - if (!adapter->vmdq_pools) - return -1; - - /* Find the vlan filter for this id */ - for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { - reg = E1000_READ_REG(hw, E1000_VLVF(i)); - if ((reg & E1000_VLVF_VLANID_ENABLE) && - vid == (reg & E1000_VLVF_VLANID_MASK)) - break; - } - - if (add) { - if (i == E1000_VLVF_ARRAY_SIZE) { - /* Did not find a matching VLAN ID entry that was - * enabled. Search for a free filter entry, i.e. - * one without the enable bit set - */ - for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { - reg = E1000_READ_REG(hw, E1000_VLVF(i)); - if (!(reg & E1000_VLVF_VLANID_ENABLE)) - break; - } - } - if (i < E1000_VLVF_ARRAY_SIZE) { - /* Found an enabled/available entry */ - reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); - - /* if !enabled we need to set this up in vfta */ - if (!(reg & E1000_VLVF_VLANID_ENABLE)) { - /* add VID to filter table */ - igb_vfta_set(adapter, vid, TRUE); - reg |= E1000_VLVF_VLANID_ENABLE; - } - reg &= ~E1000_VLVF_VLANID_MASK; - reg |= vid; - E1000_WRITE_REG(hw, E1000_VLVF(i), reg); - - /* do not modify RLPML for PF devices */ - if (vf >= adapter->vfs_allocated_count) - return E1000_SUCCESS; - - if (!adapter->vf_data[vf].vlans_enabled) { - u32 size; - reg = E1000_READ_REG(hw, E1000_VMOLR(vf)); - size = reg & E1000_VMOLR_RLPML_MASK; - size += 4; - reg &= ~E1000_VMOLR_RLPML_MASK; - reg |= size; - E1000_WRITE_REG(hw, E1000_VMOLR(vf), reg); - } - - adapter->vf_data[vf].vlans_enabled++; - } - } else { - if (i < E1000_VLVF_ARRAY_SIZE) { - /* remove vf from the pool */ - reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf)); - /* if pool is empty then remove entry from vfta */ - if (!(reg & E1000_VLVF_POOLSEL_MASK)) { - reg = 0; - igb_vfta_set(adapter, vid, FALSE); - } - E1000_WRITE_REG(hw, E1000_VLVF(i), reg); - - /* do not modify RLPML for PF devices */ - if (vf >= adapter->vfs_allocated_count) - return E1000_SUCCESS; - - adapter->vf_data[vf].vlans_enabled--; - if (!adapter->vf_data[vf].vlans_enabled) { - u32 size; - reg = E1000_READ_REG(hw, E1000_VMOLR(vf)); - size = reg & E1000_VMOLR_RLPML_MASK; - size -= 4; - reg &= ~E1000_VMOLR_RLPML_MASK; - reg |= size; - E1000_WRITE_REG(hw, E1000_VMOLR(vf), reg); - } - } - } - return E1000_SUCCESS; -} - -#ifdef IFLA_VF_MAX -static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) -{ - struct e1000_hw *hw = &adapter->hw; - - if (vid) - E1000_WRITE_REG(hw, E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); - else - E1000_WRITE_REG(hw, E1000_VMVIR(vf), 0); -} - -static int igb_ndo_set_vf_vlan(struct net_device *netdev, -#ifdef HAVE_VF_VLAN_PROTO - int vf, u16 vlan, u8 qos, __be16 vlan_proto) -#else - int vf, u16 vlan, u8 qos) -#endif -{ - int err = 0; - struct igb_adapter *adapter = netdev_priv(netdev); - - /* VLAN IDs accepted range 0-4094 */ - if ((vf >= adapter->vfs_allocated_count) || (vlan > VLAN_VID_MASK-1) || (qos > 7)) - return -EINVAL; - -#ifdef HAVE_VF_VLAN_PROTO - if (vlan_proto != htons(ETH_P_8021Q)) - return -EPROTONOSUPPORT; -#endif - - if (vlan || qos) { - err = igb_vlvf_set(adapter, vlan, !!vlan, vf); - if (err) - goto out; - igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); - igb_set_vmolr(adapter, vf, !vlan); - adapter->vf_data[vf].pf_vlan = vlan; - adapter->vf_data[vf].pf_qos = qos; - igb_set_vf_vlan_strip(adapter, vf, true); - dev_info(&adapter->pdev->dev, - "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); - if (test_bit(__IGB_DOWN, &adapter->state)) { - dev_warn(&adapter->pdev->dev, - "The VF VLAN has been set," - " but the PF device is not up.\n"); - dev_warn(&adapter->pdev->dev, - "Bring the PF device up before" - " attempting to use the VF device.\n"); - } - } else { - if (adapter->vf_data[vf].pf_vlan) - dev_info(&adapter->pdev->dev, - "Clearing VLAN on VF %d\n", vf); - igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan, - false, vf); - igb_set_vmvir(adapter, vlan, vf); - igb_set_vmolr(adapter, vf, true); - igb_set_vf_vlan_strip(adapter, vf, false); - adapter->vf_data[vf].pf_vlan = 0; - adapter->vf_data[vf].pf_qos = 0; - } -out: - return err; -} - -#ifdef HAVE_VF_SPOOFCHK_CONFIGURE -static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, - bool setting) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 dtxswc, reg_offset; - - if (!adapter->vfs_allocated_count) - return -EOPNOTSUPP; - - if (vf >= adapter->vfs_allocated_count) - return -EINVAL; - - reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC; - dtxswc = E1000_READ_REG(hw, reg_offset); - if (setting) - dtxswc |= ((1 << vf) | - (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT))); - else - dtxswc &= ~((1 << vf) | - (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT))); - E1000_WRITE_REG(hw, reg_offset, dtxswc); - - adapter->vf_data[vf].spoofchk_enabled = setting; - return E1000_SUCCESS; -} -#endif /* HAVE_VF_SPOOFCHK_CONFIGURE */ -#endif /* IFLA_VF_MAX */ - -static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid) -{ - struct e1000_hw *hw = &adapter->hw; - int i; - u32 reg; - - /* Find the vlan filter for this id */ - for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { - reg = E1000_READ_REG(hw, E1000_VLVF(i)); - if ((reg & E1000_VLVF_VLANID_ENABLE) && - vid == (reg & E1000_VLVF_VLANID_MASK)) - break; - } - - if (i >= E1000_VLVF_ARRAY_SIZE) - i = -1; - - return i; -} - -static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) -{ - struct e1000_hw *hw = &adapter->hw; - int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; - int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); - int err = 0; - - if (vid) - igb_set_vf_vlan_strip(adapter, vf, true); - else - igb_set_vf_vlan_strip(adapter, vf, false); - - /* If in promiscuous mode we need to make sure the PF also has - * the VLAN filter set. - */ - if (add && (adapter->netdev->flags & IFF_PROMISC)) - err = igb_vlvf_set(adapter, vid, add, - adapter->vfs_allocated_count); - if (err) - goto out; - - err = igb_vlvf_set(adapter, vid, add, vf); - - if (err) - goto out; - - /* Go through all the checks to see if the VLAN filter should - * be wiped completely. - */ - if (!add && (adapter->netdev->flags & IFF_PROMISC)) { - u32 vlvf, bits; - - int regndx = igb_find_vlvf_entry(adapter, vid); - if (regndx < 0) - goto out; - /* See if any other pools are set for this VLAN filter - * entry other than the PF. - */ - vlvf = bits = E1000_READ_REG(hw, E1000_VLVF(regndx)); - bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT + - adapter->vfs_allocated_count); - /* If the filter was removed then ensure PF pool bit - * is cleared if the PF only added itself to the pool - * because the PF is in promiscuous mode. - */ - if ((vlvf & VLAN_VID_MASK) == vid && -#ifndef HAVE_VLAN_RX_REGISTER - !test_bit(vid, adapter->active_vlans) && -#endif - !bits) - igb_vlvf_set(adapter, vid, add, - adapter->vfs_allocated_count); - } - -out: - return err; -} - -static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) -{ - struct e1000_hw *hw = &adapter->hw; - - /* clear flags except flag that the PF has set the MAC */ - adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC; - adapter->vf_data[vf].last_nack = jiffies; - - /* reset offloads to defaults */ - igb_set_vmolr(adapter, vf, true); - - /* reset vlans for device */ - igb_clear_vf_vfta(adapter, vf); -#ifdef IFLA_VF_MAX - if (adapter->vf_data[vf].pf_vlan) - igb_ndo_set_vf_vlan(adapter->netdev, vf, - adapter->vf_data[vf].pf_vlan, -#ifdef HAVE_VF_VLAN_PROTO - adapter->vf_data[vf].pf_qos, - htons(ETH_P_8021Q)); -#else - adapter->vf_data[vf].pf_qos); -#endif - else - igb_clear_vf_vfta(adapter, vf); -#endif - - /* reset multicast table array for vf */ - adapter->vf_data[vf].num_vf_mc_hashes = 0; - - /* Flush and reset the mta with the new values */ - igb_set_rx_mode(adapter->netdev); - - /* - * Reset the VFs TDWBAL and TDWBAH registers which are not - * cleared by a VFLR - */ - E1000_WRITE_REG(hw, E1000_TDWBAH(vf), 0); - E1000_WRITE_REG(hw, E1000_TDWBAL(vf), 0); - if (hw->mac.type == e1000_82576) { - E1000_WRITE_REG(hw, E1000_TDWBAH(IGB_MAX_VF_FUNCTIONS + vf), 0); - E1000_WRITE_REG(hw, E1000_TDWBAL(IGB_MAX_VF_FUNCTIONS + vf), 0); - } -} - -static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) -{ - unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; - - /* generate a new mac address as we were hotplug removed/added */ - if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) - random_ether_addr(vf_mac); - - /* process remaining reset events */ - igb_vf_reset(adapter, vf); -} - -static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) -{ - struct e1000_hw *hw = &adapter->hw; - unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; - u32 reg, msgbuf[3]; - u8 *addr = (u8 *)(&msgbuf[1]); - - /* process all the same items cleared in a function level reset */ - igb_vf_reset(adapter, vf); - - /* set vf mac address */ - igb_del_mac_filter(adapter, vf_mac, vf); - igb_add_mac_filter(adapter, vf_mac, vf); - - /* enable transmit and receive for vf */ - reg = E1000_READ_REG(hw, E1000_VFTE); - E1000_WRITE_REG(hw, E1000_VFTE, reg | (1 << vf)); - reg = E1000_READ_REG(hw, E1000_VFRE); - E1000_WRITE_REG(hw, E1000_VFRE, reg | (1 << vf)); - - adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; - - /* reply to reset with ack and vf mac address */ - msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; - memcpy(addr, vf_mac, 6); - e1000_write_mbx(hw, msgbuf, 3, vf); -} - -static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) -{ - /* - * The VF MAC Address is stored in a packed array of bytes - * starting at the second 32 bit word of the msg array - */ - unsigned char *addr = (unsigned char *)&msg[1]; - int err = -1; - - if (is_valid_ether_addr(addr)) - err = igb_set_vf_mac(adapter, vf, addr); - - return err; -} - -static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) -{ - struct e1000_hw *hw = &adapter->hw; - struct vf_data_storage *vf_data = &adapter->vf_data[vf]; - u32 msg = E1000_VT_MSGTYPE_NACK; - - /* if device isn't clear to send it shouldn't be reading either */ - if (!(vf_data->flags & IGB_VF_FLAG_CTS) && - time_after(jiffies, vf_data->last_nack + (2 * HZ))) { - e1000_write_mbx(hw, &msg, 1, vf); - vf_data->last_nack = jiffies; - } -} - -static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) -{ - struct pci_dev *pdev = adapter->pdev; - u32 msgbuf[E1000_VFMAILBOX_SIZE]; - struct e1000_hw *hw = &adapter->hw; - struct vf_data_storage *vf_data = &adapter->vf_data[vf]; - s32 retval; - - retval = e1000_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf); - - if (retval) { - dev_err(pci_dev_to_dev(pdev), "Error receiving message from VF\n"); - return; - } - - /* this is a message we already processed, do nothing */ - if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) - return; - - /* - * until the vf completes a reset it should not be - * allowed to start any configuration. - */ - - if (msgbuf[0] == E1000_VF_RESET) { - igb_vf_reset_msg(adapter, vf); - return; - } - - if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { - msgbuf[0] = E1000_VT_MSGTYPE_NACK; - if (time_after(jiffies, vf_data->last_nack + (2 * HZ))) { - e1000_write_mbx(hw, msgbuf, 1, vf); - vf_data->last_nack = jiffies; - } - return; - } - - switch ((msgbuf[0] & 0xFFFF)) { - case E1000_VF_SET_MAC_ADDR: - retval = -EINVAL; -#ifndef IGB_DISABLE_VF_MAC_SET - if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC)) - retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); - else - DPRINTK(DRV, INFO, - "VF %d attempted to override administratively " - "set MAC address\nReload the VF driver to " - "resume operations\n", vf); -#endif - break; - case E1000_VF_SET_PROMISC: - retval = igb_set_vf_promisc(adapter, msgbuf, vf); - break; - case E1000_VF_SET_MULTICAST: - retval = igb_set_vf_multicasts(adapter, msgbuf, vf); - break; - case E1000_VF_SET_LPE: - retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); - break; - case E1000_VF_SET_VLAN: - retval = -1; -#ifdef IFLA_VF_MAX - if (vf_data->pf_vlan) - DPRINTK(DRV, INFO, - "VF %d attempted to override administratively " - "set VLAN tag\nReload the VF driver to " - "resume operations\n", vf); - else -#endif - retval = igb_set_vf_vlan(adapter, msgbuf, vf); - break; - default: - dev_err(pci_dev_to_dev(pdev), "Unhandled Msg %08x\n", msgbuf[0]); - retval = -E1000_ERR_MBX; - break; - } - - /* notify the VF of the results of what it sent us */ - if (retval) - msgbuf[0] |= E1000_VT_MSGTYPE_NACK; - else - msgbuf[0] |= E1000_VT_MSGTYPE_ACK; - - msgbuf[0] |= E1000_VT_MSGTYPE_CTS; - - e1000_write_mbx(hw, msgbuf, 1, vf); -} - -static void igb_msg_task(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 vf; - - for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { - /* process any reset requests */ - if (!e1000_check_for_rst(hw, vf)) - igb_vf_reset_event(adapter, vf); - - /* process any messages pending */ - if (!e1000_check_for_msg(hw, vf)) - igb_rcv_msg_from_vf(adapter, vf); - - /* process any acks */ - if (!e1000_check_for_ack(hw, vf)) - igb_rcv_ack_from_vf(adapter, vf); - } -} - -/** - * igb_set_uta - Set unicast filter table address - * @adapter: board private structure - * - * The unicast table address is a register array of 32-bit registers. - * The table is meant to be used in a way similar to how the MTA is used - * however due to certain limitations in the hardware it is necessary to - * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous - * enable bit to allow vlan tag stripping when promiscuous mode is enabled - **/ -static void igb_set_uta(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - int i; - - /* The UTA table only exists on 82576 hardware and newer */ - if (hw->mac.type < e1000_82576) - return; - - /* we only need to do this if VMDq is enabled */ - if (!adapter->vmdq_pools) - return; - - for (i = 0; i < hw->mac.uta_reg_count; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, ~0); -} - -/** - * igb_intr_msi - Interrupt Handler - * @irq: interrupt number - * @data: pointer to a network interface device structure - **/ -static irqreturn_t igb_intr_msi(int irq, void *data) -{ - struct igb_adapter *adapter = data; - struct igb_q_vector *q_vector = adapter->q_vector[0]; - struct e1000_hw *hw = &adapter->hw; - /* read ICR disables interrupts using IAM */ - u32 icr = E1000_READ_REG(hw, E1000_ICR); - - igb_write_itr(q_vector); - - if (icr & E1000_ICR_DRSTA) - schedule_work(&adapter->reset_task); - - if (icr & E1000_ICR_DOUTSYNC) { - /* HW is reporting DMA is out of sync */ - adapter->stats.doosync++; - } - - if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { - hw->mac.get_link_status = 1; - if (!test_bit(__IGB_DOWN, &adapter->state)) - mod_timer(&adapter->watchdog_timer, jiffies + 1); - } - -#ifdef HAVE_PTP_1588_CLOCK - if (icr & E1000_ICR_TS) { - u32 tsicr = E1000_READ_REG(hw, E1000_TSICR); - - if (tsicr & E1000_TSICR_TXTS) { - /* acknowledge the interrupt */ - E1000_WRITE_REG(hw, E1000_TSICR, E1000_TSICR_TXTS); - /* retrieve hardware timestamp */ - schedule_work(&adapter->ptp_tx_work); - } - } -#endif /* HAVE_PTP_1588_CLOCK */ - - napi_schedule(&q_vector->napi); - - return IRQ_HANDLED; -} - -/** - * igb_intr - Legacy Interrupt Handler - * @irq: interrupt number - * @data: pointer to a network interface device structure - **/ -static irqreturn_t igb_intr(int irq, void *data) -{ - struct igb_adapter *adapter = data; - struct igb_q_vector *q_vector = adapter->q_vector[0]; - struct e1000_hw *hw = &adapter->hw; - /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No - * need for the IMC write */ - u32 icr = E1000_READ_REG(hw, E1000_ICR); - - /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is - * not set, then the adapter didn't send an interrupt */ - if (!(icr & E1000_ICR_INT_ASSERTED)) - return IRQ_NONE; - - igb_write_itr(q_vector); - - if (icr & E1000_ICR_DRSTA) - schedule_work(&adapter->reset_task); - - if (icr & E1000_ICR_DOUTSYNC) { - /* HW is reporting DMA is out of sync */ - adapter->stats.doosync++; - } - - if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { - hw->mac.get_link_status = 1; - /* guard against interrupt when we're going down */ - if (!test_bit(__IGB_DOWN, &adapter->state)) - mod_timer(&adapter->watchdog_timer, jiffies + 1); - } - -#ifdef HAVE_PTP_1588_CLOCK - if (icr & E1000_ICR_TS) { - u32 tsicr = E1000_READ_REG(hw, E1000_TSICR); - - if (tsicr & E1000_TSICR_TXTS) { - /* acknowledge the interrupt */ - E1000_WRITE_REG(hw, E1000_TSICR, E1000_TSICR_TXTS); - /* retrieve hardware timestamp */ - schedule_work(&adapter->ptp_tx_work); - } - } -#endif /* HAVE_PTP_1588_CLOCK */ - - napi_schedule(&q_vector->napi); - - return IRQ_HANDLED; -} - -void igb_ring_irq_enable(struct igb_q_vector *q_vector) -{ - struct igb_adapter *adapter = q_vector->adapter; - struct e1000_hw *hw = &adapter->hw; - - if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || - (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { - if ((adapter->num_q_vectors == 1) && !adapter->vf_data) - igb_set_itr(q_vector); - else - igb_update_ring_itr(q_vector); - } - - if (!test_bit(__IGB_DOWN, &adapter->state)) { - if (adapter->msix_entries) - E1000_WRITE_REG(hw, E1000_EIMS, q_vector->eims_value); - else - igb_irq_enable(adapter); - } -} - -/** - * igb_poll - NAPI Rx polling callback - * @napi: napi polling structure - * @budget: count of how many packets we should handle - **/ -static int igb_poll(struct napi_struct *napi, int budget) -{ - struct igb_q_vector *q_vector = container_of(napi, struct igb_q_vector, napi); - bool clean_complete = true; - -#ifdef IGB_DCA - if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) - igb_update_dca(q_vector); -#endif - if (q_vector->tx.ring) - clean_complete = igb_clean_tx_irq(q_vector); - - if (q_vector->rx.ring) - clean_complete &= igb_clean_rx_irq(q_vector, budget); - -#ifndef HAVE_NETDEV_NAPI_LIST - /* if netdev is disabled we need to stop polling */ - if (!netif_running(q_vector->adapter->netdev)) - clean_complete = true; - -#endif - /* If all work not completed, return budget and keep polling */ - if (!clean_complete) - return budget; - - /* If not enough Rx work done, exit the polling mode */ - napi_complete(napi); - igb_ring_irq_enable(q_vector); - - return 0; -} - -/** - * igb_clean_tx_irq - Reclaim resources after transmit completes - * @q_vector: pointer to q_vector containing needed info - * returns TRUE if ring is completely cleaned - **/ -static bool igb_clean_tx_irq(struct igb_q_vector *q_vector) -{ - struct igb_adapter *adapter = q_vector->adapter; - struct igb_ring *tx_ring = q_vector->tx.ring; - struct igb_tx_buffer *tx_buffer; - union e1000_adv_tx_desc *tx_desc; - unsigned int total_bytes = 0, total_packets = 0; - unsigned int budget = q_vector->tx.work_limit; - unsigned int i = tx_ring->next_to_clean; - - if (test_bit(__IGB_DOWN, &adapter->state)) - return true; - - tx_buffer = &tx_ring->tx_buffer_info[i]; - tx_desc = IGB_TX_DESC(tx_ring, i); - i -= tx_ring->count; - - do { - union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; - - /* if next_to_watch is not set then there is no work pending */ - if (!eop_desc) - break; - - /* prevent any other reads prior to eop_desc */ - read_barrier_depends(); - - /* if DD is not set pending work has not been completed */ - if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) - break; - - /* clear next_to_watch to prevent false hangs */ - tx_buffer->next_to_watch = NULL; - - /* update the statistics for this packet */ - total_bytes += tx_buffer->bytecount; - total_packets += tx_buffer->gso_segs; - - /* free the skb */ - dev_kfree_skb_any(tx_buffer->skb); - - /* unmap skb header data */ - dma_unmap_single(tx_ring->dev, - dma_unmap_addr(tx_buffer, dma), - dma_unmap_len(tx_buffer, len), - DMA_TO_DEVICE); - - /* clear tx_buffer data */ - tx_buffer->skb = NULL; - dma_unmap_len_set(tx_buffer, len, 0); - - /* clear last DMA location and unmap remaining buffers */ - while (tx_desc != eop_desc) { - tx_buffer++; - tx_desc++; - i++; - if (unlikely(!i)) { - i -= tx_ring->count; - tx_buffer = tx_ring->tx_buffer_info; - tx_desc = IGB_TX_DESC(tx_ring, 0); - } - - /* unmap any remaining paged data */ - if (dma_unmap_len(tx_buffer, len)) { - dma_unmap_page(tx_ring->dev, - dma_unmap_addr(tx_buffer, dma), - dma_unmap_len(tx_buffer, len), - DMA_TO_DEVICE); - dma_unmap_len_set(tx_buffer, len, 0); - } - } - - /* move us one more past the eop_desc for start of next pkt */ - tx_buffer++; - tx_desc++; - i++; - if (unlikely(!i)) { - i -= tx_ring->count; - tx_buffer = tx_ring->tx_buffer_info; - tx_desc = IGB_TX_DESC(tx_ring, 0); - } - - /* issue prefetch for next Tx descriptor */ - prefetch(tx_desc); - - /* update budget accounting */ - budget--; - } while (likely(budget)); - - netdev_tx_completed_queue(txring_txq(tx_ring), - total_packets, total_bytes); - - i += tx_ring->count; - tx_ring->next_to_clean = i; - tx_ring->tx_stats.bytes += total_bytes; - tx_ring->tx_stats.packets += total_packets; - q_vector->tx.total_bytes += total_bytes; - q_vector->tx.total_packets += total_packets; - -#ifdef DEBUG - if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags) && - !(adapter->disable_hw_reset && adapter->tx_hang_detected)) { -#else - if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { -#endif - struct e1000_hw *hw = &adapter->hw; - - /* Detect a transmit hang in hardware, this serializes the - * check with the clearing of time_stamp and movement of i */ - clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); - if (tx_buffer->next_to_watch && - time_after(jiffies, tx_buffer->time_stamp + - (adapter->tx_timeout_factor * HZ)) - && !(E1000_READ_REG(hw, E1000_STATUS) & - E1000_STATUS_TXOFF)) { - - /* detected Tx unit hang */ -#ifdef DEBUG - adapter->tx_hang_detected = TRUE; - if (adapter->disable_hw_reset) { - DPRINTK(DRV, WARNING, - "Deactivating netdev watchdog timer\n"); - if (del_timer(&netdev_ring(tx_ring)->watchdog_timer)) - dev_put(netdev_ring(tx_ring)); -#ifndef HAVE_NET_DEVICE_OPS - netdev_ring(tx_ring)->tx_timeout = NULL; -#endif - } -#endif /* DEBUG */ - dev_err(tx_ring->dev, - "Detected Tx Unit Hang\n" - " Tx Queue <%d>\n" - " TDH <%x>\n" - " TDT <%x>\n" - " next_to_use <%x>\n" - " next_to_clean <%x>\n" - "buffer_info[next_to_clean]\n" - " time_stamp <%lx>\n" - " next_to_watch <%p>\n" - " jiffies <%lx>\n" - " desc.status <%x>\n", - tx_ring->queue_index, - E1000_READ_REG(hw, E1000_TDH(tx_ring->reg_idx)), - readl(tx_ring->tail), - tx_ring->next_to_use, - tx_ring->next_to_clean, - tx_buffer->time_stamp, - tx_buffer->next_to_watch, - jiffies, - tx_buffer->next_to_watch->wb.status); - if (netif_is_multiqueue(netdev_ring(tx_ring))) - netif_stop_subqueue(netdev_ring(tx_ring), - ring_queue_index(tx_ring)); - else - netif_stop_queue(netdev_ring(tx_ring)); - - /* we are about to reset, no point in enabling stuff */ - return true; - } - } - -#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) - if (unlikely(total_packets && - netif_carrier_ok(netdev_ring(tx_ring)) && - igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { - /* Make sure that anybody stopping the queue after this - * sees the new next_to_clean. - */ - smp_mb(); - if (netif_is_multiqueue(netdev_ring(tx_ring))) { - if (__netif_subqueue_stopped(netdev_ring(tx_ring), - ring_queue_index(tx_ring)) && - !(test_bit(__IGB_DOWN, &adapter->state))) { - netif_wake_subqueue(netdev_ring(tx_ring), - ring_queue_index(tx_ring)); - tx_ring->tx_stats.restart_queue++; - } - } else { - if (netif_queue_stopped(netdev_ring(tx_ring)) && - !(test_bit(__IGB_DOWN, &adapter->state))) { - netif_wake_queue(netdev_ring(tx_ring)); - tx_ring->tx_stats.restart_queue++; - } - } - } - - return !!budget; -} - -#ifdef HAVE_VLAN_RX_REGISTER -/** - * igb_receive_skb - helper function to handle rx indications - * @q_vector: structure containing interrupt and ring information - * @skb: packet to send up - **/ -static void igb_receive_skb(struct igb_q_vector *q_vector, - struct sk_buff *skb) -{ - struct vlan_group **vlgrp = netdev_priv(skb->dev); - - if (IGB_CB(skb)->vid) { - if (*vlgrp) { - vlan_gro_receive(&q_vector->napi, *vlgrp, - IGB_CB(skb)->vid, skb); - } else { - dev_kfree_skb_any(skb); - } - } else { - napi_gro_receive(&q_vector->napi, skb); - } -} - -#endif /* HAVE_VLAN_RX_REGISTER */ -#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT -/** - * igb_reuse_rx_page - page flip buffer and store it back on the ring - * @rx_ring: rx descriptor ring to store buffers on - * @old_buff: donor buffer to have page reused - * - * Synchronizes page for reuse by the adapter - **/ -static void igb_reuse_rx_page(struct igb_ring *rx_ring, - struct igb_rx_buffer *old_buff) -{ - struct igb_rx_buffer *new_buff; - u16 nta = rx_ring->next_to_alloc; - - new_buff = &rx_ring->rx_buffer_info[nta]; - - /* update, and store next to alloc */ - nta++; - rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; - - /* transfer page from old buffer to new buffer */ - memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer)); - - /* sync the buffer for use by the device */ - dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, - old_buff->page_offset, - IGB_RX_BUFSZ, - DMA_FROM_DEVICE); -} - -static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer, - struct page *page, - unsigned int truesize) -{ - /* avoid re-using remote pages */ - if (unlikely(page_to_nid(page) != numa_node_id())) - return false; - -#if (PAGE_SIZE < 8192) - /* if we are only owner of page we can reuse it */ - if (unlikely(page_count(page) != 1)) - return false; - - /* flip page offset to other buffer */ - rx_buffer->page_offset ^= IGB_RX_BUFSZ; - -#else - /* move offset up to the next cache line */ - rx_buffer->page_offset += truesize; - - if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ)) - return false; -#endif - - /* bump ref count on page before it is given to the stack */ - get_page(page); - - return true; -} - -/** - * igb_add_rx_frag - Add contents of Rx buffer to sk_buff - * @rx_ring: rx descriptor ring to transact packets on - * @rx_buffer: buffer containing page to add - * @rx_desc: descriptor containing length of buffer written by hardware - * @skb: sk_buff to place the data into - * - * This function will add the data contained in rx_buffer->page to the skb. - * This is done either through a direct copy if the data in the buffer is - * less than the skb header size, otherwise it will just attach the page as - * a frag to the skb. - * - * The function will then update the page offset if necessary and return - * true if the buffer can be reused by the adapter. - **/ -static bool igb_add_rx_frag(struct igb_ring *rx_ring, - struct igb_rx_buffer *rx_buffer, - union e1000_adv_rx_desc *rx_desc, - struct sk_buff *skb) -{ - struct page *page = rx_buffer->page; - unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); -#if (PAGE_SIZE < 8192) - unsigned int truesize = IGB_RX_BUFSZ; -#else - unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); -#endif - - if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) { - unsigned char *va = page_address(page) + rx_buffer->page_offset; - -#ifdef HAVE_PTP_1588_CLOCK - if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { - igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); - va += IGB_TS_HDR_LEN; - size -= IGB_TS_HDR_LEN; - } -#endif /* HAVE_PTP_1588_CLOCK */ - - memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); - - /* we can reuse buffer as-is, just make sure it is local */ - if (likely(page_to_nid(page) == numa_node_id())) - return true; - - /* this page cannot be reused so discard it */ - put_page(page); - return false; - } - - skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, - rx_buffer->page_offset, size, truesize); - - return igb_can_reuse_rx_page(rx_buffer, page, truesize); -} - -static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring, - union e1000_adv_rx_desc *rx_desc, - struct sk_buff *skb) -{ - struct igb_rx_buffer *rx_buffer; - struct page *page; - - rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; - - page = rx_buffer->page; - prefetchw(page); - - if (likely(!skb)) { - void *page_addr = page_address(page) + - rx_buffer->page_offset; - - /* prefetch first cache line of first page */ - prefetch(page_addr); -#if L1_CACHE_BYTES < 128 - prefetch(page_addr + L1_CACHE_BYTES); -#endif - - /* allocate a skb to store the frags */ - skb = netdev_alloc_skb_ip_align(rx_ring->netdev, - IGB_RX_HDR_LEN); - if (unlikely(!skb)) { - rx_ring->rx_stats.alloc_failed++; - return NULL; - } - - /* - * we will be copying header into skb->data in - * pskb_may_pull so it is in our interest to prefetch - * it now to avoid a possible cache miss - */ - prefetchw(skb->data); - } - - /* we are reusing so sync this buffer for CPU use */ - dma_sync_single_range_for_cpu(rx_ring->dev, - rx_buffer->dma, - rx_buffer->page_offset, - IGB_RX_BUFSZ, - DMA_FROM_DEVICE); - - /* pull page into skb */ - if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) { - /* hand second half of page back to the ring */ - igb_reuse_rx_page(rx_ring, rx_buffer); - } else { - /* we are not reusing the buffer so unmap it */ - dma_unmap_page(rx_ring->dev, rx_buffer->dma, - PAGE_SIZE, DMA_FROM_DEVICE); - } - - /* clear contents of rx_buffer */ - rx_buffer->page = NULL; - - return skb; -} - -#endif -static inline void igb_rx_checksum(struct igb_ring *ring, - union e1000_adv_rx_desc *rx_desc, - struct sk_buff *skb) -{ - skb_checksum_none_assert(skb); - - /* Ignore Checksum bit is set */ - if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM)) - return; - - /* Rx checksum disabled via ethtool */ - if (!(netdev_ring(ring)->features & NETIF_F_RXCSUM)) - return; - - /* TCP/UDP checksum error bit is set */ - if (igb_test_staterr(rx_desc, - E1000_RXDEXT_STATERR_TCPE | - E1000_RXDEXT_STATERR_IPE)) { - /* - * work around errata with sctp packets where the TCPE aka - * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) - * packets, (aka let the stack check the crc32c) - */ - if (!((skb->len == 60) && - test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) - ring->rx_stats.csum_err++; - - /* let the stack verify checksum errors */ - return; - } - /* It must be a TCP or UDP packet with a valid checksum */ - if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS | - E1000_RXD_STAT_UDPCS)) - skb->ip_summed = CHECKSUM_UNNECESSARY; -} - -#ifdef NETIF_F_RXHASH -static inline void igb_rx_hash(struct igb_ring *ring, - union e1000_adv_rx_desc *rx_desc, - struct sk_buff *skb) -{ - if (netdev_ring(ring)->features & NETIF_F_RXHASH) - skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), - PKT_HASH_TYPE_L3); -} - -#endif -#ifndef IGB_NO_LRO -#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT -/** - * igb_merge_active_tail - merge active tail into lro skb - * @tail: pointer to active tail in frag_list - * - * This function merges the length and data of an active tail into the - * skb containing the frag_list. It resets the tail's pointer to the head, - * but it leaves the heads pointer to tail intact. - **/ -static inline struct sk_buff *igb_merge_active_tail(struct sk_buff *tail) -{ - struct sk_buff *head = IGB_CB(tail)->head; - - if (!head) - return tail; - - head->len += tail->len; - head->data_len += tail->len; - head->truesize += tail->len; - - IGB_CB(tail)->head = NULL; - - return head; -} - -/** - * igb_add_active_tail - adds an active tail into the skb frag_list - * @head: pointer to the start of the skb - * @tail: pointer to active tail to add to frag_list - * - * This function adds an active tail to the end of the frag list. This tail - * will still be receiving data so we cannot yet ad it's stats to the main - * skb. That is done via igb_merge_active_tail. - **/ -static inline void igb_add_active_tail(struct sk_buff *head, struct sk_buff *tail) -{ - struct sk_buff *old_tail = IGB_CB(head)->tail; - - if (old_tail) { - igb_merge_active_tail(old_tail); - old_tail->next = tail; - } else { - skb_shinfo(head)->frag_list = tail; - } - - IGB_CB(tail)->head = head; - IGB_CB(head)->tail = tail; - - IGB_CB(head)->append_cnt++; -} - -/** - * igb_close_active_frag_list - cleanup pointers on a frag_list skb - * @head: pointer to head of an active frag list - * - * This function will clear the frag_tail_tracker pointer on an active - * frag_list and returns true if the pointer was actually set - **/ -static inline bool igb_close_active_frag_list(struct sk_buff *head) -{ - struct sk_buff *tail = IGB_CB(head)->tail; - - if (!tail) - return false; - - igb_merge_active_tail(tail); - - IGB_CB(head)->tail = NULL; - - return true; -} - -#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */ -/** - * igb_can_lro - returns true if packet is TCP/IPV4 and LRO is enabled - * @adapter: board private structure - * @rx_desc: pointer to the rx descriptor - * @skb: pointer to the skb to be merged - * - **/ -static inline bool igb_can_lro(struct igb_ring *rx_ring, - union e1000_adv_rx_desc *rx_desc, - struct sk_buff *skb) -{ - struct iphdr *iph = (struct iphdr *)skb->data; - __le16 pkt_info = rx_desc->wb.lower.lo_dword.hs_rss.pkt_info; - - /* verify hardware indicates this is IPv4/TCP */ - if((!(pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_TCP)) || - !(pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV4)))) - return false; - - /* .. and LRO is enabled */ - if (!(netdev_ring(rx_ring)->features & NETIF_F_LRO)) - return false; - - /* .. and we are not in promiscuous mode */ - if (netdev_ring(rx_ring)->flags & IFF_PROMISC) - return false; - - /* .. and the header is large enough for us to read IP/TCP fields */ - if (!pskb_may_pull(skb, sizeof(struct igb_lrohdr))) - return false; - - /* .. and there are no VLANs on packet */ - if (skb->protocol != __constant_htons(ETH_P_IP)) - return false; - - /* .. and we are version 4 with no options */ - if (*(u8 *)iph != 0x45) - return false; - - /* .. and the packet is not fragmented */ - if (iph->frag_off & htons(IP_MF | IP_OFFSET)) - return false; - - /* .. and that next header is TCP */ - if (iph->protocol != IPPROTO_TCP) - return false; - - return true; -} - -static inline struct igb_lrohdr *igb_lro_hdr(struct sk_buff *skb) -{ - return (struct igb_lrohdr *)skb->data; -} - -/** - * igb_lro_flush - Indicate packets to upper layer. - * - * Update IP and TCP header part of head skb if more than one - * skb's chained and indicate packets to upper layer. - **/ -static void igb_lro_flush(struct igb_q_vector *q_vector, - struct sk_buff *skb) -{ - struct igb_lro_list *lrolist = &q_vector->lrolist; - - __skb_unlink(skb, &lrolist->active); - - if (IGB_CB(skb)->append_cnt) { - struct igb_lrohdr *lroh = igb_lro_hdr(skb); - -#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT - /* close any active lro contexts */ - igb_close_active_frag_list(skb); - -#endif - /* incorporate ip header and re-calculate checksum */ - lroh->iph.tot_len = ntohs(skb->len); - lroh->iph.check = 0; - - /* header length is 5 since we know no options exist */ - lroh->iph.check = ip_fast_csum((u8 *)lroh, 5); - - /* clear TCP checksum to indicate we are an LRO frame */ - lroh->th.check = 0; - - /* incorporate latest timestamp into the tcp header */ - if (IGB_CB(skb)->tsecr) { - lroh->ts[2] = IGB_CB(skb)->tsecr; - lroh->ts[1] = htonl(IGB_CB(skb)->tsval); - } -#ifdef NETIF_F_GSO - - skb_shinfo(skb)->gso_size = IGB_CB(skb)->mss; - skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; -#endif - } - -#ifdef HAVE_VLAN_RX_REGISTER - igb_receive_skb(q_vector, skb); -#else - napi_gro_receive(&q_vector->napi, skb); -#endif - lrolist->stats.flushed++; -} - -static void igb_lro_flush_all(struct igb_q_vector *q_vector) -{ - struct igb_lro_list *lrolist = &q_vector->lrolist; - struct sk_buff *skb, *tmp; - - skb_queue_reverse_walk_safe(&lrolist->active, skb, tmp) - igb_lro_flush(q_vector, skb); -} - -/* - * igb_lro_header_ok - Main LRO function. - **/ -static void igb_lro_header_ok(struct sk_buff *skb) -{ - struct igb_lrohdr *lroh = igb_lro_hdr(skb); - u16 opt_bytes, data_len; - -#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT - IGB_CB(skb)->tail = NULL; -#endif - IGB_CB(skb)->tsecr = 0; - IGB_CB(skb)->append_cnt = 0; - IGB_CB(skb)->mss = 0; - - /* ensure that the checksum is valid */ - if (skb->ip_summed != CHECKSUM_UNNECESSARY) - return; - - /* If we see CE codepoint in IP header, packet is not mergeable */ - if (INET_ECN_is_ce(ipv4_get_dsfield(&lroh->iph))) - return; - - /* ensure no bits set besides ack or psh */ - if (lroh->th.fin || lroh->th.syn || lroh->th.rst || - lroh->th.urg || lroh->th.ece || lroh->th.cwr || - !lroh->th.ack) - return; - - /* store the total packet length */ - data_len = ntohs(lroh->iph.tot_len); - - /* remove any padding from the end of the skb */ - __pskb_trim(skb, data_len); - - /* remove header length from data length */ - data_len -= sizeof(struct igb_lrohdr); - - /* - * check for timestamps. Since the only option we handle are timestamps, - * we only have to handle the simple case of aligned timestamps - */ - opt_bytes = (lroh->th.doff << 2) - sizeof(struct tcphdr); - if (opt_bytes != 0) { - if ((opt_bytes != TCPOLEN_TSTAMP_ALIGNED) || - !pskb_may_pull(skb, sizeof(struct igb_lrohdr) + - TCPOLEN_TSTAMP_ALIGNED) || - (lroh->ts[0] != htonl((TCPOPT_NOP << 24) | - (TCPOPT_NOP << 16) | - (TCPOPT_TIMESTAMP << 8) | - TCPOLEN_TIMESTAMP)) || - (lroh->ts[2] == 0)) { - return; - } - - IGB_CB(skb)->tsval = ntohl(lroh->ts[1]); - IGB_CB(skb)->tsecr = lroh->ts[2]; - - data_len -= TCPOLEN_TSTAMP_ALIGNED; - } - - /* record data_len as mss for the packet */ - IGB_CB(skb)->mss = data_len; - IGB_CB(skb)->next_seq = ntohl(lroh->th.seq); -} - -#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT -static void igb_merge_frags(struct sk_buff *lro_skb, struct sk_buff *new_skb) -{ - struct skb_shared_info *sh_info; - struct skb_shared_info *new_skb_info; - unsigned int data_len; - - sh_info = skb_shinfo(lro_skb); - new_skb_info = skb_shinfo(new_skb); - - /* copy frags into the last skb */ - memcpy(sh_info->frags + sh_info->nr_frags, - new_skb_info->frags, - new_skb_info->nr_frags * sizeof(skb_frag_t)); - - /* copy size data over */ - sh_info->nr_frags += new_skb_info->nr_frags; - data_len = IGB_CB(new_skb)->mss; - lro_skb->len += data_len; - lro_skb->data_len += data_len; - lro_skb->truesize += data_len; - - /* wipe record of data from new_skb */ - new_skb_info->nr_frags = 0; - new_skb->len = new_skb->data_len = 0; - dev_kfree_skb_any(new_skb); -} - -#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */ -/** - * igb_lro_receive - if able, queue skb into lro chain - * @q_vector: structure containing interrupt and ring information - * @new_skb: pointer to current skb being checked - * - * Checks whether the skb given is eligible for LRO and if that's - * fine chains it to the existing lro_skb based on flowid. If an LRO for - * the flow doesn't exist create one. - **/ -static void igb_lro_receive(struct igb_q_vector *q_vector, - struct sk_buff *new_skb) -{ - struct sk_buff *lro_skb; - struct igb_lro_list *lrolist = &q_vector->lrolist; - struct igb_lrohdr *lroh = igb_lro_hdr(new_skb); - __be32 saddr = lroh->iph.saddr; - __be32 daddr = lroh->iph.daddr; - __be32 tcp_ports = *(__be32 *)&lroh->th; - u16 data_len; -#ifdef HAVE_VLAN_RX_REGISTER - u16 vid = IGB_CB(new_skb)->vid; -#else - u16 vid = new_skb->vlan_tci; -#endif - - igb_lro_header_ok(new_skb); - - /* - * we have a packet that might be eligible for LRO, - * so see if it matches anything we might expect - */ - skb_queue_walk(&lrolist->active, lro_skb) { - if (*(__be32 *)&igb_lro_hdr(lro_skb)->th != tcp_ports || - igb_lro_hdr(lro_skb)->iph.saddr != saddr || - igb_lro_hdr(lro_skb)->iph.daddr != daddr) - continue; - -#ifdef HAVE_VLAN_RX_REGISTER - if (IGB_CB(lro_skb)->vid != vid) -#else - if (lro_skb->vlan_tci != vid) -#endif - continue; - - /* out of order packet */ - if (IGB_CB(lro_skb)->next_seq != IGB_CB(new_skb)->next_seq) { - igb_lro_flush(q_vector, lro_skb); - IGB_CB(new_skb)->mss = 0; - break; - } - - /* TCP timestamp options have changed */ - if (!IGB_CB(lro_skb)->tsecr != !IGB_CB(new_skb)->tsecr) { - igb_lro_flush(q_vector, lro_skb); - break; - } - - /* make sure timestamp values are increasing */ - if (IGB_CB(lro_skb)->tsecr && - IGB_CB(lro_skb)->tsval > IGB_CB(new_skb)->tsval) { - igb_lro_flush(q_vector, lro_skb); - IGB_CB(new_skb)->mss = 0; - break; - } - - data_len = IGB_CB(new_skb)->mss; - - /* Check for all of the above below - * malformed header - * no tcp data - * resultant packet would be too large - * new skb is larger than our current mss - * data would remain in header - * we would consume more frags then the sk_buff contains - * ack sequence numbers changed - * window size has changed - */ - if (data_len == 0 || - data_len > IGB_CB(lro_skb)->mss || - data_len > IGB_CB(lro_skb)->free || -#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT - data_len != new_skb->data_len || - skb_shinfo(new_skb)->nr_frags >= - (MAX_SKB_FRAGS - skb_shinfo(lro_skb)->nr_frags) || -#endif - igb_lro_hdr(lro_skb)->th.ack_seq != lroh->th.ack_seq || - igb_lro_hdr(lro_skb)->th.window != lroh->th.window) { - igb_lro_flush(q_vector, lro_skb); - break; - } - - /* Remove IP and TCP header*/ - skb_pull(new_skb, new_skb->len - data_len); - - /* update timestamp and timestamp echo response */ - IGB_CB(lro_skb)->tsval = IGB_CB(new_skb)->tsval; - IGB_CB(lro_skb)->tsecr = IGB_CB(new_skb)->tsecr; - - /* update sequence and free space */ - IGB_CB(lro_skb)->next_seq += data_len; - IGB_CB(lro_skb)->free -= data_len; - - /* update append_cnt */ - IGB_CB(lro_skb)->append_cnt++; - -#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT - /* if header is empty pull pages into current skb */ - igb_merge_frags(lro_skb, new_skb); -#else - /* chain this new skb in frag_list */ - igb_add_active_tail(lro_skb, new_skb); -#endif - - if ((data_len < IGB_CB(lro_skb)->mss) || lroh->th.psh || - skb_shinfo(lro_skb)->nr_frags == MAX_SKB_FRAGS) { - igb_lro_hdr(lro_skb)->th.psh |= lroh->th.psh; - igb_lro_flush(q_vector, lro_skb); - } - - lrolist->stats.coal++; - return; - } - - if (IGB_CB(new_skb)->mss && !lroh->th.psh) { - /* if we are at capacity flush the tail */ - if (skb_queue_len(&lrolist->active) >= IGB_LRO_MAX) { - lro_skb = skb_peek_tail(&lrolist->active); - if (lro_skb) - igb_lro_flush(q_vector, lro_skb); - } - - /* update sequence and free space */ - IGB_CB(new_skb)->next_seq += IGB_CB(new_skb)->mss; - IGB_CB(new_skb)->free = 65521 - new_skb->len; - - /* .. and insert at the front of the active list */ - __skb_queue_head(&lrolist->active, new_skb); - - lrolist->stats.coal++; - return; - } - - /* packet not handled by any of the above, pass it to the stack */ -#ifdef HAVE_VLAN_RX_REGISTER - igb_receive_skb(q_vector, new_skb); -#else - napi_gro_receive(&q_vector->napi, new_skb); -#endif -} - -#endif /* IGB_NO_LRO */ -/** - * igb_process_skb_fields - Populate skb header fields from Rx descriptor - * @rx_ring: rx descriptor ring packet is being transacted on - * @rx_desc: pointer to the EOP Rx descriptor - * @skb: pointer to current skb being populated - * - * This function checks the ring, descriptor, and packet information in - * order to populate the hash, checksum, VLAN, timestamp, protocol, and - * other fields within the skb. - **/ -static void igb_process_skb_fields(struct igb_ring *rx_ring, - union e1000_adv_rx_desc *rx_desc, - struct sk_buff *skb) -{ - struct net_device *dev = rx_ring->netdev; - __le16 pkt_info = rx_desc->wb.lower.lo_dword.hs_rss.pkt_info; - -#ifdef NETIF_F_RXHASH - igb_rx_hash(rx_ring, rx_desc, skb); - -#endif - igb_rx_checksum(rx_ring, rx_desc, skb); - - /* update packet type stats */ - if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV4)) - rx_ring->rx_stats.ipv4_packets++; - else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV4_EX)) - rx_ring->rx_stats.ipv4e_packets++; - else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV6)) - rx_ring->rx_stats.ipv6_packets++; - else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_IPV6_EX)) - rx_ring->rx_stats.ipv6e_packets++; - else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_TCP)) - rx_ring->rx_stats.tcp_packets++; - else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_UDP)) - rx_ring->rx_stats.udp_packets++; - else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_SCTP)) - rx_ring->rx_stats.sctp_packets++; - else if (pkt_info & cpu_to_le16(E1000_RXDADV_PKTTYPE_NFS)) - rx_ring->rx_stats.nfs_packets++; - -#ifdef HAVE_PTP_1588_CLOCK - igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb); -#endif /* HAVE_PTP_1588_CLOCK */ - -#ifdef NETIF_F_HW_VLAN_CTAG_RX - if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && -#else - if ((dev->features & NETIF_F_HW_VLAN_RX) && -#endif - igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) { - u16 vid = 0; - if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) && - test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) - vid = be16_to_cpu(rx_desc->wb.upper.vlan); - else - vid = le16_to_cpu(rx_desc->wb.upper.vlan); -#ifdef HAVE_VLAN_RX_REGISTER - IGB_CB(skb)->vid = vid; - } else { - IGB_CB(skb)->vid = 0; -#else - -#ifdef HAVE_VLAN_PROTOCOL - __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); -#else - __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); -#endif - - -#endif - } - - skb_record_rx_queue(skb, rx_ring->queue_index); - - skb->protocol = eth_type_trans(skb, dev); -} - -/** - * igb_is_non_eop - process handling of non-EOP buffers - * @rx_ring: Rx ring being processed - * @rx_desc: Rx descriptor for current buffer - * - * This function updates next to clean. If the buffer is an EOP buffer - * this function exits returning false, otherwise it will place the - * sk_buff in the next buffer to be chained and return true indicating - * that this is in fact a non-EOP buffer. - **/ -static bool igb_is_non_eop(struct igb_ring *rx_ring, - union e1000_adv_rx_desc *rx_desc) -{ - u32 ntc = rx_ring->next_to_clean + 1; - - /* fetch, update, and store next to clean */ - ntc = (ntc < rx_ring->count) ? ntc : 0; - rx_ring->next_to_clean = ntc; - - prefetch(IGB_RX_DESC(rx_ring, ntc)); - - if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP))) - return false; - - return true; -} - -#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT -/* igb_clean_rx_irq -- * legacy */ -static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget) -{ - struct igb_ring *rx_ring = q_vector->rx.ring; - unsigned int total_bytes = 0, total_packets = 0; - u16 cleaned_count = igb_desc_unused(rx_ring); - - do { - struct igb_rx_buffer *rx_buffer; - union e1000_adv_rx_desc *rx_desc; - struct sk_buff *skb; - u16 ntc; - - /* return some buffers to hardware, one at a time is too slow */ - if (cleaned_count >= IGB_RX_BUFFER_WRITE) { - igb_alloc_rx_buffers(rx_ring, cleaned_count); - cleaned_count = 0; - } - - ntc = rx_ring->next_to_clean; - rx_desc = IGB_RX_DESC(rx_ring, ntc); - rx_buffer = &rx_ring->rx_buffer_info[ntc]; - - if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) - break; - - /* - * This memory barrier is needed to keep us from reading - * any other fields out of the rx_desc until we know the - * RXD_STAT_DD bit is set - */ - rmb(); - - skb = rx_buffer->skb; - - prefetch(skb->data); - - /* pull the header of the skb in */ - __skb_put(skb, le16_to_cpu(rx_desc->wb.upper.length)); - - /* clear skb reference in buffer info structure */ - rx_buffer->skb = NULL; - - cleaned_count++; - - BUG_ON(igb_is_non_eop(rx_ring, rx_desc)); - - dma_unmap_single(rx_ring->dev, rx_buffer->dma, - rx_ring->rx_buffer_len, - DMA_FROM_DEVICE); - rx_buffer->dma = 0; - - if (igb_test_staterr(rx_desc, - E1000_RXDEXT_ERR_FRAME_ERR_MASK)) { - dev_kfree_skb_any(skb); - continue; - } - - total_bytes += skb->len; - - /* populate checksum, timestamp, VLAN, and protocol */ - igb_process_skb_fields(rx_ring, rx_desc, skb); - -#ifndef IGB_NO_LRO - if (igb_can_lro(rx_ring, rx_desc, skb)) - igb_lro_receive(q_vector, skb); - else -#endif -#ifdef HAVE_VLAN_RX_REGISTER - igb_receive_skb(q_vector, skb); -#else - napi_gro_receive(&q_vector->napi, skb); -#endif - -#ifndef NETIF_F_GRO - netdev_ring(rx_ring)->last_rx = jiffies; - -#endif - /* update budget accounting */ - total_packets++; - } while (likely(total_packets < budget)); - - rx_ring->rx_stats.packets += total_packets; - rx_ring->rx_stats.bytes += total_bytes; - q_vector->rx.total_packets += total_packets; - q_vector->rx.total_bytes += total_bytes; - - if (cleaned_count) - igb_alloc_rx_buffers(rx_ring, cleaned_count); - -#ifndef IGB_NO_LRO - igb_lro_flush_all(q_vector); - -#endif /* IGB_NO_LRO */ - return total_packets < budget; -} -#else /* CONFIG_IGB_DISABLE_PACKET_SPLIT */ -/** - * igb_get_headlen - determine size of header for LRO/GRO - * @data: pointer to the start of the headers - * @max_len: total length of section to find headers in - * - * This function is meant to determine the length of headers that will - * be recognized by hardware for LRO, and GRO offloads. The main - * motivation of doing this is to only perform one pull for IPv4 TCP - * packets so that we can do basic things like calculating the gso_size - * based on the average data per packet. - **/ -static unsigned int igb_get_headlen(unsigned char *data, - unsigned int max_len) -{ - union { - unsigned char *network; - /* l2 headers */ - struct ethhdr *eth; - struct vlan_hdr *vlan; - /* l3 headers */ - struct iphdr *ipv4; - struct ipv6hdr *ipv6; - } hdr; - __be16 protocol; - u8 nexthdr = 0; /* default to not TCP */ - u8 hlen; - - /* this should never happen, but better safe than sorry */ - if (max_len < ETH_HLEN) - return max_len; - - /* initialize network frame pointer */ - hdr.network = data; - - /* set first protocol and move network header forward */ - protocol = hdr.eth->h_proto; - hdr.network += ETH_HLEN; - - /* handle any vlan tag if present */ - if (protocol == __constant_htons(ETH_P_8021Q)) { - if ((hdr.network - data) > (max_len - VLAN_HLEN)) - return max_len; - - protocol = hdr.vlan->h_vlan_encapsulated_proto; - hdr.network += VLAN_HLEN; - } - - /* handle L3 protocols */ - if (protocol == __constant_htons(ETH_P_IP)) { - if ((hdr.network - data) > (max_len - sizeof(struct iphdr))) - return max_len; - - /* access ihl as a u8 to avoid unaligned access on ia64 */ - hlen = (hdr.network[0] & 0x0F) << 2; - - /* verify hlen meets minimum size requirements */ - if (hlen < sizeof(struct iphdr)) - return hdr.network - data; - - /* record next protocol if header is present */ - if (!(hdr.ipv4->frag_off & htons(IP_OFFSET))) - nexthdr = hdr.ipv4->protocol; -#ifdef NETIF_F_TSO6 - } else if (protocol == __constant_htons(ETH_P_IPV6)) { - if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr))) - return max_len; - - /* record next protocol */ - nexthdr = hdr.ipv6->nexthdr; - hlen = sizeof(struct ipv6hdr); -#endif /* NETIF_F_TSO6 */ - } else { - return hdr.network - data; - } - - /* relocate pointer to start of L4 header */ - hdr.network += hlen; - - /* finally sort out TCP */ - if (nexthdr == IPPROTO_TCP) { - if ((hdr.network - data) > (max_len - sizeof(struct tcphdr))) - return max_len; - - /* access doff as a u8 to avoid unaligned access on ia64 */ - hlen = (hdr.network[12] & 0xF0) >> 2; - - /* verify hlen meets minimum size requirements */ - if (hlen < sizeof(struct tcphdr)) - return hdr.network - data; - - hdr.network += hlen; - } else if (nexthdr == IPPROTO_UDP) { - if ((hdr.network - data) > (max_len - sizeof(struct udphdr))) - return max_len; - - hdr.network += sizeof(struct udphdr); - } - - /* - * If everything has gone correctly hdr.network should be the - * data section of the packet and will be the end of the header. - * If not then it probably represents the end of the last recognized - * header. - */ - if ((hdr.network - data) < max_len) - return hdr.network - data; - else - return max_len; -} - -/** - * igb_pull_tail - igb specific version of skb_pull_tail - * @rx_ring: rx descriptor ring packet is being transacted on - * @rx_desc: pointer to the EOP Rx descriptor - * @skb: pointer to current skb being adjusted - * - * This function is an igb specific version of __pskb_pull_tail. The - * main difference between this version and the original function is that - * this function can make several assumptions about the state of things - * that allow for significant optimizations versus the standard function. - * As a result we can do things like drop a frag and maintain an accurate - * truesize for the skb. - */ -static void igb_pull_tail(struct igb_ring *rx_ring, - union e1000_adv_rx_desc *rx_desc, - struct sk_buff *skb) -{ - struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; - unsigned char *va; - unsigned int pull_len; - - /* - * it is valid to use page_address instead of kmap since we are - * working with pages allocated out of the lomem pool per - * alloc_page(GFP_ATOMIC) - */ - va = skb_frag_address(frag); - -#ifdef HAVE_PTP_1588_CLOCK - if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { - /* retrieve timestamp from buffer */ - igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); - - /* update pointers to remove timestamp header */ - skb_frag_size_sub(frag, IGB_TS_HDR_LEN); - frag->page_offset += IGB_TS_HDR_LEN; - skb->data_len -= IGB_TS_HDR_LEN; - skb->len -= IGB_TS_HDR_LEN; - - /* move va to start of packet data */ - va += IGB_TS_HDR_LEN; - } -#endif /* HAVE_PTP_1588_CLOCK */ - - /* - * we need the header to contain the greater of either ETH_HLEN or - * 60 bytes if the skb->len is less than 60 for skb_pad. - */ - pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN); - - /* align pull length to size of long to optimize memcpy performance */ - skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); - - /* update all of the pointers */ - skb_frag_size_sub(frag, pull_len); - frag->page_offset += pull_len; - skb->data_len -= pull_len; - skb->tail += pull_len; -} - -/** - * igb_cleanup_headers - Correct corrupted or empty headers - * @rx_ring: rx descriptor ring packet is being transacted on - * @rx_desc: pointer to the EOP Rx descriptor - * @skb: pointer to current skb being fixed - * - * Address the case where we are pulling data in on pages only - * and as such no data is present in the skb header. - * - * In addition if skb is not at least 60 bytes we need to pad it so that - * it is large enough to qualify as a valid Ethernet frame. - * - * Returns true if an error was encountered and skb was freed. - **/ -static bool igb_cleanup_headers(struct igb_ring *rx_ring, - union e1000_adv_rx_desc *rx_desc, - struct sk_buff *skb) -{ - - if (unlikely((igb_test_staterr(rx_desc, - E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) { - struct net_device *netdev = rx_ring->netdev; - if (!(netdev->features & NETIF_F_RXALL)) { - dev_kfree_skb_any(skb); - return true; - } - } - - /* place header in linear portion of buffer */ - if (skb_is_nonlinear(skb)) - igb_pull_tail(rx_ring, rx_desc, skb); - - /* if skb_pad returns an error the skb was freed */ - if (unlikely(skb->len < 60)) { - int pad_len = 60 - skb->len; - - if (skb_pad(skb, pad_len)) - return true; - __skb_put(skb, pad_len); - } - - return false; -} - -/* igb_clean_rx_irq -- * packet split */ -static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget) -{ - struct igb_ring *rx_ring = q_vector->rx.ring; - struct sk_buff *skb = rx_ring->skb; - unsigned int total_bytes = 0, total_packets = 0; - u16 cleaned_count = igb_desc_unused(rx_ring); - - do { - union e1000_adv_rx_desc *rx_desc; - - /* return some buffers to hardware, one at a time is too slow */ - if (cleaned_count >= IGB_RX_BUFFER_WRITE) { - igb_alloc_rx_buffers(rx_ring, cleaned_count); - cleaned_count = 0; - } - - rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean); - - if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) - break; - - /* - * This memory barrier is needed to keep us from reading - * any other fields out of the rx_desc until we know the - * RXD_STAT_DD bit is set - */ - rmb(); - - /* retrieve a buffer from the ring */ - skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb); - - /* exit if we failed to retrieve a buffer */ - if (!skb) - break; - - cleaned_count++; - - /* fetch next buffer in frame if non-eop */ - if (igb_is_non_eop(rx_ring, rx_desc)) - continue; - - /* verify the packet layout is correct */ - if (igb_cleanup_headers(rx_ring, rx_desc, skb)) { - skb = NULL; - continue; - } - - /* probably a little skewed due to removing CRC */ - total_bytes += skb->len; - - /* populate checksum, timestamp, VLAN, and protocol */ - igb_process_skb_fields(rx_ring, rx_desc, skb); - -#ifndef IGB_NO_LRO - if (igb_can_lro(rx_ring, rx_desc, skb)) - igb_lro_receive(q_vector, skb); - else -#endif -#ifdef HAVE_VLAN_RX_REGISTER - igb_receive_skb(q_vector, skb); -#else - napi_gro_receive(&q_vector->napi, skb); -#endif -#ifndef NETIF_F_GRO - - netdev_ring(rx_ring)->last_rx = jiffies; -#endif - - /* reset skb pointer */ - skb = NULL; - - /* update budget accounting */ - total_packets++; - } while (likely(total_packets < budget)); - - /* place incomplete frames back on ring for completion */ - rx_ring->skb = skb; - - rx_ring->rx_stats.packets += total_packets; - rx_ring->rx_stats.bytes += total_bytes; - q_vector->rx.total_packets += total_packets; - q_vector->rx.total_bytes += total_bytes; - - if (cleaned_count) - igb_alloc_rx_buffers(rx_ring, cleaned_count); - -#ifndef IGB_NO_LRO - igb_lro_flush_all(q_vector); - -#endif /* IGB_NO_LRO */ - return total_packets < budget; -} -#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */ - -#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT -static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring, - struct igb_rx_buffer *bi) -{ - struct sk_buff *skb = bi->skb; - dma_addr_t dma = bi->dma; - - if (dma) - return true; - - if (likely(!skb)) { - skb = netdev_alloc_skb_ip_align(netdev_ring(rx_ring), - rx_ring->rx_buffer_len); - bi->skb = skb; - if (!skb) { - rx_ring->rx_stats.alloc_failed++; - return false; - } - - /* initialize skb for ring */ - skb_record_rx_queue(skb, ring_queue_index(rx_ring)); - } - - dma = dma_map_single(rx_ring->dev, skb->data, - rx_ring->rx_buffer_len, DMA_FROM_DEVICE); - - /* if mapping failed free memory back to system since - * there isn't much point in holding memory we can't use - */ - if (dma_mapping_error(rx_ring->dev, dma)) { - dev_kfree_skb_any(skb); - bi->skb = NULL; - - rx_ring->rx_stats.alloc_failed++; - return false; - } - - bi->dma = dma; - return true; -} - -#else /* CONFIG_IGB_DISABLE_PACKET_SPLIT */ -static bool igb_alloc_mapped_page(struct igb_ring *rx_ring, - struct igb_rx_buffer *bi) -{ - struct page *page = bi->page; - dma_addr_t dma; - - /* since we are recycling buffers we should seldom need to alloc */ - if (likely(page)) - return true; - - /* alloc new page for storage */ - page = alloc_page(GFP_ATOMIC | __GFP_COLD); - if (unlikely(!page)) { - rx_ring->rx_stats.alloc_failed++; - return false; - } - - /* map page for use */ - dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); - - /* - * if mapping failed free memory back to system since - * there isn't much point in holding memory we can't use - */ - if (dma_mapping_error(rx_ring->dev, dma)) { - __free_page(page); - - rx_ring->rx_stats.alloc_failed++; - return false; - } - - bi->dma = dma; - bi->page = page; - bi->page_offset = 0; - - return true; -} - -#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */ -/** - * igb_alloc_rx_buffers - Replace used receive buffers; packet split - * @adapter: address of board private structure - **/ -void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count) -{ - union e1000_adv_rx_desc *rx_desc; - struct igb_rx_buffer *bi; - u16 i = rx_ring->next_to_use; - - /* nothing to do */ - if (!cleaned_count) - return; - - rx_desc = IGB_RX_DESC(rx_ring, i); - bi = &rx_ring->rx_buffer_info[i]; - i -= rx_ring->count; - - do { -#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT - if (!igb_alloc_mapped_skb(rx_ring, bi)) -#else - if (!igb_alloc_mapped_page(rx_ring, bi)) -#endif /* CONFIG_IGB_DISABLE_PACKET_SPLIT */ - break; - - /* - * Refresh the desc even if buffer_addrs didn't change - * because each write-back erases this info. - */ -#ifdef CONFIG_IGB_DISABLE_PACKET_SPLIT - rx_desc->read.pkt_addr = cpu_to_le64(bi->dma); -#else - rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); -#endif - - rx_desc++; - bi++; - i++; - if (unlikely(!i)) { - rx_desc = IGB_RX_DESC(rx_ring, 0); - bi = rx_ring->rx_buffer_info; - i -= rx_ring->count; - } - - /* clear the hdr_addr for the next_to_use descriptor */ - rx_desc->read.hdr_addr = 0; - - cleaned_count--; - } while (cleaned_count); - - i += rx_ring->count; - - if (rx_ring->next_to_use != i) { - /* record the next descriptor to use */ - rx_ring->next_to_use = i; - -#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT - /* update next to alloc since we have filled the ring */ - rx_ring->next_to_alloc = i; - -#endif - /* - * Force memory writes to complete before letting h/w - * know there are new descriptors to fetch. (Only - * applicable for weak-ordered memory model archs, - * such as IA-64). - */ - wmb(); - writel(i, rx_ring->tail); - } -} - -#ifdef SIOCGMIIPHY -/** - * igb_mii_ioctl - - * @netdev: - * @ifreq: - * @cmd: - **/ -static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct mii_ioctl_data *data = if_mii(ifr); - - if (adapter->hw.phy.media_type != e1000_media_type_copper) - return -EOPNOTSUPP; - - switch (cmd) { - case SIOCGMIIPHY: - data->phy_id = adapter->hw.phy.addr; - break; - case SIOCGMIIREG: - if (!capable(CAP_NET_ADMIN)) - return -EPERM; - if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, - &data->val_out)) - return -EIO; - break; - case SIOCSMIIREG: - default: - return -EOPNOTSUPP; - } - return E1000_SUCCESS; -} - -#endif -/** - * igb_ioctl - - * @netdev: - * @ifreq: - * @cmd: - **/ -static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) -{ - switch (cmd) { -#ifdef SIOCGMIIPHY - case SIOCGMIIPHY: - case SIOCGMIIREG: - case SIOCSMIIREG: - return igb_mii_ioctl(netdev, ifr, cmd); -#endif -#ifdef HAVE_PTP_1588_CLOCK - case SIOCSHWTSTAMP: - return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd); -#endif /* HAVE_PTP_1588_CLOCK */ -#ifdef ETHTOOL_OPS_COMPAT - case SIOCETHTOOL: - return ethtool_ioctl(ifr); -#endif - default: - return -EOPNOTSUPP; - } -} - -s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) -{ - struct igb_adapter *adapter = hw->back; - u16 cap_offset; - - cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); - if (!cap_offset) - return -E1000_ERR_CONFIG; - - pci_read_config_word(adapter->pdev, cap_offset + reg, value); - - return E1000_SUCCESS; -} - -s32 e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) -{ - struct igb_adapter *adapter = hw->back; - u16 cap_offset; - - cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); - if (!cap_offset) - return -E1000_ERR_CONFIG; - - pci_write_config_word(adapter->pdev, cap_offset + reg, *value); - - return E1000_SUCCESS; -} - -#ifdef HAVE_VLAN_RX_REGISTER -static void igb_vlan_mode(struct net_device *netdev, struct vlan_group *vlgrp) -#else -void igb_vlan_mode(struct net_device *netdev, u32 features) -#endif -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 ctrl, rctl; - int i; -#ifdef HAVE_VLAN_RX_REGISTER - bool enable = !!vlgrp; - - igb_irq_disable(adapter); - - adapter->vlgrp = vlgrp; - - if (!test_bit(__IGB_DOWN, &adapter->state)) - igb_irq_enable(adapter); -#else -#ifdef NETIF_F_HW_VLAN_CTAG_RX - bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); -#else - bool enable = !!(features & NETIF_F_HW_VLAN_RX); -#endif -#endif - - if (enable) { - /* enable VLAN tag insert/strip */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_VME; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* Disable CFI check */ - rctl = E1000_READ_REG(hw, E1000_RCTL); - rctl &= ~E1000_RCTL_CFIEN; - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - } else { - /* disable VLAN tag insert/strip */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl &= ~E1000_CTRL_VME; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - } - -#ifndef CONFIG_IGB_VMDQ_NETDEV - for (i = 0; i < adapter->vmdq_pools; i++) { - igb_set_vf_vlan_strip(adapter, - adapter->vfs_allocated_count + i, - enable); - } - -#else - igb_set_vf_vlan_strip(adapter, - adapter->vfs_allocated_count, - enable); - - for (i = 1; i < adapter->vmdq_pools; i++) { -#ifdef HAVE_VLAN_RX_REGISTER - struct igb_vmdq_adapter *vadapter; - vadapter = netdev_priv(adapter->vmdq_netdev[i-1]); - enable = !!vadapter->vlgrp; -#else - struct net_device *vnetdev; - vnetdev = adapter->vmdq_netdev[i-1]; -#ifdef NETIF_F_HW_VLAN_CTAG_RX - enable = !!(vnetdev->features & NETIF_F_HW_VLAN_CTAG_RX); -#else - enable = !!(vnetdev->features & NETIF_F_HW_VLAN_RX); -#endif -#endif - igb_set_vf_vlan_strip(adapter, - adapter->vfs_allocated_count + i, - enable); - } - -#endif - igb_rlpml_set(adapter); -} - -#ifdef HAVE_VLAN_PROTOCOL -static int igb_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) -#elif defined HAVE_INT_NDO_VLAN_RX_ADD_VID -#ifdef NETIF_F_HW_VLAN_CTAG_RX -static int igb_vlan_rx_add_vid(struct net_device *netdev, - __always_unused __be16 proto, u16 vid) -#else -static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid) -#endif -#else -static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid) -#endif -{ - struct igb_adapter *adapter = netdev_priv(netdev); - int pf_id = adapter->vfs_allocated_count; - - /* attempt to add filter to vlvf array */ - igb_vlvf_set(adapter, vid, TRUE, pf_id); - - /* add the filter since PF can receive vlans w/o entry in vlvf */ - igb_vfta_set(adapter, vid, TRUE); -#ifndef HAVE_NETDEV_VLAN_FEATURES - - /* Copy feature flags from netdev to the vlan netdev for this vid. - * This allows things like TSO to bubble down to our vlan device. - * There is no need to update netdev for vlan 0 (DCB), since it - * wouldn't has v_netdev. - */ - if (adapter->vlgrp) { - struct vlan_group *vlgrp = adapter->vlgrp; - struct net_device *v_netdev = vlan_group_get_device(vlgrp, vid); - if (v_netdev) { - v_netdev->features |= netdev->features; - vlan_group_set_device(vlgrp, vid, v_netdev); - } - } -#endif -#ifndef HAVE_VLAN_RX_REGISTER - - set_bit(vid, adapter->active_vlans); -#endif -#ifdef HAVE_INT_NDO_VLAN_RX_ADD_VID - return 0; -#endif -} - -#ifdef HAVE_VLAN_PROTOCOL -static int igb_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) -#elif defined HAVE_INT_NDO_VLAN_RX_ADD_VID -#ifdef NETIF_F_HW_VLAN_CTAG_RX -static int igb_vlan_rx_kill_vid(struct net_device *netdev, - __always_unused __be16 proto, u16 vid) -#else -static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) -#endif -#else -static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) -#endif -{ - struct igb_adapter *adapter = netdev_priv(netdev); - int pf_id = adapter->vfs_allocated_count; - s32 err; - -#ifdef HAVE_VLAN_RX_REGISTER - igb_irq_disable(adapter); - - vlan_group_set_device(adapter->vlgrp, vid, NULL); - - if (!test_bit(__IGB_DOWN, &adapter->state)) - igb_irq_enable(adapter); - -#endif /* HAVE_VLAN_RX_REGISTER */ - /* remove vlan from VLVF table array */ - err = igb_vlvf_set(adapter, vid, FALSE, pf_id); - - /* if vid was not present in VLVF just remove it from table */ - if (err) - igb_vfta_set(adapter, vid, FALSE); -#ifndef HAVE_VLAN_RX_REGISTER - - clear_bit(vid, adapter->active_vlans); -#endif -#ifdef HAVE_INT_NDO_VLAN_RX_ADD_VID - return 0; -#endif -} - -static void igb_restore_vlan(struct igb_adapter *adapter) -{ -#ifdef HAVE_VLAN_RX_REGISTER - igb_vlan_mode(adapter->netdev, adapter->vlgrp); - - if (adapter->vlgrp) { - u16 vid; - for (vid = 0; vid < VLAN_N_VID; vid++) { - if (!vlan_group_get_device(adapter->vlgrp, vid)) - continue; -#ifdef NETIF_F_HW_VLAN_CTAG_RX - igb_vlan_rx_add_vid(adapter->netdev, - htons(ETH_P_8021Q), vid); -#else - igb_vlan_rx_add_vid(adapter->netdev, vid); -#endif - } - } -#else - u16 vid; - - igb_vlan_mode(adapter->netdev, adapter->netdev->features); - - for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) -#ifdef NETIF_F_HW_VLAN_CTAG_RX - igb_vlan_rx_add_vid(adapter->netdev, - htons(ETH_P_8021Q), vid); -#else - igb_vlan_rx_add_vid(adapter->netdev, vid); -#endif -#endif -} - -int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx) -{ - struct pci_dev *pdev = adapter->pdev; - struct e1000_mac_info *mac = &adapter->hw.mac; - - mac->autoneg = 0; - - /* SerDes device's does not support 10Mbps Full/duplex - * and 100Mbps Half duplex - */ - if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { - switch (spddplx) { - case SPEED_10 + DUPLEX_HALF: - case SPEED_10 + DUPLEX_FULL: - case SPEED_100 + DUPLEX_HALF: - dev_err(pci_dev_to_dev(pdev), - "Unsupported Speed/Duplex configuration\n"); - return -EINVAL; - default: - break; - } - } - - switch (spddplx) { - case SPEED_10 + DUPLEX_HALF: - mac->forced_speed_duplex = ADVERTISE_10_HALF; - break; - case SPEED_10 + DUPLEX_FULL: - mac->forced_speed_duplex = ADVERTISE_10_FULL; - break; - case SPEED_100 + DUPLEX_HALF: - mac->forced_speed_duplex = ADVERTISE_100_HALF; - break; - case SPEED_100 + DUPLEX_FULL: - mac->forced_speed_duplex = ADVERTISE_100_FULL; - break; - case SPEED_1000 + DUPLEX_FULL: - mac->autoneg = 1; - adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; - break; - case SPEED_1000 + DUPLEX_HALF: /* not supported */ - default: - dev_err(pci_dev_to_dev(pdev), "Unsupported Speed/Duplex configuration\n"); - return -EINVAL; - } - - /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ - adapter->hw.phy.mdix = AUTO_ALL_MODES; - - return 0; -} - -static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake, - bool runtime) -{ - struct net_device *netdev = pci_get_drvdata(pdev); - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 ctrl, rctl, status; - u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; -#ifdef CONFIG_PM - int retval = 0; -#endif - - netif_device_detach(netdev); - - status = E1000_READ_REG(hw, E1000_STATUS); - if (status & E1000_STATUS_LU) - wufc &= ~E1000_WUFC_LNKC; - - if (netif_running(netdev)) - __igb_close(netdev, true); - - igb_clear_interrupt_scheme(adapter); - -#ifdef CONFIG_PM - retval = pci_save_state(pdev); - if (retval) - return retval; -#endif - - if (wufc) { - igb_setup_rctl(adapter); - igb_set_rx_mode(netdev); - - /* turn on all-multi mode if wake on multicast is enabled */ - if (wufc & E1000_WUFC_MC) { - rctl = E1000_READ_REG(hw, E1000_RCTL); - rctl |= E1000_RCTL_MPE; - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - } - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - /* phy power management enable */ - #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 - ctrl |= E1000_CTRL_ADVD3WUC; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* Allow time for pending master requests to run */ - e1000_disable_pcie_master(hw); - - E1000_WRITE_REG(hw, E1000_WUC, E1000_WUC_PME_EN); - E1000_WRITE_REG(hw, E1000_WUFC, wufc); - } else { - E1000_WRITE_REG(hw, E1000_WUC, 0); - E1000_WRITE_REG(hw, E1000_WUFC, 0); - } - - *enable_wake = wufc || adapter->en_mng_pt; - if (!*enable_wake) - igb_power_down_link(adapter); - else - igb_power_up_link(adapter); - - /* Release control of h/w to f/w. If f/w is AMT enabled, this - * would have already happened in close and is redundant. */ - igb_release_hw_control(adapter); - - pci_disable_device(pdev); - - return 0; -} - -#ifdef CONFIG_PM -#ifdef HAVE_SYSTEM_SLEEP_PM_OPS -static int igb_suspend(struct device *dev) -#else -static int igb_suspend(struct pci_dev *pdev, pm_message_t state) -#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */ -{ -#ifdef HAVE_SYSTEM_SLEEP_PM_OPS - struct pci_dev *pdev = to_pci_dev(dev); -#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */ - int retval; - bool wake; - - retval = __igb_shutdown(pdev, &wake, 0); - if (retval) - return retval; - - if (wake) { - pci_prepare_to_sleep(pdev); - } else { - pci_wake_from_d3(pdev, false); - pci_set_power_state(pdev, PCI_D3hot); - } - - return 0; -} - -#ifdef HAVE_SYSTEM_SLEEP_PM_OPS -static int igb_resume(struct device *dev) -#else -static int igb_resume(struct pci_dev *pdev) -#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */ -{ -#ifdef HAVE_SYSTEM_SLEEP_PM_OPS - struct pci_dev *pdev = to_pci_dev(dev); -#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */ - struct net_device *netdev = pci_get_drvdata(pdev); - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 err; - - pci_set_power_state(pdev, PCI_D0); - pci_restore_state(pdev); - pci_save_state(pdev); - - err = pci_enable_device_mem(pdev); - if (err) { - dev_err(pci_dev_to_dev(pdev), - "igb: Cannot enable PCI device from suspend\n"); - return err; - } - pci_set_master(pdev); - - pci_enable_wake(pdev, PCI_D3hot, 0); - pci_enable_wake(pdev, PCI_D3cold, 0); - - if (igb_init_interrupt_scheme(adapter, true)) { - dev_err(pci_dev_to_dev(pdev), "Unable to allocate memory for queues\n"); - return -ENOMEM; - } - - igb_reset(adapter); - - /* let the f/w know that the h/w is now under the control of the - * driver. */ - igb_get_hw_control(adapter); - - E1000_WRITE_REG(hw, E1000_WUS, ~0); - - if (netdev->flags & IFF_UP) { - rtnl_lock(); - err = __igb_open(netdev, true); - rtnl_unlock(); - if (err) - return err; - } - - netif_device_attach(netdev); - - return 0; -} - -#ifdef CONFIG_PM_RUNTIME -#ifdef HAVE_SYSTEM_SLEEP_PM_OPS -static int igb_runtime_idle(struct device *dev) -{ - struct pci_dev *pdev = to_pci_dev(dev); - struct net_device *netdev = pci_get_drvdata(pdev); - struct igb_adapter *adapter = netdev_priv(netdev); - - if (!igb_has_link(adapter)) - pm_schedule_suspend(dev, MSEC_PER_SEC * 5); - - return -EBUSY; -} - -static int igb_runtime_suspend(struct device *dev) -{ - struct pci_dev *pdev = to_pci_dev(dev); - int retval; - bool wake; - - retval = __igb_shutdown(pdev, &wake, 1); - if (retval) - return retval; - - if (wake) { - pci_prepare_to_sleep(pdev); - } else { - pci_wake_from_d3(pdev, false); - pci_set_power_state(pdev, PCI_D3hot); - } - - return 0; -} - -static int igb_runtime_resume(struct device *dev) -{ - return igb_resume(dev); -} -#endif /* HAVE_SYSTEM_SLEEP_PM_OPS */ -#endif /* CONFIG_PM_RUNTIME */ -#endif /* CONFIG_PM */ - -#ifdef USE_REBOOT_NOTIFIER -/* only want to do this for 2.4 kernels? */ -static int igb_notify_reboot(struct notifier_block *nb, unsigned long event, - void *p) -{ - struct pci_dev *pdev = NULL; - bool wake; - - switch (event) { - case SYS_DOWN: - case SYS_HALT: - case SYS_POWER_OFF: - while ((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) { - if (pci_dev_driver(pdev) == &igb_driver) { - __igb_shutdown(pdev, &wake, 0); - if (event == SYS_POWER_OFF) { - pci_wake_from_d3(pdev, wake); - pci_set_power_state(pdev, PCI_D3hot); - } - } - } - } - return NOTIFY_DONE; -} -#else -static void igb_shutdown(struct pci_dev *pdev) -{ - bool wake = false; - - __igb_shutdown(pdev, &wake, 0); - - if (system_state == SYSTEM_POWER_OFF) { - pci_wake_from_d3(pdev, wake); - pci_set_power_state(pdev, PCI_D3hot); - } -} -#endif /* USE_REBOOT_NOTIFIER */ - -#ifdef CONFIG_NET_POLL_CONTROLLER -/* - * Polling 'interrupt' - used by things like netconsole to send skbs - * without having to re-enable interrupts. It's not called while - * the interrupt routine is executing. - */ -static void igb_netpoll(struct net_device *netdev) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - struct igb_q_vector *q_vector; - int i; - - for (i = 0; i < adapter->num_q_vectors; i++) { - q_vector = adapter->q_vector[i]; - if (adapter->msix_entries) - E1000_WRITE_REG(hw, E1000_EIMC, q_vector->eims_value); - else - igb_irq_disable(adapter); - napi_schedule(&q_vector->napi); - } -} -#endif /* CONFIG_NET_POLL_CONTROLLER */ - -#ifdef HAVE_PCI_ERS -#define E1000_DEV_ID_82576_VF 0x10CA -/** - * igb_io_error_detected - called when PCI error is detected - * @pdev: Pointer to PCI device - * @state: The current pci connection state - * - * This function is called after a PCI bus error affecting - * this device has been detected. - */ -static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, - pci_channel_state_t state) -{ - struct net_device *netdev = pci_get_drvdata(pdev); - struct igb_adapter *adapter = netdev_priv(netdev); - -#ifdef CONFIG_PCI_IOV__UNUSED - struct pci_dev *bdev, *vfdev; - u32 dw0, dw1, dw2, dw3; - int vf, pos; - u16 req_id, pf_func; - - if (!(adapter->flags & IGB_FLAG_DETECT_BAD_DMA)) - goto skip_bad_vf_detection; - - bdev = pdev->bus->self; - while (bdev && (pci_pcie_type(bdev) != PCI_EXP_TYPE_ROOT_PORT)) - bdev = bdev->bus->self; - - if (!bdev) - goto skip_bad_vf_detection; - - pos = pci_find_ext_capability(bdev, PCI_EXT_CAP_ID_ERR); - if (!pos) - goto skip_bad_vf_detection; - - pci_read_config_dword(bdev, pos + PCI_ERR_HEADER_LOG, &dw0); - pci_read_config_dword(bdev, pos + PCI_ERR_HEADER_LOG + 4, &dw1); - pci_read_config_dword(bdev, pos + PCI_ERR_HEADER_LOG + 8, &dw2); - pci_read_config_dword(bdev, pos + PCI_ERR_HEADER_LOG + 12, &dw3); - - req_id = dw1 >> 16; - /* On the 82576 if bit 7 of the requestor ID is set then it's a VF */ - if (!(req_id & 0x0080)) - goto skip_bad_vf_detection; - - pf_func = req_id & 0x01; - if ((pf_func & 1) == (pdev->devfn & 1)) { - - vf = (req_id & 0x7F) >> 1; - dev_err(pci_dev_to_dev(pdev), - "VF %d has caused a PCIe error\n", vf); - dev_err(pci_dev_to_dev(pdev), - "TLP: dw0: %8.8x\tdw1: %8.8x\tdw2: " - "%8.8x\tdw3: %8.8x\n", - dw0, dw1, dw2, dw3); - - /* Find the pci device of the offending VF */ - vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, - E1000_DEV_ID_82576_VF, NULL); - while (vfdev) { - if (vfdev->devfn == (req_id & 0xFF)) - break; - vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, - E1000_DEV_ID_82576_VF, vfdev); - } - /* - * There's a slim chance the VF could have been hot plugged, - * so if it is no longer present we don't need to issue the - * VFLR. Just clean up the AER in that case. - */ - if (vfdev) { - dev_err(pci_dev_to_dev(pdev), - "Issuing VFLR to VF %d\n", vf); - pci_write_config_dword(vfdev, 0xA8, 0x00008000); - } - - pci_cleanup_aer_uncorrect_error_status(pdev); - } - - /* - * Even though the error may have occurred on the other port - * we still need to increment the vf error reference count for - * both ports because the I/O resume function will be called - * for both of them. - */ - adapter->vferr_refcount++; - - return PCI_ERS_RESULT_RECOVERED; - -skip_bad_vf_detection: -#endif /* CONFIG_PCI_IOV */ - - netif_device_detach(netdev); - - if (state == pci_channel_io_perm_failure) - return PCI_ERS_RESULT_DISCONNECT; - - if (netif_running(netdev)) - igb_down(adapter); - pci_disable_device(pdev); - - /* Request a slot slot reset. */ - return PCI_ERS_RESULT_NEED_RESET; -} - -/** - * igb_io_slot_reset - called after the pci bus has been reset. - * @pdev: Pointer to PCI device - * - * Restart the card from scratch, as if from a cold-boot. Implementation - * resembles the first-half of the igb_resume routine. - */ -static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) -{ - struct net_device *netdev = pci_get_drvdata(pdev); - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - pci_ers_result_t result; - - if (pci_enable_device_mem(pdev)) { - dev_err(pci_dev_to_dev(pdev), - "Cannot re-enable PCI device after reset.\n"); - result = PCI_ERS_RESULT_DISCONNECT; - } else { - pci_set_master(pdev); - pci_restore_state(pdev); - pci_save_state(pdev); - - pci_enable_wake(pdev, PCI_D3hot, 0); - pci_enable_wake(pdev, PCI_D3cold, 0); - - schedule_work(&adapter->reset_task); - E1000_WRITE_REG(hw, E1000_WUS, ~0); - result = PCI_ERS_RESULT_RECOVERED; - } - - pci_cleanup_aer_uncorrect_error_status(pdev); - - return result; -} - -/** - * igb_io_resume - called when traffic can start flowing again. - * @pdev: Pointer to PCI device - * - * This callback is called when the error recovery driver tells us that - * its OK to resume normal operation. Implementation resembles the - * second-half of the igb_resume routine. - */ -static void igb_io_resume(struct pci_dev *pdev) -{ - struct net_device *netdev = pci_get_drvdata(pdev); - struct igb_adapter *adapter = netdev_priv(netdev); - - if (adapter->vferr_refcount) { - dev_info(pci_dev_to_dev(pdev), "Resuming after VF err\n"); - adapter->vferr_refcount--; - return; - } - - if (netif_running(netdev)) { - if (igb_up(adapter)) { - dev_err(pci_dev_to_dev(pdev), "igb_up failed after reset\n"); - return; - } - } - - netif_device_attach(netdev); - - /* let the f/w know that the h/w is now under the control of the - * driver. */ - igb_get_hw_control(adapter); -} - -#endif /* HAVE_PCI_ERS */ - -int igb_add_mac_filter(struct igb_adapter *adapter, u8 *addr, u16 queue) -{ - struct e1000_hw *hw = &adapter->hw; - int i; - - if (is_zero_ether_addr(addr)) - return 0; - - for (i = 0; i < hw->mac.rar_entry_count; i++) { - if (adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) - continue; - adapter->mac_table[i].state = (IGB_MAC_STATE_MODIFIED | - IGB_MAC_STATE_IN_USE); - memcpy(adapter->mac_table[i].addr, addr, ETH_ALEN); - adapter->mac_table[i].queue = queue; - igb_sync_mac_table(adapter); - return 0; - } - return -ENOMEM; -} -int igb_del_mac_filter(struct igb_adapter *adapter, u8* addr, u16 queue) -{ - /* search table for addr, if found, set to 0 and sync */ - int i; - struct e1000_hw *hw = &adapter->hw; - - if (is_zero_ether_addr(addr)) - return 0; - for (i = 0; i < hw->mac.rar_entry_count; i++) { - if (ether_addr_equal(addr, adapter->mac_table[i].addr) && - adapter->mac_table[i].queue == queue) { - adapter->mac_table[i].state = IGB_MAC_STATE_MODIFIED; - memset(adapter->mac_table[i].addr, 0, ETH_ALEN); - adapter->mac_table[i].queue = 0; - igb_sync_mac_table(adapter); - return 0; - } - } - return -ENOMEM; -} -static int igb_set_vf_mac(struct igb_adapter *adapter, - int vf, unsigned char *mac_addr) -{ - igb_del_mac_filter(adapter, adapter->vf_data[vf].vf_mac_addresses, vf); - memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN); - - igb_add_mac_filter(adapter, mac_addr, vf); - - return 0; -} - -#ifdef IFLA_VF_MAX -static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count)) - return -EINVAL; - adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; - dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf); - dev_info(&adapter->pdev->dev, "Reload the VF driver to make this" - " change effective.\n"); - if (test_bit(__IGB_DOWN, &adapter->state)) { - dev_warn(&adapter->pdev->dev, "The VF MAC address has been set," - " but the PF device is not up.\n"); - dev_warn(&adapter->pdev->dev, "Bring the PF device up before" - " attempting to use the VF device.\n"); - } - return igb_set_vf_mac(adapter, vf, mac); -} - -static int igb_link_mbps(int internal_link_speed) -{ - switch (internal_link_speed) { - case SPEED_100: - return 100; - case SPEED_1000: - return 1000; - case SPEED_2500: - return 2500; - default: - return 0; - } -} - -static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, - int link_speed) -{ - int rf_dec, rf_int; - u32 bcnrc_val; - - if (tx_rate != 0) { - /* Calculate the rate factor values to set */ - rf_int = link_speed / tx_rate; - rf_dec = (link_speed - (rf_int * tx_rate)); - rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate; - - bcnrc_val = E1000_RTTBCNRC_RS_ENA; - bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) & - E1000_RTTBCNRC_RF_INT_MASK); - bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); - } else { - bcnrc_val = 0; - } - - E1000_WRITE_REG(hw, E1000_RTTDQSEL, vf); /* vf X uses queue X */ - /* - * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM - * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported. - */ - E1000_WRITE_REG(hw, E1000_RTTBCNRM(0), 0x14); - E1000_WRITE_REG(hw, E1000_RTTBCNRC, bcnrc_val); -} - -static void igb_check_vf_rate_limit(struct igb_adapter *adapter) -{ - int actual_link_speed, i; - bool reset_rate = false; - - /* VF TX rate limit was not set */ - if ((adapter->vf_rate_link_speed == 0) || - (adapter->hw.mac.type != e1000_82576)) - return; - - actual_link_speed = igb_link_mbps(adapter->link_speed); - if (actual_link_speed != adapter->vf_rate_link_speed) { - reset_rate = true; - adapter->vf_rate_link_speed = 0; - dev_info(&adapter->pdev->dev, - "Link speed has been changed. VF Transmit rate is disabled\n"); - } - - for (i = 0; i < adapter->vfs_allocated_count; i++) { - if (reset_rate) - adapter->vf_data[i].tx_rate = 0; - - igb_set_vf_rate_limit(&adapter->hw, i, - adapter->vf_data[i].tx_rate, actual_link_speed); - } -} - -#ifdef HAVE_VF_MIN_MAX_TXRATE -static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int min_tx_rate, - int tx_rate) -#else /* HAVE_VF_MIN_MAX_TXRATE */ -static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate) -#endif /* HAVE_VF_MIN_MAX_TXRATE */ -{ - struct igb_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - int actual_link_speed; - - if (hw->mac.type != e1000_82576) - return -EOPNOTSUPP; - -#ifdef HAVE_VF_MIN_MAX_TXRATE - if (min_tx_rate) - return -EINVAL; -#endif /* HAVE_VF_MIN_MAX_TXRATE */ - - actual_link_speed = igb_link_mbps(adapter->link_speed); - if ((vf >= adapter->vfs_allocated_count) || - (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) || - (tx_rate < 0) || (tx_rate > actual_link_speed)) - return -EINVAL; - - adapter->vf_rate_link_speed = actual_link_speed; - adapter->vf_data[vf].tx_rate = (u16)tx_rate; - igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed); - - return 0; -} - -static int igb_ndo_get_vf_config(struct net_device *netdev, - int vf, struct ifla_vf_info *ivi) -{ - struct igb_adapter *adapter = netdev_priv(netdev); - if (vf >= adapter->vfs_allocated_count) - return -EINVAL; - ivi->vf = vf; - memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); -#ifdef HAVE_VF_MIN_MAX_TXRATE - ivi->max_tx_rate = adapter->vf_data[vf].tx_rate; - ivi->min_tx_rate = 0; -#else /* HAVE_VF_MIN_MAX_TXRATE */ - ivi->tx_rate = adapter->vf_data[vf].tx_rate; -#endif /* HAVE_VF_MIN_MAX_TXRATE */ - ivi->vlan = adapter->vf_data[vf].pf_vlan; - ivi->qos = adapter->vf_data[vf].pf_qos; -#ifdef HAVE_VF_SPOOFCHK_CONFIGURE - ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled; -#endif - return 0; -} -#endif -static void igb_vmm_control(struct igb_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - int count; - u32 reg; - - switch (hw->mac.type) { - case e1000_82575: - default: - /* replication is not supported for 82575 */ - return; - case e1000_82576: - /* notify HW that the MAC is adding vlan tags */ - reg = E1000_READ_REG(hw, E1000_DTXCTL); - reg |= (E1000_DTXCTL_VLAN_ADDED | - E1000_DTXCTL_SPOOF_INT); - E1000_WRITE_REG(hw, E1000_DTXCTL, reg); - case e1000_82580: - /* enable replication vlan tag stripping */ - reg = E1000_READ_REG(hw, E1000_RPLOLR); - reg |= E1000_RPLOLR_STRVLAN; - E1000_WRITE_REG(hw, E1000_RPLOLR, reg); - case e1000_i350: - case e1000_i354: - /* none of the above registers are supported by i350 */ - break; - } - - /* Enable Malicious Driver Detection */ - if ((adapter->vfs_allocated_count) && - (adapter->mdd)) { - if (hw->mac.type == e1000_i350) - igb_enable_mdd(adapter); - } - - /* enable replication and loopback support */ - count = adapter->vfs_allocated_count || adapter->vmdq_pools; - if (adapter->flags & IGB_FLAG_LOOPBACK_ENABLE && count) - e1000_vmdq_set_loopback_pf(hw, 1); - e1000_vmdq_set_anti_spoofing_pf(hw, - adapter->vfs_allocated_count || adapter->vmdq_pools, - adapter->vfs_allocated_count); - e1000_vmdq_set_replication_pf(hw, adapter->vfs_allocated_count || - adapter->vmdq_pools); -} - -static void igb_init_fw(struct igb_adapter *adapter) -{ - struct e1000_fw_drv_info fw_cmd; - struct e1000_hw *hw = &adapter->hw; - int i; - u16 mask; - - if (hw->mac.type == e1000_i210) - mask = E1000_SWFW_EEP_SM; - else - mask = E1000_SWFW_PHY0_SM; - /* i211 parts do not support this feature */ - if (hw->mac.type == e1000_i211) - hw->mac.arc_subsystem_valid = false; - - if (!hw->mac.ops.acquire_swfw_sync(hw, mask)) { - for (i = 0; i <= FW_MAX_RETRIES; i++) { - E1000_WRITE_REG(hw, E1000_FWSTS, E1000_FWSTS_FWRI); - fw_cmd.hdr.cmd = FW_CMD_DRV_INFO; - fw_cmd.hdr.buf_len = FW_CMD_DRV_INFO_LEN; - fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CMD_RESERVED; - fw_cmd.port_num = hw->bus.func; - fw_cmd.drv_version = FW_FAMILY_DRV_VER; - fw_cmd.hdr.checksum = 0; - fw_cmd.hdr.checksum = e1000_calculate_checksum((u8 *)&fw_cmd, - (FW_HDR_LEN + - fw_cmd.hdr.buf_len)); - e1000_host_interface_command(hw, (u8*)&fw_cmd, - sizeof(fw_cmd)); - if (fw_cmd.hdr.cmd_or_resp.ret_status == FW_STATUS_SUCCESS) - break; - } - } else - dev_warn(pci_dev_to_dev(adapter->pdev), - "Unable to get semaphore, firmware init failed.\n"); - hw->mac.ops.release_swfw_sync(hw, mask); -} - -static void igb_init_dmac(struct igb_adapter *adapter, u32 pba) -{ - struct e1000_hw *hw = &adapter->hw; - u32 dmac_thr; - u16 hwm; - u32 status; - - if (hw->mac.type == e1000_i211) - return; - - if (hw->mac.type > e1000_82580) { - if (adapter->dmac != IGB_DMAC_DISABLE) { - u32 reg; - - /* force threshold to 0. */ - E1000_WRITE_REG(hw, E1000_DMCTXTH, 0); - - /* - * DMA Coalescing high water mark needs to be greater - * than the Rx threshold. Set hwm to PBA - max frame - * size in 16B units, capping it at PBA - 6KB. - */ - hwm = 64 * pba - adapter->max_frame_size / 16; - if (hwm < 64 * (pba - 6)) - hwm = 64 * (pba - 6); - reg = E1000_READ_REG(hw, E1000_FCRTC); - reg &= ~E1000_FCRTC_RTH_COAL_MASK; - reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) - & E1000_FCRTC_RTH_COAL_MASK); - E1000_WRITE_REG(hw, E1000_FCRTC, reg); - - /* - * Set the DMA Coalescing Rx threshold to PBA - 2 * max - * frame size, capping it at PBA - 10KB. - */ - dmac_thr = pba - adapter->max_frame_size / 512; - if (dmac_thr < pba - 10) - dmac_thr = pba - 10; - reg = E1000_READ_REG(hw, E1000_DMACR); - reg &= ~E1000_DMACR_DMACTHR_MASK; - reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT) - & E1000_DMACR_DMACTHR_MASK); - - /* transition to L0x or L1 if available..*/ - reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); - - /* Check if status is 2.5Gb backplane connection - * before configuration of watchdog timer, which is - * in msec values in 12.8usec intervals - * watchdog timer= msec values in 32usec intervals - * for non 2.5Gb connection - */ - if (hw->mac.type == e1000_i354) { - status = E1000_READ_REG(hw, E1000_STATUS); - if ((status & E1000_STATUS_2P5_SKU) && - (!(status & E1000_STATUS_2P5_SKU_OVER))) - reg |= ((adapter->dmac * 5) >> 6); - else - reg |= ((adapter->dmac) >> 5); - } else { - reg |= ((adapter->dmac) >> 5); - } - - /* - * Disable BMC-to-OS Watchdog enable - * on devices that support OS-to-BMC - */ - if (hw->mac.type != e1000_i354) - reg &= ~E1000_DMACR_DC_BMC2OSW_EN; - E1000_WRITE_REG(hw, E1000_DMACR, reg); - - /* no lower threshold to disable coalescing(smart fifb)-UTRESH=0*/ - E1000_WRITE_REG(hw, E1000_DMCRTRH, 0); - - /* This sets the time to wait before requesting - * transition to low power state to number of usecs - * needed to receive 1 512 byte frame at gigabit - * line rate. On i350 device, time to make transition - * to Lx state is delayed by 4 usec with flush disable - * bit set to avoid losing mailbox interrupts - */ - reg = E1000_READ_REG(hw, E1000_DMCTLX); - if (hw->mac.type == e1000_i350) - reg |= IGB_DMCTLX_DCFLUSH_DIS; - - /* in 2.5Gb connection, TTLX unit is 0.4 usec - * which is 0x4*2 = 0xA. But delay is still 4 usec - */ - if (hw->mac.type == e1000_i354) { - status = E1000_READ_REG(hw, E1000_STATUS); - if ((status & E1000_STATUS_2P5_SKU) && - (!(status & E1000_STATUS_2P5_SKU_OVER))) - reg |= 0xA; - else - reg |= 0x4; - } else { - reg |= 0x4; - } - E1000_WRITE_REG(hw, E1000_DMCTLX, reg); - - /* free space in tx packet buffer to wake from DMA coal */ - E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_MIN_TXPBSIZE - - (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6); - - /* make low power state decision controlled by DMA coal */ - reg = E1000_READ_REG(hw, E1000_PCIEMISC); - reg &= ~E1000_PCIEMISC_LX_DECISION; - E1000_WRITE_REG(hw, E1000_PCIEMISC, reg); - } /* endif adapter->dmac is not disabled */ - } else if (hw->mac.type == e1000_82580) { - u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC); - E1000_WRITE_REG(hw, E1000_PCIEMISC, - reg & ~E1000_PCIEMISC_LX_DECISION); - E1000_WRITE_REG(hw, E1000_DMACR, 0); - } -} - -#ifdef HAVE_I2C_SUPPORT -/* igb_read_i2c_byte - Reads 8 bit word over I2C - * @hw: pointer to hardware structure - * @byte_offset: byte offset to read - * @dev_addr: device address - * @data: value read - * - * Performs byte read operation over I2C interface at - * a specified device address. - */ -s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset, - u8 dev_addr, u8 *data) -{ - struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); - struct i2c_client *this_client = adapter->i2c_client; - s32 status; - u16 swfw_mask = 0; - - if (!this_client) - return E1000_ERR_I2C; - - swfw_mask = E1000_SWFW_PHY0_SM; - - if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) - != E1000_SUCCESS) - return E1000_ERR_SWFW_SYNC; - - status = i2c_smbus_read_byte_data(this_client, byte_offset); - hw->mac.ops.release_swfw_sync(hw, swfw_mask); - - if (status < 0) - return E1000_ERR_I2C; - else { - *data = status; - return E1000_SUCCESS; - } -} - -/* igb_write_i2c_byte - Writes 8 bit word over I2C - * @hw: pointer to hardware structure - * @byte_offset: byte offset to write - * @dev_addr: device address - * @data: value to write - * - * Performs byte write operation over I2C interface at - * a specified device address. - */ -s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset, - u8 dev_addr, u8 data) -{ - struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); - struct i2c_client *this_client = adapter->i2c_client; - s32 status; - u16 swfw_mask = E1000_SWFW_PHY0_SM; - - if (!this_client) - return E1000_ERR_I2C; - - if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) - return E1000_ERR_SWFW_SYNC; - status = i2c_smbus_write_byte_data(this_client, byte_offset, data); - hw->mac.ops.release_swfw_sync(hw, swfw_mask); - - if (status) - return E1000_ERR_I2C; - else - return E1000_SUCCESS; -} -#endif /* HAVE_I2C_SUPPORT */ -/* igb_main.c */ - - -/** - * igb_probe - Device Initialization Routine - * @pdev: PCI device information struct - * @ent: entry in igb_pci_tbl - * - * Returns 0 on success, negative on failure - * - * igb_probe initializes an adapter identified by a pci_dev structure. - * The OS initialization, configuring of the adapter private structure, - * and a hardware reset occur. - **/ -int igb_kni_probe(struct pci_dev *pdev, - struct net_device **lad_dev) -{ - struct net_device *netdev; - struct igb_adapter *adapter; - struct e1000_hw *hw; - u16 eeprom_data = 0; - u8 pba_str[E1000_PBANUM_LENGTH]; - s32 ret_val; - static int global_quad_port_a; /* global quad port a indication */ - int i, err, pci_using_dac = 0; - static int cards_found; - - err = pci_enable_device_mem(pdev); - if (err) - return err; - -#ifdef NO_KNI - pci_using_dac = 0; - err = dma_set_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(64)); - if (!err) { - err = dma_set_coherent_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(64)); - if (!err) - pci_using_dac = 1; - } else { - err = dma_set_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(32)); - if (err) { - err = dma_set_coherent_mask(pci_dev_to_dev(pdev), DMA_BIT_MASK(32)); - if (err) { - IGB_ERR("No usable DMA configuration, " - "aborting\n"); - goto err_dma; - } - } - } - -#ifndef HAVE_ASPM_QUIRKS - /* 82575 requires that the pci-e link partner disable the L0s state */ - switch (pdev->device) { - case E1000_DEV_ID_82575EB_COPPER: - case E1000_DEV_ID_82575EB_FIBER_SERDES: - case E1000_DEV_ID_82575GB_QUAD_COPPER: - pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S); - default: - break; - } - -#endif /* HAVE_ASPM_QUIRKS */ - err = pci_request_selected_regions(pdev, - pci_select_bars(pdev, - IORESOURCE_MEM), - igb_driver_name); - if (err) - goto err_pci_reg; - - pci_enable_pcie_error_reporting(pdev); - - pci_set_master(pdev); - - err = -ENOMEM; -#endif /* NO_KNI */ -#ifdef HAVE_TX_MQ - netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), - IGB_MAX_TX_QUEUES); -#else - netdev = alloc_etherdev(sizeof(struct igb_adapter)); -#endif /* HAVE_TX_MQ */ - if (!netdev) - goto err_alloc_etherdev; - - SET_MODULE_OWNER(netdev); - SET_NETDEV_DEV(netdev, &pdev->dev); - - //pci_set_drvdata(pdev, netdev); - adapter = netdev_priv(netdev); - adapter->netdev = netdev; - adapter->pdev = pdev; - hw = &adapter->hw; - hw->back = adapter; - adapter->port_num = hw->bus.func; - adapter->msg_enable = (1 << debug) - 1; - -#ifdef HAVE_PCI_ERS - err = pci_save_state(pdev); - if (err) - goto err_ioremap; -#endif - err = -EIO; - hw->hw_addr = ioremap(pci_resource_start(pdev, 0), - pci_resource_len(pdev, 0)); - if (!hw->hw_addr) - goto err_ioremap; - -#ifdef HAVE_NET_DEVICE_OPS - netdev->netdev_ops = &igb_netdev_ops; -#else /* HAVE_NET_DEVICE_OPS */ - netdev->open = &igb_open; - netdev->stop = &igb_close; - netdev->get_stats = &igb_get_stats; -#ifdef HAVE_SET_RX_MODE - netdev->set_rx_mode = &igb_set_rx_mode; -#endif - netdev->set_multicast_list = &igb_set_rx_mode; - netdev->set_mac_address = &igb_set_mac; - netdev->change_mtu = &igb_change_mtu; - netdev->do_ioctl = &igb_ioctl; -#ifdef HAVE_TX_TIMEOUT - netdev->tx_timeout = &igb_tx_timeout; -#endif - netdev->vlan_rx_register = igb_vlan_mode; - netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid; - netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid; -#ifdef CONFIG_NET_POLL_CONTROLLER - netdev->poll_controller = igb_netpoll; -#endif - netdev->hard_start_xmit = &igb_xmit_frame; -#endif /* HAVE_NET_DEVICE_OPS */ - igb_set_ethtool_ops(netdev); -#ifdef HAVE_TX_TIMEOUT - netdev->watchdog_timeo = 5 * HZ; -#endif - - strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); - - adapter->bd_number = cards_found; - - /* setup the private structure */ - err = igb_sw_init(adapter); - if (err) - goto err_sw_init; - - e1000_get_bus_info(hw); - - hw->phy.autoneg_wait_to_complete = FALSE; - hw->mac.adaptive_ifs = FALSE; - - /* Copper options */ - if (hw->phy.media_type == e1000_media_type_copper) { - hw->phy.mdix = AUTO_ALL_MODES; - hw->phy.disable_polarity_correction = FALSE; - hw->phy.ms_type = e1000_ms_hw_default; - } - - if (e1000_check_reset_block(hw)) - dev_info(pci_dev_to_dev(pdev), - "PHY reset is blocked due to SOL/IDER session.\n"); - - /* - * features is initialized to 0 in allocation, it might have bits - * set by igb_sw_init so we should use an or instead of an - * assignment. - */ - netdev->features |= NETIF_F_SG | - NETIF_F_IP_CSUM | -#ifdef NETIF_F_IPV6_CSUM - NETIF_F_IPV6_CSUM | -#endif -#ifdef NETIF_F_TSO - NETIF_F_TSO | -#ifdef NETIF_F_TSO6 - NETIF_F_TSO6 | -#endif -#endif /* NETIF_F_TSO */ -#ifdef NETIF_F_RXHASH - NETIF_F_RXHASH | -#endif - NETIF_F_RXCSUM | -#ifdef NETIF_F_HW_VLAN_CTAG_RX - NETIF_F_HW_VLAN_CTAG_RX | - NETIF_F_HW_VLAN_CTAG_TX; -#else - NETIF_F_HW_VLAN_RX | - NETIF_F_HW_VLAN_TX; -#endif - - if (hw->mac.type >= e1000_82576) - netdev->features |= NETIF_F_SCTP_CSUM; - -#ifdef HAVE_NDO_SET_FEATURES - /* copy netdev features into list of user selectable features */ - netdev->hw_features |= netdev->features; -#ifndef IGB_NO_LRO - - /* give us the option of enabling LRO later */ - netdev->hw_features |= NETIF_F_LRO; -#endif -#else -#ifdef NETIF_F_GRO - - /* this is only needed on kernels prior to 2.6.39 */ - netdev->features |= NETIF_F_GRO; -#endif -#endif - - /* set this bit last since it cannot be part of hw_features */ -#ifdef NETIF_F_HW_VLAN_CTAG_FILTER - netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; -#else - netdev->features |= NETIF_F_HW_VLAN_FILTER; -#endif - -#ifdef HAVE_NETDEV_VLAN_FEATURES - netdev->vlan_features |= NETIF_F_TSO | - NETIF_F_TSO6 | - NETIF_F_IP_CSUM | - NETIF_F_IPV6_CSUM | - NETIF_F_SG; - -#endif - if (pci_using_dac) - netdev->features |= NETIF_F_HIGHDMA; - -#ifdef NO_KNI - adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); -#ifdef DEBUG - if (adapter->dmac != IGB_DMAC_DISABLE) - printk("%s: DMA Coalescing is enabled..\n", netdev->name); -#endif - - /* before reading the NVM, reset the controller to put the device in a - * known good starting state */ - e1000_reset_hw(hw); -#endif /* NO_KNI */ - - /* make sure the NVM is good */ - if (e1000_validate_nvm_checksum(hw) < 0) { - dev_err(pci_dev_to_dev(pdev), "The NVM Checksum Is Not" - " Valid\n"); - err = -EIO; - goto err_eeprom; - } - - /* copy the MAC address out of the NVM */ - if (e1000_read_mac_addr(hw)) - dev_err(pci_dev_to_dev(pdev), "NVM Read Error\n"); - memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); -#ifdef ETHTOOL_GPERMADDR - memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len); - - if (!is_valid_ether_addr(netdev->perm_addr)) { -#else - if (!is_valid_ether_addr(netdev->dev_addr)) { -#endif - dev_err(pci_dev_to_dev(pdev), "Invalid MAC Address\n"); - err = -EIO; - goto err_eeprom; - } - - memcpy(&adapter->mac_table[0].addr, hw->mac.addr, netdev->addr_len); - adapter->mac_table[0].queue = adapter->vfs_allocated_count; - adapter->mac_table[0].state = (IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE); - igb_rar_set(adapter, 0); - - /* get firmware version for ethtool -i */ - igb_set_fw_version(adapter); - - /* Check if Media Autosense is enabled */ - if (hw->mac.type == e1000_82580) - igb_init_mas(adapter); - -#ifdef NO_KNI -#ifdef HAVE_TIMER_SETUP - timer_setup(&adapter->watchdog_timer, &igb_watchdog, 0); - if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA) - timer_setup(&adapter->dma_err_timer, &igb_dma_err_timer, 0); - timer_setup(&adapter->phy_info_timer, &igb_update_phy_info, 0); -#else - setup_timer(&adapter->watchdog_timer, &igb_watchdog, - (unsigned long) adapter); - if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA) - setup_timer(&adapter->dma_err_timer, &igb_dma_err_timer, - (unsigned long) adapter); - setup_timer(&adapter->phy_info_timer, &igb_update_phy_info, - (unsigned long) adapter); -#endif - - INIT_WORK(&adapter->reset_task, igb_reset_task); - INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); - if (adapter->flags & IGB_FLAG_DETECT_BAD_DMA) - INIT_WORK(&adapter->dma_err_task, igb_dma_err_task); -#endif - - /* Initialize link properties that are user-changeable */ - adapter->fc_autoneg = true; - hw->mac.autoneg = true; - hw->phy.autoneg_advertised = 0x2f; - - hw->fc.requested_mode = e1000_fc_default; - hw->fc.current_mode = e1000_fc_default; - - e1000_validate_mdi_setting(hw); - - /* By default, support wake on port A */ - if (hw->bus.func == 0) - adapter->flags |= IGB_FLAG_WOL_SUPPORTED; - - /* Check the NVM for wake support for non-port A ports */ - if (hw->mac.type >= e1000_82580) - hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + - NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, - &eeprom_data); - else if (hw->bus.func == 1) - e1000_read_nvm(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); - - if (eeprom_data & IGB_EEPROM_APME) - adapter->flags |= IGB_FLAG_WOL_SUPPORTED; - - /* now that we have the eeprom settings, apply the special cases where - * the eeprom may be wrong or the board simply won't support wake on - * lan on a particular port */ - switch (pdev->device) { - case E1000_DEV_ID_82575GB_QUAD_COPPER: - adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; - break; - case E1000_DEV_ID_82575EB_FIBER_SERDES: - case E1000_DEV_ID_82576_FIBER: - case E1000_DEV_ID_82576_SERDES: - /* Wake events only supported on port A for dual fiber - * regardless of eeprom setting */ - if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FUNC_1) - adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; - break; - case E1000_DEV_ID_82576_QUAD_COPPER: - case E1000_DEV_ID_82576_QUAD_COPPER_ET2: - /* if quad port adapter, disable WoL on all but port A */ - if (global_quad_port_a != 0) - adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; - else - adapter->flags |= IGB_FLAG_QUAD_PORT_A; - /* Reset for multiple quad port adapters */ - if (++global_quad_port_a == 4) - global_quad_port_a = 0; - break; - default: - /* If the device can't wake, don't set software support */ - if (!device_can_wakeup(&adapter->pdev->dev)) - adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; - break; - } - - /* initialize the wol settings based on the eeprom settings */ - if (adapter->flags & IGB_FLAG_WOL_SUPPORTED) - adapter->wol |= E1000_WUFC_MAG; - - /* Some vendors want WoL disabled by default, but still supported */ - if ((hw->mac.type == e1000_i350) && - (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) { - adapter->flags |= IGB_FLAG_WOL_SUPPORTED; - adapter->wol = 0; - } - -#ifdef NO_KNI - device_set_wakeup_enable(pci_dev_to_dev(adapter->pdev), - adapter->flags & IGB_FLAG_WOL_SUPPORTED); - - /* reset the hardware with the new settings */ - igb_reset(adapter); - adapter->devrc = 0; - -#ifdef HAVE_I2C_SUPPORT - /* Init the I2C interface */ - err = igb_init_i2c(adapter); - if (err) { - dev_err(&pdev->dev, "failed to init i2c interface\n"); - goto err_eeprom; - } -#endif /* HAVE_I2C_SUPPORT */ - - /* let the f/w know that the h/w is now under the control of the - * driver. */ - igb_get_hw_control(adapter); - - strncpy(netdev->name, "eth%d", IFNAMSIZ); - err = register_netdev(netdev); - if (err) - goto err_register; - -#ifdef CONFIG_IGB_VMDQ_NETDEV - err = igb_init_vmdq_netdevs(adapter); - if (err) - goto err_register; -#endif - /* carrier off reporting is important to ethtool even BEFORE open */ - netif_carrier_off(netdev); - -#ifdef IGB_DCA - if (dca_add_requester(&pdev->dev) == E1000_SUCCESS) { - adapter->flags |= IGB_FLAG_DCA_ENABLED; - dev_info(pci_dev_to_dev(pdev), "DCA enabled\n"); - igb_setup_dca(adapter); - } - -#endif -#ifdef HAVE_PTP_1588_CLOCK - /* do hw tstamp init after resetting */ - igb_ptp_init(adapter); -#endif /* HAVE_PTP_1588_CLOCK */ - -#endif /* NO_KNI */ - dev_info(pci_dev_to_dev(pdev), "Intel(R) Gigabit Ethernet Network Connection\n"); - /* print bus type/speed/width info */ - dev_info(pci_dev_to_dev(pdev), "%s: (PCIe:%s:%s) ", - netdev->name, - ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5GT/s" : - (hw->bus.speed == e1000_bus_speed_5000) ? "5.0GT/s" : - (hw->mac.type == e1000_i354) ? "integrated" : - "unknown"), - ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : - (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" : - (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" : - (hw->mac.type == e1000_i354) ? "integrated" : - "unknown")); - dev_info(pci_dev_to_dev(pdev), "%s: MAC: ", netdev->name); - for (i = 0; i < 6; i++) - printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':'); - - ret_val = e1000_read_pba_string(hw, pba_str, E1000_PBANUM_LENGTH); - if (ret_val) - strncpy(pba_str, "Unknown", sizeof(pba_str) - 1); - dev_info(pci_dev_to_dev(pdev), "%s: PBA No: %s\n", netdev->name, - pba_str); - - - /* Initialize the thermal sensor on i350 devices. */ - if (hw->mac.type == e1000_i350) { - if (hw->bus.func == 0) { - u16 ets_word; - - /* - * Read the NVM to determine if this i350 device - * supports an external thermal sensor. - */ - e1000_read_nvm(hw, NVM_ETS_CFG, 1, &ets_word); - if (ets_word != 0x0000 && ets_word != 0xFFFF) - adapter->ets = true; - else - adapter->ets = false; - } -#ifdef NO_KNI -#ifdef IGB_HWMON - - igb_sysfs_init(adapter); -#else -#ifdef IGB_PROCFS - - igb_procfs_init(adapter); -#endif /* IGB_PROCFS */ -#endif /* IGB_HWMON */ -#endif /* NO_KNI */ - } else { - adapter->ets = false; - } - - if (hw->phy.media_type == e1000_media_type_copper) { - switch (hw->mac.type) { - case e1000_i350: - case e1000_i210: - case e1000_i211: - /* Enable EEE for internal copper PHY devices */ - err = e1000_set_eee_i350(hw); - if ((!err) && - (adapter->flags & IGB_FLAG_EEE)) - adapter->eee_advert = - MDIO_EEE_100TX | MDIO_EEE_1000T; - break; - case e1000_i354: - if ((E1000_READ_REG(hw, E1000_CTRL_EXT)) & - (E1000_CTRL_EXT_LINK_MODE_SGMII)) { - err = e1000_set_eee_i354(hw); - if ((!err) && - (adapter->flags & IGB_FLAG_EEE)) - adapter->eee_advert = - MDIO_EEE_100TX | MDIO_EEE_1000T; - } - break; - default: - break; - } - } - - /* send driver version info to firmware */ - if (hw->mac.type >= e1000_i350) - igb_init_fw(adapter); - -#ifndef IGB_NO_LRO - if (netdev->features & NETIF_F_LRO) - dev_info(pci_dev_to_dev(pdev), "Internal LRO is enabled \n"); - else - dev_info(pci_dev_to_dev(pdev), "LRO is disabled \n"); -#endif - dev_info(pci_dev_to_dev(pdev), - "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", - adapter->msix_entries ? "MSI-X" : - (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", - adapter->num_rx_queues, adapter->num_tx_queues); - - cards_found++; - *lad_dev = netdev; - - pm_runtime_put_noidle(&pdev->dev); - return 0; - -//err_register: -// igb_release_hw_control(adapter); -#ifdef HAVE_I2C_SUPPORT - memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap)); -#endif /* HAVE_I2C_SUPPORT */ -err_eeprom: -// if (!e1000_check_reset_block(hw)) -// e1000_phy_hw_reset(hw); - - if (hw->flash_address) - iounmap(hw->flash_address); -err_sw_init: -// igb_clear_interrupt_scheme(adapter); -// igb_reset_sriov_capability(adapter); - iounmap(hw->hw_addr); -err_ioremap: - free_netdev(netdev); -err_alloc_etherdev: -// pci_release_selected_regions(pdev, -// pci_select_bars(pdev, IORESOURCE_MEM)); -//err_pci_reg: -//err_dma: - pci_disable_device(pdev); - return err; -} - - -void igb_kni_remove(struct pci_dev *pdev) -{ - pci_disable_device(pdev); -} diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/igb_param.c b/lib/librte_eal/linuxapp/kni/ethtool/igb/igb_param.c deleted file mode 100644 index 98209a10..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/igb_param.c +++ /dev/null @@ -1,832 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - - -#include <linux/netdevice.h> - -#include "igb.h" - -/* This is the only thing that needs to be changed to adjust the - * maximum number of ports that the driver can manage. - */ - -#define IGB_MAX_NIC 32 - -#define OPTION_UNSET -1 -#define OPTION_DISABLED 0 -#define OPTION_ENABLED 1 -#define MAX_NUM_LIST_OPTS 15 - -/* All parameters are treated the same, as an integer array of values. - * This macro just reduces the need to repeat the same declaration code - * over and over (plus this helps to avoid typo bugs). - */ - -#define IGB_PARAM_INIT { [0 ... IGB_MAX_NIC] = OPTION_UNSET } -#ifndef module_param_array -/* Module Parameters are always initialized to -1, so that the driver - * can tell the difference between no user specified value or the - * user asking for the default value. - * The true default values are loaded in when igb_check_options is called. - * - * This is a GCC extension to ANSI C. - * See the item "Labeled Elements in Initializers" in the section - * "Extensions to the C Language Family" of the GCC documentation. - */ - -#define IGB_PARAM(X, desc) \ - static const int X[IGB_MAX_NIC+1] = IGB_PARAM_INIT; \ - MODULE_PARM(X, "1-" __MODULE_STRING(IGB_MAX_NIC) "i"); \ - MODULE_PARM_DESC(X, desc); -#else -#define IGB_PARAM(X, desc) \ - static int X[IGB_MAX_NIC+1] = IGB_PARAM_INIT; \ - static unsigned int num_##X; \ - module_param_array_named(X, X, int, &num_##X, 0); \ - MODULE_PARM_DESC(X, desc); -#endif - -/* Interrupt Throttle Rate (interrupts/sec) - * - * Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative) - */ -IGB_PARAM(InterruptThrottleRate, - "Maximum interrupts per second, per vector, (max 100000), default 3=adaptive"); -#define DEFAULT_ITR 3 -#define MAX_ITR 100000 -/* #define MIN_ITR 120 */ -#define MIN_ITR 0 -/* IntMode (Interrupt Mode) - * - * Valid Range: 0 - 2 - * - * Default Value: 2 (MSI-X) - */ -IGB_PARAM(IntMode, "Change Interrupt Mode (0=Legacy, 1=MSI, 2=MSI-X), default 2"); -#define MAX_INTMODE IGB_INT_MODE_MSIX -#define MIN_INTMODE IGB_INT_MODE_LEGACY - -IGB_PARAM(Node, "set the starting node to allocate memory on, default -1"); - -/* LLIPort (Low Latency Interrupt TCP Port) - * - * Valid Range: 0 - 65535 - * - * Default Value: 0 (disabled) - */ -IGB_PARAM(LLIPort, "Low Latency Interrupt TCP Port (0-65535), default 0=off"); - -#define DEFAULT_LLIPORT 0 -#define MAX_LLIPORT 0xFFFF -#define MIN_LLIPORT 0 - -/* LLIPush (Low Latency Interrupt on TCP Push flag) - * - * Valid Range: 0, 1 - * - * Default Value: 0 (disabled) - */ -IGB_PARAM(LLIPush, "Low Latency Interrupt on TCP Push flag (0,1), default 0=off"); - -#define DEFAULT_LLIPUSH 0 -#define MAX_LLIPUSH 1 -#define MIN_LLIPUSH 0 - -/* LLISize (Low Latency Interrupt on Packet Size) - * - * Valid Range: 0 - 1500 - * - * Default Value: 0 (disabled) - */ -IGB_PARAM(LLISize, "Low Latency Interrupt on Packet Size (0-1500), default 0=off"); - -#define DEFAULT_LLISIZE 0 -#define MAX_LLISIZE 1500 -#define MIN_LLISIZE 0 - -/* RSS (Enable RSS multiqueue receive) - * - * Valid Range: 0 - 8 - * - * Default Value: 1 - */ -IGB_PARAM(RSS, "Number of Receive-Side Scaling Descriptor Queues (0-8), default 1, 0=number of cpus"); - -#define DEFAULT_RSS 1 -#define MAX_RSS 8 -#define MIN_RSS 0 - -/* VMDQ (Enable VMDq multiqueue receive) - * - * Valid Range: 0 - 8 - * - * Default Value: 0 - */ -IGB_PARAM(VMDQ, "Number of Virtual Machine Device Queues: 0-1 = disable, 2-8 enable, default 0"); - -#define DEFAULT_VMDQ 0 -#define MAX_VMDQ MAX_RSS -#define MIN_VMDQ 0 - -/* max_vfs (Enable SR-IOV VF devices) - * - * Valid Range: 0 - 7 - * - * Default Value: 0 - */ -IGB_PARAM(max_vfs, "Number of Virtual Functions: 0 = disable, 1-7 enable, default 0"); - -#define DEFAULT_SRIOV 0 -#define MAX_SRIOV 7 -#define MIN_SRIOV 0 - -/* MDD (Enable Malicious Driver Detection) - * - * Only available when SR-IOV is enabled - max_vfs is greater than 0 - * - * Valid Range: 0, 1 - * - * Default Value: 1 - */ -IGB_PARAM(MDD, "Malicious Driver Detection (0/1), default 1 = enabled. " - "Only available when max_vfs is greater than 0"); - -#ifdef DEBUG - -/* Disable Hardware Reset on Tx Hang - * - * Valid Range: 0, 1 - * - * Default Value: 0 (disabled, i.e. h/w will reset) - */ -IGB_PARAM(DisableHwReset, "Disable reset of hardware on Tx hang"); - -/* Dump Transmit and Receive buffers - * - * Valid Range: 0, 1 - * - * Default Value: 0 - */ -IGB_PARAM(DumpBuffers, "Dump Tx/Rx buffers on Tx hang or by request"); - -#endif /* DEBUG */ - -/* QueuePairs (Enable TX/RX queue pairs for interrupt handling) - * - * Valid Range: 0 - 1 - * - * Default Value: 1 - */ -IGB_PARAM(QueuePairs, "Enable Tx/Rx queue pairs for interrupt handling (0,1), default 1=on"); - -#define DEFAULT_QUEUE_PAIRS 1 -#define MAX_QUEUE_PAIRS 1 -#define MIN_QUEUE_PAIRS 0 - -/* Enable/disable EEE (a.k.a. IEEE802.3az) - * - * Valid Range: 0, 1 - * - * Default Value: 1 - */ - IGB_PARAM(EEE, "Enable/disable on parts that support the feature"); - -/* Enable/disable DMA Coalescing - * - * Valid Values: 0(off), 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, - * 9000, 10000(msec), 250(usec), 500(usec) - * - * Default Value: 0 - */ - IGB_PARAM(DMAC, "Disable or set latency for DMA Coalescing ((0=off, 1000-10000(msec), 250, 500 (usec))"); - -#ifndef IGB_NO_LRO -/* Enable/disable Large Receive Offload - * - * Valid Values: 0(off), 1(on) - * - * Default Value: 0 - */ - IGB_PARAM(LRO, "Large Receive Offload (0,1), default 0=off"); - -#endif -struct igb_opt_list { - int i; - char *str; -}; -struct igb_option { - enum { enable_option, range_option, list_option } type; - const char *name; - const char *err; - int def; - union { - struct { /* range_option info */ - int min; - int max; - } r; - struct { /* list_option info */ - int nr; - struct igb_opt_list *p; - } l; - } arg; -}; - -static int igb_validate_option(unsigned int *value, - struct igb_option *opt, - struct igb_adapter *adapter) -{ - if (*value == OPTION_UNSET) { - *value = opt->def; - return 0; - } - - switch (opt->type) { - case enable_option: - switch (*value) { - case OPTION_ENABLED: - DPRINTK(PROBE, INFO, "%s Enabled\n", opt->name); - return 0; - case OPTION_DISABLED: - DPRINTK(PROBE, INFO, "%s Disabled\n", opt->name); - return 0; - } - break; - case range_option: - if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) { - DPRINTK(PROBE, INFO, - "%s set to %d\n", opt->name, *value); - return 0; - } - break; - case list_option: { - int i; - struct igb_opt_list *ent; - - for (i = 0; i < opt->arg.l.nr; i++) { - ent = &opt->arg.l.p[i]; - if (*value == ent->i) { - if (ent->str[0] != '\0') - DPRINTK(PROBE, INFO, "%s\n", ent->str); - return 0; - } - } - } - break; - default: - BUG(); - } - - DPRINTK(PROBE, INFO, "Invalid %s value specified (%d) %s\n", - opt->name, *value, opt->err); - *value = opt->def; - return -1; -} - -/** - * igb_check_options - Range Checking for Command Line Parameters - * @adapter: board private structure - * - * This routine checks all command line parameters for valid user - * input. If an invalid value is given, or if no user specified - * value exists, a default value is used. The final value is stored - * in a variable in the adapter structure. - **/ - -void igb_check_options(struct igb_adapter *adapter) -{ - int bd = adapter->bd_number; - struct e1000_hw *hw = &adapter->hw; - - if (bd >= IGB_MAX_NIC) { - DPRINTK(PROBE, NOTICE, - "Warning: no configuration for board #%d\n", bd); - DPRINTK(PROBE, NOTICE, "Using defaults for all values\n"); -#ifndef module_param_array - bd = IGB_MAX_NIC; -#endif - } - - { /* Interrupt Throttling Rate */ - struct igb_option opt = { - .type = range_option, - .name = "Interrupt Throttling Rate (ints/sec)", - .err = "using default of " __MODULE_STRING(DEFAULT_ITR), - .def = DEFAULT_ITR, - .arg = { .r = { .min = MIN_ITR, - .max = MAX_ITR } } - }; - -#ifdef module_param_array - if (num_InterruptThrottleRate > bd) { -#endif - unsigned int itr = InterruptThrottleRate[bd]; - - switch (itr) { - case 0: - DPRINTK(PROBE, INFO, "%s turned off\n", - opt.name); - if (hw->mac.type >= e1000_i350) - adapter->dmac = IGB_DMAC_DISABLE; - adapter->rx_itr_setting = itr; - break; - case 1: - DPRINTK(PROBE, INFO, "%s set to dynamic mode\n", - opt.name); - adapter->rx_itr_setting = itr; - break; - case 3: - DPRINTK(PROBE, INFO, - "%s set to dynamic conservative mode\n", - opt.name); - adapter->rx_itr_setting = itr; - break; - default: - igb_validate_option(&itr, &opt, adapter); - /* Save the setting, because the dynamic bits - * change itr. In case of invalid user value, - * default to conservative mode, else need to - * clear the lower two bits because they are - * used as control */ - if (itr == 3) { - adapter->rx_itr_setting = itr; - } else { - adapter->rx_itr_setting = 1000000000 / - (itr * 256); - adapter->rx_itr_setting &= ~3; - } - break; - } -#ifdef module_param_array - } else { - adapter->rx_itr_setting = opt.def; - } -#endif - adapter->tx_itr_setting = adapter->rx_itr_setting; - } - { /* Interrupt Mode */ - struct igb_option opt = { - .type = range_option, - .name = "Interrupt Mode", - .err = "defaulting to 2 (MSI-X)", - .def = IGB_INT_MODE_MSIX, - .arg = { .r = { .min = MIN_INTMODE, - .max = MAX_INTMODE } } - }; - -#ifdef module_param_array - if (num_IntMode > bd) { -#endif - unsigned int int_mode = IntMode[bd]; - igb_validate_option(&int_mode, &opt, adapter); - adapter->int_mode = int_mode; -#ifdef module_param_array - } else { - adapter->int_mode = opt.def; - } -#endif - } - { /* Low Latency Interrupt TCP Port */ - struct igb_option opt = { - .type = range_option, - .name = "Low Latency Interrupt TCP Port", - .err = "using default of " __MODULE_STRING(DEFAULT_LLIPORT), - .def = DEFAULT_LLIPORT, - .arg = { .r = { .min = MIN_LLIPORT, - .max = MAX_LLIPORT } } - }; - -#ifdef module_param_array - if (num_LLIPort > bd) { -#endif - adapter->lli_port = LLIPort[bd]; - if (adapter->lli_port) { - igb_validate_option(&adapter->lli_port, &opt, - adapter); - } else { - DPRINTK(PROBE, INFO, "%s turned off\n", - opt.name); - } -#ifdef module_param_array - } else { - adapter->lli_port = opt.def; - } -#endif - } - { /* Low Latency Interrupt on Packet Size */ - struct igb_option opt = { - .type = range_option, - .name = "Low Latency Interrupt on Packet Size", - .err = "using default of " __MODULE_STRING(DEFAULT_LLISIZE), - .def = DEFAULT_LLISIZE, - .arg = { .r = { .min = MIN_LLISIZE, - .max = MAX_LLISIZE } } - }; - -#ifdef module_param_array - if (num_LLISize > bd) { -#endif - adapter->lli_size = LLISize[bd]; - if (adapter->lli_size) { - igb_validate_option(&adapter->lli_size, &opt, - adapter); - } else { - DPRINTK(PROBE, INFO, "%s turned off\n", - opt.name); - } -#ifdef module_param_array - } else { - adapter->lli_size = opt.def; - } -#endif - } - { /* Low Latency Interrupt on TCP Push flag */ - struct igb_option opt = { - .type = enable_option, - .name = "Low Latency Interrupt on TCP Push flag", - .err = "defaulting to Disabled", - .def = OPTION_DISABLED - }; - -#ifdef module_param_array - if (num_LLIPush > bd) { -#endif - unsigned int lli_push = LLIPush[bd]; - igb_validate_option(&lli_push, &opt, adapter); - adapter->flags |= lli_push ? IGB_FLAG_LLI_PUSH : 0; -#ifdef module_param_array - } else { - adapter->flags |= opt.def ? IGB_FLAG_LLI_PUSH : 0; - } -#endif - } - { /* SRIOV - Enable SR-IOV VF devices */ - struct igb_option opt = { - .type = range_option, - .name = "max_vfs - SR-IOV VF devices", - .err = "using default of " __MODULE_STRING(DEFAULT_SRIOV), - .def = DEFAULT_SRIOV, - .arg = { .r = { .min = MIN_SRIOV, - .max = MAX_SRIOV } } - }; - -#ifdef module_param_array - if (num_max_vfs > bd) { -#endif - adapter->vfs_allocated_count = max_vfs[bd]; - igb_validate_option(&adapter->vfs_allocated_count, &opt, adapter); - -#ifdef module_param_array - } else { - adapter->vfs_allocated_count = opt.def; - } -#endif - if (adapter->vfs_allocated_count) { - switch (hw->mac.type) { - case e1000_82575: - case e1000_82580: - case e1000_i210: - case e1000_i211: - case e1000_i354: - adapter->vfs_allocated_count = 0; - DPRINTK(PROBE, INFO, "SR-IOV option max_vfs not supported.\n"); - default: - break; - } - } - } - { /* VMDQ - Enable VMDq multiqueue receive */ - struct igb_option opt = { - .type = range_option, - .name = "VMDQ - VMDq multiqueue queue count", - .err = "using default of " __MODULE_STRING(DEFAULT_VMDQ), - .def = DEFAULT_VMDQ, - .arg = { .r = { .min = MIN_VMDQ, - .max = (MAX_VMDQ - adapter->vfs_allocated_count) } } - }; - if ((hw->mac.type != e1000_i210) || - (hw->mac.type != e1000_i211)) { -#ifdef module_param_array - if (num_VMDQ > bd) { -#endif - adapter->vmdq_pools = (VMDQ[bd] == 1 ? 0 : VMDQ[bd]); - if (adapter->vfs_allocated_count && !adapter->vmdq_pools) { - DPRINTK(PROBE, INFO, "Enabling SR-IOV requires VMDq be set to at least 1\n"); - adapter->vmdq_pools = 1; - } - igb_validate_option(&adapter->vmdq_pools, &opt, adapter); - -#ifdef module_param_array - } else { - if (!adapter->vfs_allocated_count) - adapter->vmdq_pools = (opt.def == 1 ? 0 : opt.def); - else - adapter->vmdq_pools = 1; - } -#endif -#ifdef CONFIG_IGB_VMDQ_NETDEV - if (hw->mac.type == e1000_82575 && adapter->vmdq_pools) { - DPRINTK(PROBE, INFO, "VMDq not supported on this part.\n"); - adapter->vmdq_pools = 0; - } -#endif - - } else { - DPRINTK(PROBE, INFO, "VMDq option is not supported.\n"); - adapter->vmdq_pools = opt.def; - } - } - { /* RSS - Enable RSS multiqueue receives */ - struct igb_option opt = { - .type = range_option, - .name = "RSS - RSS multiqueue receive count", - .err = "using default of " __MODULE_STRING(DEFAULT_RSS), - .def = DEFAULT_RSS, - .arg = { .r = { .min = MIN_RSS, - .max = MAX_RSS } } - }; - - switch (hw->mac.type) { - case e1000_82575: -#ifndef CONFIG_IGB_VMDQ_NETDEV - if (!!adapter->vmdq_pools) { - if (adapter->vmdq_pools <= 2) { - if (adapter->vmdq_pools == 2) - opt.arg.r.max = 3; - } else { - opt.arg.r.max = 1; - } - } else { - opt.arg.r.max = 4; - } -#else - opt.arg.r.max = !!adapter->vmdq_pools ? 1 : 4; -#endif /* CONFIG_IGB_VMDQ_NETDEV */ - break; - case e1000_i210: - opt.arg.r.max = 4; - break; - case e1000_i211: - opt.arg.r.max = 2; - break; - case e1000_82576: -#ifndef CONFIG_IGB_VMDQ_NETDEV - if (!!adapter->vmdq_pools) - opt.arg.r.max = 2; - break; -#endif /* CONFIG_IGB_VMDQ_NETDEV */ - case e1000_82580: - case e1000_i350: - case e1000_i354: - default: - if (!!adapter->vmdq_pools) - opt.arg.r.max = 1; - break; - } - - if (adapter->int_mode != IGB_INT_MODE_MSIX) { - DPRINTK(PROBE, INFO, "RSS is not supported when in MSI/Legacy Interrupt mode, %s\n", - opt.err); - opt.arg.r.max = 1; - } - -#ifdef module_param_array - if (num_RSS > bd) { -#endif - adapter->rss_queues = RSS[bd]; - switch (adapter->rss_queues) { - case 1: - break; - default: - igb_validate_option(&adapter->rss_queues, &opt, adapter); - if (adapter->rss_queues) - break; - case 0: - adapter->rss_queues = min_t(u32, opt.arg.r.max, num_online_cpus()); - break; - } -#ifdef module_param_array - } else { - adapter->rss_queues = opt.def; - } -#endif - } - { /* QueuePairs - Enable Tx/Rx queue pairs for interrupt handling */ - struct igb_option opt = { - .type = enable_option, - .name = "QueuePairs - Tx/Rx queue pairs for interrupt handling", - .err = "defaulting to Enabled", - .def = OPTION_ENABLED - }; -#ifdef module_param_array - if (num_QueuePairs > bd) { -#endif - unsigned int qp = QueuePairs[bd]; - /* - * We must enable queue pairs if the number of queues - * exceeds the number of available interrupts. We are - * limited to 10, or 3 per unallocated vf. On I210 and - * I211 devices, we are limited to 5 interrupts. - * However, since I211 only supports 2 queues, we do not - * need to check and override the user option. - */ - if (qp == OPTION_DISABLED) { - if (adapter->rss_queues > 4) - qp = OPTION_ENABLED; - - if (adapter->vmdq_pools > 4) - qp = OPTION_ENABLED; - - if (adapter->rss_queues > 1 && - (adapter->vmdq_pools > 3 || - adapter->vfs_allocated_count > 6)) - qp = OPTION_ENABLED; - - if (hw->mac.type == e1000_i210 && - adapter->rss_queues > 2) - qp = OPTION_ENABLED; - - if (qp == OPTION_ENABLED) - DPRINTK(PROBE, INFO, "Number of queues exceeds available interrupts, %s\n", - opt.err); - } - igb_validate_option(&qp, &opt, adapter); - adapter->flags |= qp ? IGB_FLAG_QUEUE_PAIRS : 0; -#ifdef module_param_array - } else { - adapter->flags |= opt.def ? IGB_FLAG_QUEUE_PAIRS : 0; - } -#endif - } - { /* EEE - Enable EEE for capable adapters */ - - if (hw->mac.type >= e1000_i350) { - struct igb_option opt = { - .type = enable_option, - .name = "EEE Support", - .err = "defaulting to Enabled", - .def = OPTION_ENABLED - }; -#ifdef module_param_array - if (num_EEE > bd) { -#endif - unsigned int eee = EEE[bd]; - igb_validate_option(&eee, &opt, adapter); - adapter->flags |= eee ? IGB_FLAG_EEE : 0; - if (eee) - hw->dev_spec._82575.eee_disable = false; - else - hw->dev_spec._82575.eee_disable = true; - -#ifdef module_param_array - } else { - adapter->flags |= opt.def ? IGB_FLAG_EEE : 0; - if (adapter->flags & IGB_FLAG_EEE) - hw->dev_spec._82575.eee_disable = false; - else - hw->dev_spec._82575.eee_disable = true; - } -#endif - } - } - { /* DMAC - Enable DMA Coalescing for capable adapters */ - - if (hw->mac.type >= e1000_i350) { - struct igb_opt_list list [] = { - { IGB_DMAC_DISABLE, "DMAC Disable"}, - { IGB_DMAC_MIN, "DMAC 250 usec"}, - { IGB_DMAC_500, "DMAC 500 usec"}, - { IGB_DMAC_EN_DEFAULT, "DMAC 1000 usec"}, - { IGB_DMAC_2000, "DMAC 2000 usec"}, - { IGB_DMAC_3000, "DMAC 3000 usec"}, - { IGB_DMAC_4000, "DMAC 4000 usec"}, - { IGB_DMAC_5000, "DMAC 5000 usec"}, - { IGB_DMAC_6000, "DMAC 6000 usec"}, - { IGB_DMAC_7000, "DMAC 7000 usec"}, - { IGB_DMAC_8000, "DMAC 8000 usec"}, - { IGB_DMAC_9000, "DMAC 9000 usec"}, - { IGB_DMAC_MAX, "DMAC 10000 usec"} - }; - struct igb_option opt = { - .type = list_option, - .name = "DMA Coalescing", - .err = "using default of "__MODULE_STRING(IGB_DMAC_DISABLE), - .def = IGB_DMAC_DISABLE, - .arg = { .l = { .nr = 13, - .p = list - } - } - }; -#ifdef module_param_array - if (num_DMAC > bd) { -#endif - unsigned int dmac = DMAC[bd]; - if (adapter->rx_itr_setting == IGB_DMAC_DISABLE) - dmac = IGB_DMAC_DISABLE; - igb_validate_option(&dmac, &opt, adapter); - switch (dmac) { - case IGB_DMAC_DISABLE: - adapter->dmac = dmac; - break; - case IGB_DMAC_MIN: - adapter->dmac = dmac; - break; - case IGB_DMAC_500: - adapter->dmac = dmac; - break; - case IGB_DMAC_EN_DEFAULT: - adapter->dmac = dmac; - break; - case IGB_DMAC_2000: - adapter->dmac = dmac; - break; - case IGB_DMAC_3000: - adapter->dmac = dmac; - break; - case IGB_DMAC_4000: - adapter->dmac = dmac; - break; - case IGB_DMAC_5000: - adapter->dmac = dmac; - break; - case IGB_DMAC_6000: - adapter->dmac = dmac; - break; - case IGB_DMAC_7000: - adapter->dmac = dmac; - break; - case IGB_DMAC_8000: - adapter->dmac = dmac; - break; - case IGB_DMAC_9000: - adapter->dmac = dmac; - break; - case IGB_DMAC_MAX: - adapter->dmac = dmac; - break; - default: - adapter->dmac = opt.def; - DPRINTK(PROBE, INFO, - "Invalid DMAC setting, " - "resetting DMAC to %d\n", opt.def); - } -#ifdef module_param_array - } else - adapter->dmac = opt.def; -#endif - } - } -#ifndef IGB_NO_LRO - { /* LRO - Enable Large Receive Offload */ - struct igb_option opt = { - .type = enable_option, - .name = "LRO - Large Receive Offload", - .err = "defaulting to Disabled", - .def = OPTION_DISABLED - }; - struct net_device *netdev = adapter->netdev; -#ifdef module_param_array - if (num_LRO > bd) { -#endif - unsigned int lro = LRO[bd]; - igb_validate_option(&lro, &opt, adapter); - netdev->features |= lro ? NETIF_F_LRO : 0; -#ifdef module_param_array - } else if (opt.def == OPTION_ENABLED) { - netdev->features |= NETIF_F_LRO; - } -#endif - } -#endif /* IGB_NO_LRO */ - { /* MDD - Enable Malicious Driver Detection. Only available when - SR-IOV is enabled. */ - struct igb_option opt = { - .type = enable_option, - .name = "Malicious Driver Detection", - .err = "defaulting to 1", - .def = OPTION_ENABLED, - .arg = { .r = { .min = OPTION_DISABLED, - .max = OPTION_ENABLED } } - }; - -#ifdef module_param_array - if (num_MDD > bd) { -#endif - adapter->mdd = MDD[bd]; - igb_validate_option((uint *)&adapter->mdd, &opt, - adapter); -#ifdef module_param_array - } else { - adapter->mdd = opt.def; - } -#endif - } -} diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/igb_regtest.h b/lib/librte_eal/linuxapp/kni/ethtool/igb/igb_regtest.h deleted file mode 100644 index ec2b86a0..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/igb_regtest.h +++ /dev/null @@ -1,234 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -/* ethtool register test data */ -struct igb_reg_test { - u16 reg; - u16 reg_offset; - u16 array_len; - u16 test_type; - u32 mask; - u32 write; -}; - -/* In the hardware, registers are laid out either singly, in arrays - * spaced 0x100 bytes apart, or in contiguous tables. We assume - * most tests take place on arrays or single registers (handled - * as a single-element array) and special-case the tables. - * Table tests are always pattern tests. - * - * We also make provision for some required setup steps by specifying - * registers to be written without any read-back testing. - */ - -#define PATTERN_TEST 1 -#define SET_READ_TEST 2 -#define WRITE_NO_TEST 3 -#define TABLE32_TEST 4 -#define TABLE64_TEST_LO 5 -#define TABLE64_TEST_HI 6 - -/* i210 reg test */ -static struct igb_reg_test reg_test_i210[] = { - { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, - { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, - { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, - { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, - /* RDH is read-only for i210, only test RDT. */ - { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, - { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0003FFF0, 0x0003FFF0 }, - { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, - { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, - { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, - { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, - { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, - { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, - { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, - { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, - { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, - { E1000_RA, 0, 16, TABLE64_TEST_LO, - 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_RA, 0, 16, TABLE64_TEST_HI, - 0x900FFFFF, 0xFFFFFFFF }, - { E1000_MTA, 0, 128, TABLE32_TEST, - 0xFFFFFFFF, 0xFFFFFFFF }, - { 0, 0, 0, 0 } -}; - -/* i350 reg test */ -static struct igb_reg_test reg_test_i350[] = { - { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, - { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, - /* VET is readonly on i350 */ - { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, - { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, - { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, - { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, - /* RDH is read-only for i350, only test RDT. */ - { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, - { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, - { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, - { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, - { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, - { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, - { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, - { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, - { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, - { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, - { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, - { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, - { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, - { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, - { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, - { E1000_RA, 0, 16, TABLE64_TEST_LO, - 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_RA, 0, 16, TABLE64_TEST_HI, - 0xC3FFFFFF, 0xFFFFFFFF }, - { E1000_RA2, 0, 16, TABLE64_TEST_LO, - 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_RA2, 0, 16, TABLE64_TEST_HI, - 0xC3FFFFFF, 0xFFFFFFFF }, - { E1000_MTA, 0, 128, TABLE32_TEST, - 0xFFFFFFFF, 0xFFFFFFFF }, - { 0, 0, 0, 0 } -}; - -/* 82580 reg test */ -static struct igb_reg_test reg_test_82580[] = { - { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, - { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, - { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, - { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, - { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, - { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, - /* RDH is read-only for 82580, only test RDT. */ - { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, - { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, - { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, - { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, - { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, - { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, - { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, - { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, - { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, - { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, - { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, - { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, - { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, - { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, - { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, - { E1000_RA, 0, 16, TABLE64_TEST_LO, - 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_RA, 0, 16, TABLE64_TEST_HI, - 0x83FFFFFF, 0xFFFFFFFF }, - { E1000_RA2, 0, 8, TABLE64_TEST_LO, - 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_RA2, 0, 8, TABLE64_TEST_HI, - 0x83FFFFFF, 0xFFFFFFFF }, - { E1000_MTA, 0, 128, TABLE32_TEST, - 0xFFFFFFFF, 0xFFFFFFFF }, - { 0, 0, 0, 0 } -}; - -/* 82576 reg test */ -static struct igb_reg_test reg_test_82576[] = { - { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, - { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, - { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, - { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, - { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, - { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, - /* Enable all queues before testing. */ - { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, - { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, - /* RDH is read-only for 82576, only test RDT. */ - { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, - { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, - { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, - { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 }, - { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, - { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, - { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, - { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, - { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, - { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, - { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, - { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, - { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, - { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, - { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, - { E1000_RA, 0, 16, TABLE64_TEST_LO, - 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_RA, 0, 16, TABLE64_TEST_HI, - 0x83FFFFFF, 0xFFFFFFFF }, - { E1000_RA2, 0, 8, TABLE64_TEST_LO, - 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_RA2, 0, 8, TABLE64_TEST_HI, - 0x83FFFFFF, 0xFFFFFFFF }, - { E1000_MTA, 0, 128, TABLE32_TEST, - 0xFFFFFFFF, 0xFFFFFFFF }, - { 0, 0, 0, 0 } -}; - -/* 82575 register test */ -static struct igb_reg_test reg_test_82575[] = { - { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, - { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, - { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, - { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, - /* Enable all four RX queues before testing. */ - { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, - /* RDH is read-only for 82575, only test RDT. */ - { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, - { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, - { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, - { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, - { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, - { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, - { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, - { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, - { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB }, - { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF }, - { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, - { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF }, - { E1000_RA, 0, 16, TABLE64_TEST_LO, - 0xFFFFFFFF, 0xFFFFFFFF }, - { E1000_RA, 0, 16, TABLE64_TEST_HI, - 0x800FFFFF, 0xFFFFFFFF }, - { E1000_MTA, 0, 128, TABLE32_TEST, - 0xFFFFFFFF, 0xFFFFFFFF }, - { 0, 0, 0, 0 } -}; diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/igb_vmdq.c b/lib/librte_eal/linuxapp/kni/ethtool/igb/igb_vmdq.c deleted file mode 100644 index cdd807b9..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/igb_vmdq.c +++ /dev/null @@ -1,421 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - - -#include <linux/tcp.h> - -#include "igb.h" -#include "igb_vmdq.h" -#include <linux/if_vlan.h> - -#ifdef CONFIG_IGB_VMDQ_NETDEV -int igb_vmdq_open(struct net_device *dev) -{ - struct igb_vmdq_adapter *vadapter = netdev_priv(dev); - struct igb_adapter *adapter = vadapter->real_adapter; - struct net_device *main_netdev = adapter->netdev; - int hw_queue = vadapter->rx_ring->queue_index + - adapter->vfs_allocated_count; - - if (test_bit(__IGB_DOWN, &adapter->state)) { - DPRINTK(DRV, WARNING, - "Open %s before opening this device.\n", - main_netdev->name); - return -EAGAIN; - } - netif_carrier_off(dev); - vadapter->tx_ring->vmdq_netdev = dev; - vadapter->rx_ring->vmdq_netdev = dev; - if (is_valid_ether_addr(dev->dev_addr)) { - igb_del_mac_filter(adapter, dev->dev_addr, hw_queue); - igb_add_mac_filter(adapter, dev->dev_addr, hw_queue); - } - netif_carrier_on(dev); - return 0; -} - -int igb_vmdq_close(struct net_device *dev) -{ - struct igb_vmdq_adapter *vadapter = netdev_priv(dev); - struct igb_adapter *adapter = vadapter->real_adapter; - int hw_queue = vadapter->rx_ring->queue_index + - adapter->vfs_allocated_count; - - netif_carrier_off(dev); - igb_del_mac_filter(adapter, dev->dev_addr, hw_queue); - - vadapter->tx_ring->vmdq_netdev = NULL; - vadapter->rx_ring->vmdq_netdev = NULL; - return 0; -} - -netdev_tx_t igb_vmdq_xmit_frame(struct sk_buff *skb, struct net_device *dev) -{ - struct igb_vmdq_adapter *vadapter = netdev_priv(dev); - - return igb_xmit_frame_ring(skb, vadapter->tx_ring); -} - -struct net_device_stats *igb_vmdq_get_stats(struct net_device *dev) -{ - struct igb_vmdq_adapter *vadapter = netdev_priv(dev); - struct igb_adapter *adapter = vadapter->real_adapter; - struct e1000_hw *hw = &adapter->hw; - int hw_queue = vadapter->rx_ring->queue_index + - adapter->vfs_allocated_count; - - vadapter->net_stats.rx_packets += - E1000_READ_REG(hw, E1000_PFVFGPRC(hw_queue)); - E1000_WRITE_REG(hw, E1000_PFVFGPRC(hw_queue), 0); - vadapter->net_stats.tx_packets += - E1000_READ_REG(hw, E1000_PFVFGPTC(hw_queue)); - E1000_WRITE_REG(hw, E1000_PFVFGPTC(hw_queue), 0); - vadapter->net_stats.rx_bytes += - E1000_READ_REG(hw, E1000_PFVFGORC(hw_queue)); - E1000_WRITE_REG(hw, E1000_PFVFGORC(hw_queue), 0); - vadapter->net_stats.tx_bytes += - E1000_READ_REG(hw, E1000_PFVFGOTC(hw_queue)); - E1000_WRITE_REG(hw, E1000_PFVFGOTC(hw_queue), 0); - vadapter->net_stats.multicast += - E1000_READ_REG(hw, E1000_PFVFMPRC(hw_queue)); - E1000_WRITE_REG(hw, E1000_PFVFMPRC(hw_queue), 0); - /* only return the current stats */ - return &vadapter->net_stats; -} - -/** - * igb_write_vm_addr_list - write unicast addresses to RAR table - * @netdev: network interface device structure - * - * Writes unicast address list to the RAR table. - * Returns: -ENOMEM on failure/insufficient address space - * 0 on no addresses written - * X on writing X addresses to the RAR table - **/ -static int igb_write_vm_addr_list(struct net_device *netdev) -{ - struct igb_vmdq_adapter *vadapter = netdev_priv(netdev); - struct igb_adapter *adapter = vadapter->real_adapter; - int count = 0; - int hw_queue = vadapter->rx_ring->queue_index + - adapter->vfs_allocated_count; - - /* return ENOMEM indicating insufficient memory for addresses */ - if (netdev_uc_count(netdev) > igb_available_rars(adapter)) - return -ENOMEM; - - if (!netdev_uc_empty(netdev)) { -#ifdef NETDEV_HW_ADDR_T_UNICAST - struct netdev_hw_addr *ha; -#else - struct dev_mc_list *ha; -#endif - netdev_for_each_uc_addr(ha, netdev) { -#ifdef NETDEV_HW_ADDR_T_UNICAST - igb_del_mac_filter(adapter, ha->addr, hw_queue); - igb_add_mac_filter(adapter, ha->addr, hw_queue); -#else - igb_del_mac_filter(adapter, ha->da_addr, hw_queue); - igb_add_mac_filter(adapter, ha->da_addr, hw_queue); -#endif - count++; - } - } - return count; -} - - -#define E1000_VMOLR_UPE 0x20000000 /* Unicast promiscuous mode */ -void igb_vmdq_set_rx_mode(struct net_device *dev) -{ - struct igb_vmdq_adapter *vadapter = netdev_priv(dev); - struct igb_adapter *adapter = vadapter->real_adapter; - struct e1000_hw *hw = &adapter->hw; - u32 vmolr, rctl; - int hw_queue = vadapter->rx_ring->queue_index + - adapter->vfs_allocated_count; - - /* Check for Promiscuous and All Multicast modes */ - vmolr = E1000_READ_REG(hw, E1000_VMOLR(hw_queue)); - - /* clear the affected bits */ - vmolr &= ~(E1000_VMOLR_UPE | E1000_VMOLR_MPME | - E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE); - - if (dev->flags & IFF_PROMISC) { - vmolr |= E1000_VMOLR_UPE; - rctl = E1000_READ_REG(hw, E1000_RCTL); - rctl |= E1000_RCTL_UPE; - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - } else { - rctl = E1000_READ_REG(hw, E1000_RCTL); - rctl &= ~E1000_RCTL_UPE; - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - if (dev->flags & IFF_ALLMULTI) { - vmolr |= E1000_VMOLR_MPME; - } else { - /* - * Write addresses to the MTA, if the attempt fails - * then we should just turn on promiscuous mode so - * that we can at least receive multicast traffic - */ - if (igb_write_mc_addr_list(adapter->netdev) != 0) - vmolr |= E1000_VMOLR_ROMPE; - } -#ifdef HAVE_SET_RX_MODE - /* - * Write addresses to available RAR registers, if there is not - * sufficient space to store all the addresses then enable - * unicast promiscuous mode - */ - if (igb_write_vm_addr_list(dev) < 0) - vmolr |= E1000_VMOLR_UPE; -#endif - } - E1000_WRITE_REG(hw, E1000_VMOLR(hw_queue), vmolr); - - return; -} - -int igb_vmdq_set_mac(struct net_device *dev, void *p) -{ - struct sockaddr *addr = p; - struct igb_vmdq_adapter *vadapter = netdev_priv(dev); - struct igb_adapter *adapter = vadapter->real_adapter; - int hw_queue = vadapter->rx_ring->queue_index + - adapter->vfs_allocated_count; - - igb_del_mac_filter(adapter, dev->dev_addr, hw_queue); - memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); - return igb_add_mac_filter(adapter, dev->dev_addr, hw_queue); -} - -int igb_vmdq_change_mtu(struct net_device *dev, int new_mtu) -{ - struct igb_vmdq_adapter *vadapter = netdev_priv(dev); - struct igb_adapter *adapter = vadapter->real_adapter; - - if (adapter->netdev->mtu < new_mtu) { - DPRINTK(PROBE, INFO, - "Set MTU on %s to >= %d " - "before changing MTU on %s\n", - adapter->netdev->name, new_mtu, dev->name); - return -EINVAL; - } - dev->mtu = new_mtu; - return 0; -} - -void igb_vmdq_tx_timeout(struct net_device *dev) -{ - return; -} - -void igb_vmdq_vlan_rx_register(struct net_device *dev, struct vlan_group *grp) -{ - struct igb_vmdq_adapter *vadapter = netdev_priv(dev); - struct igb_adapter *adapter = vadapter->real_adapter; - struct e1000_hw *hw = &adapter->hw; - int hw_queue = vadapter->rx_ring->queue_index + - adapter->vfs_allocated_count; - - vadapter->vlgrp = grp; - - igb_enable_vlan_tags(adapter); - E1000_WRITE_REG(hw, E1000_VMVIR(hw_queue), 0); - - return; -} -void igb_vmdq_vlan_rx_add_vid(struct net_device *dev, unsigned short vid) -{ - struct igb_vmdq_adapter *vadapter = netdev_priv(dev); - struct igb_adapter *adapter = vadapter->real_adapter; -#ifndef HAVE_NETDEV_VLAN_FEATURES - struct net_device *v_netdev; -#endif - int hw_queue = vadapter->rx_ring->queue_index + - adapter->vfs_allocated_count; - - /* attempt to add filter to vlvf array */ - igb_vlvf_set(adapter, vid, TRUE, hw_queue); - -#ifndef HAVE_NETDEV_VLAN_FEATURES - - /* Copy feature flags from netdev to the vlan netdev for this vid. - * This allows things like TSO to bubble down to our vlan device. - */ - v_netdev = vlan_group_get_device(vadapter->vlgrp, vid); - v_netdev->features |= adapter->netdev->features; - vlan_group_set_device(vadapter->vlgrp, vid, v_netdev); -#endif - - return; -} -void igb_vmdq_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid) -{ - struct igb_vmdq_adapter *vadapter = netdev_priv(dev); - struct igb_adapter *adapter = vadapter->real_adapter; - int hw_queue = vadapter->rx_ring->queue_index + - adapter->vfs_allocated_count; - - vlan_group_set_device(vadapter->vlgrp, vid, NULL); - /* remove vlan from VLVF table array */ - igb_vlvf_set(adapter, vid, FALSE, hw_queue); - - - return; -} - -static int igb_vmdq_get_settings(struct net_device *netdev, - struct ethtool_cmd *ecmd) -{ - struct igb_vmdq_adapter *vadapter = netdev_priv(netdev); - struct igb_adapter *adapter = vadapter->real_adapter; - struct e1000_hw *hw = &adapter->hw; - u32 status; - - if (hw->phy.media_type == e1000_media_type_copper) { - - ecmd->supported = (SUPPORTED_10baseT_Half | - SUPPORTED_10baseT_Full | - SUPPORTED_100baseT_Half | - SUPPORTED_100baseT_Full | - SUPPORTED_1000baseT_Full| - SUPPORTED_Autoneg | - SUPPORTED_TP); - ecmd->advertising = ADVERTISED_TP; - - if (hw->mac.autoneg == 1) { - ecmd->advertising |= ADVERTISED_Autoneg; - /* the e1000 autoneg seems to match ethtool nicely */ - ecmd->advertising |= hw->phy.autoneg_advertised; - } - - ecmd->port = PORT_TP; - ecmd->phy_address = hw->phy.addr; - } else { - ecmd->supported = (SUPPORTED_1000baseT_Full | - SUPPORTED_FIBRE | - SUPPORTED_Autoneg); - - ecmd->advertising = (ADVERTISED_1000baseT_Full | - ADVERTISED_FIBRE | - ADVERTISED_Autoneg); - - ecmd->port = PORT_FIBRE; - } - - ecmd->transceiver = XCVR_INTERNAL; - - status = E1000_READ_REG(hw, E1000_STATUS); - - if (status & E1000_STATUS_LU) { - - if ((status & E1000_STATUS_SPEED_1000) || - hw->phy.media_type != e1000_media_type_copper) - ecmd->speed = SPEED_1000; - else if (status & E1000_STATUS_SPEED_100) - ecmd->speed = SPEED_100; - else - ecmd->speed = SPEED_10; - - if ((status & E1000_STATUS_FD) || - hw->phy.media_type != e1000_media_type_copper) - ecmd->duplex = DUPLEX_FULL; - else - ecmd->duplex = DUPLEX_HALF; - } else { - ecmd->speed = -1; - ecmd->duplex = -1; - } - - ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE; - return 0; -} - - -static u32 igb_vmdq_get_msglevel(struct net_device *netdev) -{ - struct igb_vmdq_adapter *vadapter = netdev_priv(netdev); - struct igb_adapter *adapter = vadapter->real_adapter; - return adapter->msg_enable; -} - -static void igb_vmdq_get_drvinfo(struct net_device *netdev, - struct ethtool_drvinfo *drvinfo) -{ - struct igb_vmdq_adapter *vadapter = netdev_priv(netdev); - struct igb_adapter *adapter = vadapter->real_adapter; - struct net_device *main_netdev = adapter->netdev; - - strncpy(drvinfo->driver, igb_driver_name, 32); - strncpy(drvinfo->version, igb_driver_version, 32); - - strncpy(drvinfo->fw_version, "N/A", 4); - snprintf(drvinfo->bus_info, 32, "%s VMDQ %d", main_netdev->name, - vadapter->rx_ring->queue_index); - drvinfo->n_stats = 0; - drvinfo->testinfo_len = 0; - drvinfo->regdump_len = 0; -} - -static void igb_vmdq_get_ringparam(struct net_device *netdev, - struct ethtool_ringparam *ring) -{ - struct igb_vmdq_adapter *vadapter = netdev_priv(netdev); - - struct igb_ring *tx_ring = vadapter->tx_ring; - struct igb_ring *rx_ring = vadapter->rx_ring; - - ring->rx_max_pending = IGB_MAX_RXD; - ring->tx_max_pending = IGB_MAX_TXD; - ring->rx_mini_max_pending = 0; - ring->rx_jumbo_max_pending = 0; - ring->rx_pending = rx_ring->count; - ring->tx_pending = tx_ring->count; - ring->rx_mini_pending = 0; - ring->rx_jumbo_pending = 0; -} -static u32 igb_vmdq_get_rx_csum(struct net_device *netdev) -{ - struct igb_vmdq_adapter *vadapter = netdev_priv(netdev); - struct igb_adapter *adapter = vadapter->real_adapter; - - return test_bit(IGB_RING_FLAG_RX_CSUM, &adapter->rx_ring[0]->flags); -} - - -static struct ethtool_ops igb_vmdq_ethtool_ops = { - .get_settings = igb_vmdq_get_settings, - .get_drvinfo = igb_vmdq_get_drvinfo, - .get_link = ethtool_op_get_link, - .get_ringparam = igb_vmdq_get_ringparam, - .get_rx_csum = igb_vmdq_get_rx_csum, - .get_tx_csum = ethtool_op_get_tx_csum, - .get_sg = ethtool_op_get_sg, - .set_sg = ethtool_op_set_sg, - .get_msglevel = igb_vmdq_get_msglevel, -#ifdef NETIF_F_TSO - .get_tso = ethtool_op_get_tso, -#endif -#ifdef HAVE_ETHTOOL_GET_PERM_ADDR - .get_perm_addr = ethtool_op_get_perm_addr, -#endif -}; - -void igb_vmdq_set_ethtool_ops(struct net_device *netdev) -{ - SET_ETHTOOL_OPS(netdev, &igb_vmdq_ethtool_ops); -} - - -#endif /* CONFIG_IGB_VMDQ_NETDEV */ diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/igb_vmdq.h b/lib/librte_eal/linuxapp/kni/ethtool/igb/igb_vmdq.h deleted file mode 100644 index e68c48cf..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/igb_vmdq.h +++ /dev/null @@ -1,31 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#ifndef _IGB_VMDQ_H_ -#define _IGB_VMDQ_H_ - -#ifdef CONFIG_IGB_VMDQ_NETDEV -int igb_vmdq_open(struct net_device *dev); -int igb_vmdq_close(struct net_device *dev); -netdev_tx_t igb_vmdq_xmit_frame(struct sk_buff *skb, struct net_device *dev); -struct net_device_stats *igb_vmdq_get_stats(struct net_device *dev); -void igb_vmdq_set_rx_mode(struct net_device *dev); -int igb_vmdq_set_mac(struct net_device *dev, void *addr); -int igb_vmdq_change_mtu(struct net_device *dev, int new_mtu); -void igb_vmdq_tx_timeout(struct net_device *dev); -void igb_vmdq_vlan_rx_register(struct net_device *dev, - struct vlan_group *grp); -void igb_vmdq_vlan_rx_add_vid(struct net_device *dev, unsigned short vid); -void igb_vmdq_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid); -void igb_vmdq_set_ethtool_ops(struct net_device *netdev); -#endif /* CONFIG_IGB_VMDQ_NETDEV */ -#endif /* _IGB_VMDQ_H_ */ diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/kcompat.h b/lib/librte_eal/linuxapp/kni/ethtool/igb/kcompat.h deleted file mode 100644 index fd3175b5..00000000 --- a/lib/librte_eal/linuxapp/kni/ethtool/igb/kcompat.h +++ /dev/null @@ -1,3933 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/******************************************************************************* - - Intel(R) Gigabit Ethernet Linux driver - Copyright(c) 2007-2013 Intel Corporation. - - Contact Information: - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#ifndef _KCOMPAT_H_ -#define _KCOMPAT_H_ - -#ifndef LINUX_VERSION_CODE -#include <linux/version.h> -#else -#define KERNEL_VERSION(a,b,c) (((a) << 16) + ((b) << 8) + (c)) -#endif -#include <linux/init.h> -#include <linux/types.h> -#include <linux/errno.h> -#include <linux/module.h> -#include <linux/pci.h> -#include <linux/netdevice.h> -#include <linux/etherdevice.h> -#include <linux/skbuff.h> -#include <linux/ioport.h> -#include <linux/slab.h> -#include <linux/list.h> -#include <linux/delay.h> -#include <linux/sched.h> -#include <linux/in.h> -#include <linux/ip.h> -#include <linux/udp.h> -#include <linux/mii.h> -#include <linux/vmalloc.h> -#include <asm/io.h> -#include <linux/ethtool.h> -#include <linux/if_vlan.h> - -/* NAPI enable/disable flags here */ -#define NAPI - -#define adapter_struct igb_adapter -#define adapter_q_vector igb_q_vector -#define NAPI - -/* and finally set defines so that the code sees the changes */ -#ifdef NAPI -#else -#endif /* NAPI */ - -/* packet split disable/enable */ -#ifdef DISABLE_PACKET_SPLIT -#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT -#define CONFIG_IGB_DISABLE_PACKET_SPLIT -#endif -#endif /* DISABLE_PACKET_SPLIT */ - -/* MSI compatibility code for all kernels and drivers */ -#ifdef DISABLE_PCI_MSI -#undef CONFIG_PCI_MSI -#endif -#ifndef CONFIG_PCI_MSI -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,8) ) -struct msix_entry { - u16 vector; /* kernel uses to write allocated vector */ - u16 entry; /* driver uses to specify entry, OS writes */ -}; -#endif -#undef pci_enable_msi -#define pci_enable_msi(a) -ENOTSUPP -#undef pci_disable_msi -#define pci_disable_msi(a) do {} while (0) -#undef pci_enable_msix -#define pci_enable_msix(a, b, c) -ENOTSUPP -#undef pci_disable_msix -#define pci_disable_msix(a) do {} while (0) -#define msi_remove_pci_irq_vectors(a) do {} while (0) -#endif /* CONFIG_PCI_MSI */ -#ifdef DISABLE_PM -#undef CONFIG_PM -#endif - -#ifdef DISABLE_NET_POLL_CONTROLLER -#undef CONFIG_NET_POLL_CONTROLLER -#endif - -#ifndef PMSG_SUSPEND -#define PMSG_SUSPEND 3 -#endif - -/* generic boolean compatibility */ -#undef TRUE -#undef FALSE -#define TRUE true -#define FALSE false -#ifdef GCC_VERSION -#if ( GCC_VERSION < 3000 ) -#define _Bool char -#endif -#else -#define _Bool char -#endif - -/* kernels less than 2.4.14 don't have this */ -#ifndef ETH_P_8021Q -#define ETH_P_8021Q 0x8100 -#endif - -#ifndef module_param -#define module_param(v,t,p) MODULE_PARM(v, "i"); -#endif - -#ifndef DMA_64BIT_MASK -#define DMA_64BIT_MASK 0xffffffffffffffffULL -#endif - -#ifndef DMA_32BIT_MASK -#define DMA_32BIT_MASK 0x00000000ffffffffULL -#endif - -#ifndef PCI_CAP_ID_EXP -#define PCI_CAP_ID_EXP 0x10 -#endif - -#ifndef PCIE_LINK_STATE_L0S -#define PCIE_LINK_STATE_L0S 1 -#endif -#ifndef PCIE_LINK_STATE_L1 -#define PCIE_LINK_STATE_L1 2 -#endif - -#ifndef mmiowb -#ifdef CONFIG_IA64 -#define mmiowb() asm volatile ("mf.a" ::: "memory") -#else -#define mmiowb() -#endif -#endif - -#ifndef SET_NETDEV_DEV -#define SET_NETDEV_DEV(net, pdev) -#endif - -#if !defined(HAVE_FREE_NETDEV) && ( LINUX_VERSION_CODE < KERNEL_VERSION(3,1,0) ) -#define free_netdev(x) kfree(x) -#endif - -#ifdef HAVE_POLL_CONTROLLER -#define CONFIG_NET_POLL_CONTROLLER -#endif - -#ifndef SKB_DATAREF_SHIFT -/* if we do not have the infrastructure to detect if skb_header is cloned - just return false in all cases */ -#define skb_header_cloned(x) 0 -#endif - -#ifndef NETIF_F_GSO -#define gso_size tso_size -#define gso_segs tso_segs -#endif - -#ifndef NETIF_F_GRO -#define vlan_gro_receive(_napi, _vlgrp, _vlan, _skb) \ - vlan_hwaccel_receive_skb(_skb, _vlgrp, _vlan) -#define napi_gro_receive(_napi, _skb) netif_receive_skb(_skb) -#endif - -#ifndef NETIF_F_SCTP_CSUM -#define NETIF_F_SCTP_CSUM 0 -#endif - -#ifndef NETIF_F_LRO -#define NETIF_F_LRO (1 << 15) -#endif - -#ifndef NETIF_F_NTUPLE -#define NETIF_F_NTUPLE (1 << 27) -#endif - -#ifndef IPPROTO_SCTP -#define IPPROTO_SCTP 132 -#endif - -#ifndef CHECKSUM_PARTIAL -#define CHECKSUM_PARTIAL CHECKSUM_HW -#define CHECKSUM_COMPLETE CHECKSUM_HW -#endif - -#ifndef __read_mostly -#define __read_mostly -#endif - -#ifndef MII_RESV1 -#define MII_RESV1 0x17 /* Reserved... */ -#endif - -#ifndef unlikely -#define unlikely(_x) _x -#define likely(_x) _x -#endif - -#ifndef WARN_ON -#define WARN_ON(x) -#endif - -#ifndef PCI_DEVICE -#define PCI_DEVICE(vend,dev) \ - .vendor = (vend), .device = (dev), \ - .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID -#endif - -#ifndef node_online -#define node_online(node) ((node) == 0) -#endif - -#ifndef num_online_cpus -#define num_online_cpus() smp_num_cpus -#endif - -#ifndef cpu_online -#define cpu_online(cpuid) test_bit((cpuid), &cpu_online_map) -#endif - -#ifndef _LINUX_RANDOM_H -#include <linux/random.h> -#endif - -#ifndef DECLARE_BITMAP -#ifndef BITS_TO_LONGS -#define BITS_TO_LONGS(bits) (((bits)+BITS_PER_LONG-1)/BITS_PER_LONG) -#endif -#define DECLARE_BITMAP(name,bits) long name[BITS_TO_LONGS(bits)] -#endif - -#ifndef VLAN_HLEN -#define VLAN_HLEN 4 -#endif - -#ifndef VLAN_ETH_HLEN -#define VLAN_ETH_HLEN 18 -#endif - -#ifndef VLAN_ETH_FRAME_LEN -#define VLAN_ETH_FRAME_LEN 1518 -#endif - -#if !defined(IXGBE_DCA) && !defined(IGB_DCA) -#define dca_get_tag(b) 0 -#define dca_add_requester(a) -1 -#define dca_remove_requester(b) do { } while(0) -#define DCA_PROVIDER_ADD 0x0001 -#define DCA_PROVIDER_REMOVE 0x0002 -#endif - -#ifndef DCA_GET_TAG_TWO_ARGS -#define dca3_get_tag(a,b) dca_get_tag(b) -#endif - -#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS -#if defined(__i386__) || defined(__x86_64__) -#define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS -#endif -#endif - -/* taken from 2.6.24 definition in linux/kernel.h */ -#ifndef IS_ALIGNED -#define IS_ALIGNED(x,a) (((x) % ((typeof(x))(a))) == 0) -#endif - -#ifdef IS_ENABLED -#undef IS_ENABLED -#undef __ARG_PLACEHOLDER_1 -#undef config_enabled -#undef _config_enabled -#undef __config_enabled -#undef ___config_enabled -#endif - -#define __ARG_PLACEHOLDER_1 0, -#define config_enabled(cfg) _config_enabled(cfg) -#define _config_enabled(value) __config_enabled(__ARG_PLACEHOLDER_##value) -#define __config_enabled(arg1_or_junk) ___config_enabled(arg1_or_junk 1, 0) -#define ___config_enabled(__ignored, val, ...) val - -#define IS_ENABLED(option) \ - (config_enabled(option) || config_enabled(option##_MODULE)) - -#if !defined(NETIF_F_HW_VLAN_TX) && !defined(NETIF_F_HW_VLAN_CTAG_TX) -struct _kc_vlan_ethhdr { - unsigned char h_dest[ETH_ALEN]; - unsigned char h_source[ETH_ALEN]; - __be16 h_vlan_proto; - __be16 h_vlan_TCI; - __be16 h_vlan_encapsulated_proto; -}; -#define vlan_ethhdr _kc_vlan_ethhdr -struct _kc_vlan_hdr { - __be16 h_vlan_TCI; - __be16 h_vlan_encapsulated_proto; -}; -#define vlan_hdr _kc_vlan_hdr -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(3,10,0) ) -#define vlan_tx_tag_present(_skb) 0 -#define vlan_tx_tag_get(_skb) 0 -#endif -#endif /* NETIF_F_HW_VLAN_TX && NETIF_F_HW_VLAN_CTAG_TX */ - -#ifndef VLAN_PRIO_SHIFT -#define VLAN_PRIO_SHIFT 13 -#endif - - -#ifndef __GFP_COLD -#define __GFP_COLD 0 -#endif - -#ifndef __GFP_COMP -#define __GFP_COMP 0 -#endif - -/*****************************************************************************/ -/* Installations with ethtool version without eeprom, adapter id, or statistics - * support */ - -#ifndef ETH_GSTRING_LEN -#define ETH_GSTRING_LEN 32 -#endif - -#ifndef ETHTOOL_GSTATS -#define ETHTOOL_GSTATS 0x1d -#undef ethtool_drvinfo -#define ethtool_drvinfo k_ethtool_drvinfo -struct k_ethtool_drvinfo { - u32 cmd; - char driver[32]; - char version[32]; - char fw_version[32]; - char bus_info[32]; - char reserved1[32]; - char reserved2[16]; - u32 n_stats; - u32 testinfo_len; - u32 eedump_len; - u32 regdump_len; -}; - -struct ethtool_stats { - u32 cmd; - u32 n_stats; - u64 data[0]; -}; -#endif /* ETHTOOL_GSTATS */ - -#ifndef ETHTOOL_PHYS_ID -#define ETHTOOL_PHYS_ID 0x1c -#endif /* ETHTOOL_PHYS_ID */ - -#ifndef ETHTOOL_GSTRINGS -#define ETHTOOL_GSTRINGS 0x1b -enum ethtool_stringset { - ETH_SS_TEST = 0, - ETH_SS_STATS, -}; -struct ethtool_gstrings { - u32 cmd; /* ETHTOOL_GSTRINGS */ - u32 string_set; /* string set id e.c. ETH_SS_TEST, etc*/ - u32 len; /* number of strings in the string set */ - u8 data[0]; -}; -#endif /* ETHTOOL_GSTRINGS */ - -#ifndef ETHTOOL_TEST -#define ETHTOOL_TEST 0x1a -enum ethtool_test_flags { - ETH_TEST_FL_OFFLINE = (1 << 0), - ETH_TEST_FL_FAILED = (1 << 1), -}; -struct ethtool_test { - u32 cmd; - u32 flags; - u32 reserved; - u32 len; - u64 data[0]; -}; -#endif /* ETHTOOL_TEST */ - -#ifndef ETHTOOL_GEEPROM -#define ETHTOOL_GEEPROM 0xb -#undef ETHTOOL_GREGS -struct ethtool_eeprom { - u32 cmd; - u32 magic; - u32 offset; - u32 len; - u8 data[0]; -}; - -struct ethtool_value { - u32 cmd; - u32 data; -}; -#endif /* ETHTOOL_GEEPROM */ - -#ifndef ETHTOOL_GLINK -#define ETHTOOL_GLINK 0xa -#endif /* ETHTOOL_GLINK */ - -#ifndef ETHTOOL_GWOL -#define ETHTOOL_GWOL 0x5 -#define ETHTOOL_SWOL 0x6 -#define SOPASS_MAX 6 -struct ethtool_wolinfo { - u32 cmd; - u32 supported; - u32 wolopts; - u8 sopass[SOPASS_MAX]; /* SecureOn(tm) password */ -}; -#endif /* ETHTOOL_GWOL */ - -#ifndef ETHTOOL_GREGS -#define ETHTOOL_GREGS 0x00000004 /* Get NIC registers */ -#define ethtool_regs _kc_ethtool_regs -/* for passing big chunks of data */ -struct _kc_ethtool_regs { - u32 cmd; - u32 version; /* driver-specific, indicates different chips/revs */ - u32 len; /* bytes */ - u8 data[0]; -}; -#endif /* ETHTOOL_GREGS */ - -#ifndef ETHTOOL_GMSGLVL -#define ETHTOOL_GMSGLVL 0x00000007 /* Get driver message level */ -#endif -#ifndef ETHTOOL_SMSGLVL -#define ETHTOOL_SMSGLVL 0x00000008 /* Set driver msg level, priv. */ -#endif -#ifndef ETHTOOL_NWAY_RST -#define ETHTOOL_NWAY_RST 0x00000009 /* Restart autonegotiation, priv */ -#endif -#ifndef ETHTOOL_GLINK -#define ETHTOOL_GLINK 0x0000000a /* Get link status */ -#endif -#ifndef ETHTOOL_GEEPROM -#define ETHTOOL_GEEPROM 0x0000000b /* Get EEPROM data */ -#endif -#ifndef ETHTOOL_SEEPROM -#define ETHTOOL_SEEPROM 0x0000000c /* Set EEPROM data */ -#endif -#ifndef ETHTOOL_GCOALESCE -#define ETHTOOL_GCOALESCE 0x0000000e /* Get coalesce config */ -/* for configuring coalescing parameters of chip */ -#define ethtool_coalesce _kc_ethtool_coalesce -struct _kc_ethtool_coalesce { - u32 cmd; /* ETHTOOL_{G,S}COALESCE */ - - /* How many usecs to delay an RX interrupt after - * a packet arrives. If 0, only rx_max_coalesced_frames - * is used. - */ - u32 rx_coalesce_usecs; - - /* How many packets to delay an RX interrupt after - * a packet arrives. If 0, only rx_coalesce_usecs is - * used. It is illegal to set both usecs and max frames - * to zero as this would cause RX interrupts to never be - * generated. - */ - u32 rx_max_coalesced_frames; - - /* Same as above two parameters, except that these values - * apply while an IRQ is being serviced by the host. Not - * all cards support this feature and the values are ignored - * in that case. - */ - u32 rx_coalesce_usecs_irq; - u32 rx_max_coalesced_frames_irq; - - /* How many usecs to delay a TX interrupt after - * a packet is sent. If 0, only tx_max_coalesced_frames - * is used. - */ - u32 tx_coalesce_usecs; - - /* How many packets to delay a TX interrupt after - * a packet is sent. If 0, only tx_coalesce_usecs is - * used. It is illegal to set both usecs and max frames - * to zero as this would cause TX interrupts to never be - * generated. - */ - u32 tx_max_coalesced_frames; - - /* Same as above two parameters, except that these values - * apply while an IRQ is being serviced by the host. Not - * all cards support this feature and the values are ignored - * in that case. - */ - u32 tx_coalesce_usecs_irq; - u32 tx_max_coalesced_frames_irq; - - /* How many usecs to delay in-memory statistics - * block updates. Some drivers do not have an in-memory - * statistic block, and in such cases this value is ignored. - * This value must not be zero. - */ - u32 stats_block_coalesce_usecs; - - /* Adaptive RX/TX coalescing is an algorithm implemented by - * some drivers to improve latency under low packet rates and - * improve throughput under high packet rates. Some drivers - * only implement one of RX or TX adaptive coalescing. Anything - * not implemented by the driver causes these values to be - * silently ignored. - */ - u32 use_adaptive_rx_coalesce; - u32 use_adaptive_tx_coalesce; - - /* When the packet rate (measured in packets per second) - * is below pkt_rate_low, the {rx,tx}_*_low parameters are - * used. - */ - u32 pkt_rate_low; - u32 rx_coalesce_usecs_low; - u32 rx_max_coalesced_frames_low; - u32 tx_coalesce_usecs_low; - u32 tx_max_coalesced_frames_low; - - /* When the packet rate is below pkt_rate_high but above - * pkt_rate_low (both measured in packets per second) the - * normal {rx,tx}_* coalescing parameters are used. - */ - - /* When the packet rate is (measured in packets per second) - * is above pkt_rate_high, the {rx,tx}_*_high parameters are - * used. - */ - u32 pkt_rate_high; - u32 rx_coalesce_usecs_high; - u32 rx_max_coalesced_frames_high; - u32 tx_coalesce_usecs_high; - u32 tx_max_coalesced_frames_high; - - /* How often to do adaptive coalescing packet rate sampling, - * measured in seconds. Must not be zero. - */ - u32 rate_sample_interval; -}; -#endif /* ETHTOOL_GCOALESCE */ - -#ifndef ETHTOOL_SCOALESCE -#define ETHTOOL_SCOALESCE 0x0000000f /* Set coalesce config. */ -#endif -#ifndef ETHTOOL_GRINGPARAM -#define ETHTOOL_GRINGPARAM 0x00000010 /* Get ring parameters */ -/* for configuring RX/TX ring parameters */ -#define ethtool_ringparam _kc_ethtool_ringparam -struct _kc_ethtool_ringparam { - u32 cmd; /* ETHTOOL_{G,S}RINGPARAM */ - - /* Read only attributes. These indicate the maximum number - * of pending RX/TX ring entries the driver will allow the - * user to set. - */ - u32 rx_max_pending; - u32 rx_mini_max_pending; - u32 rx_jumbo_max_pending; - u32 tx_max_pending; - - /* Values changeable by the user. The valid values are - * in the range 1 to the "*_max_pending" counterpart above. - */ - u32 rx_pending; - u32 rx_mini_pending; - u32 rx_jumbo_pending; - u32 tx_pending; -}; -#endif /* ETHTOOL_GRINGPARAM */ - -#ifndef ETHTOOL_SRINGPARAM -#define ETHTOOL_SRINGPARAM 0x00000011 /* Set ring parameters, priv. */ -#endif -#ifndef ETHTOOL_GPAUSEPARAM -#define ETHTOOL_GPAUSEPARAM 0x00000012 /* Get pause parameters */ -/* for configuring link flow control parameters */ -#define ethtool_pauseparam _kc_ethtool_pauseparam -struct _kc_ethtool_pauseparam { - u32 cmd; /* ETHTOOL_{G,S}PAUSEPARAM */ - - /* If the link is being auto-negotiated (via ethtool_cmd.autoneg - * being true) the user may set 'autoneg' here non-zero to have the - * pause parameters be auto-negotiated too. In such a case, the - * {rx,tx}_pause values below determine what capabilities are - * advertised. - * - * If 'autoneg' is zero or the link is not being auto-negotiated, - * then {rx,tx}_pause force the driver to use/not-use pause - * flow control. - */ - u32 autoneg; - u32 rx_pause; - u32 tx_pause; -}; -#endif /* ETHTOOL_GPAUSEPARAM */ - -#ifndef ETHTOOL_SPAUSEPARAM -#define ETHTOOL_SPAUSEPARAM 0x00000013 /* Set pause parameters. */ -#endif -#ifndef ETHTOOL_GRXCSUM -#define ETHTOOL_GRXCSUM 0x00000014 /* Get RX hw csum enable (ethtool_value) */ -#endif -#ifndef ETHTOOL_SRXCSUM -#define ETHTOOL_SRXCSUM 0x00000015 /* Set RX hw csum enable (ethtool_value) */ -#endif -#ifndef ETHTOOL_GTXCSUM -#define ETHTOOL_GTXCSUM 0x00000016 /* Get TX hw csum enable (ethtool_value) */ -#endif -#ifndef ETHTOOL_STXCSUM -#define ETHTOOL_STXCSUM 0x00000017 /* Set TX hw csum enable (ethtool_value) */ -#endif -#ifndef ETHTOOL_GSG -#define ETHTOOL_GSG 0x00000018 /* Get scatter-gather enable - * (ethtool_value) */ -#endif -#ifndef ETHTOOL_SSG -#define ETHTOOL_SSG 0x00000019 /* Set scatter-gather enable - * (ethtool_value). */ -#endif -#ifndef ETHTOOL_TEST -#define ETHTOOL_TEST 0x0000001a /* execute NIC self-test, priv. */ -#endif -#ifndef ETHTOOL_GSTRINGS -#define ETHTOOL_GSTRINGS 0x0000001b /* get specified string set */ -#endif -#ifndef ETHTOOL_PHYS_ID -#define ETHTOOL_PHYS_ID 0x0000001c /* identify the NIC */ -#endif -#ifndef ETHTOOL_GSTATS -#define ETHTOOL_GSTATS 0x0000001d /* get NIC-specific statistics */ -#endif -#ifndef ETHTOOL_GTSO -#define ETHTOOL_GTSO 0x0000001e /* Get TSO enable (ethtool_value) */ -#endif -#ifndef ETHTOOL_STSO -#define ETHTOOL_STSO 0x0000001f /* Set TSO enable (ethtool_value) */ -#endif - -#ifndef ETHTOOL_BUSINFO_LEN -#define ETHTOOL_BUSINFO_LEN 32 -#endif - -#ifndef RHEL_RELEASE_VERSION -#define RHEL_RELEASE_VERSION(a,b) (((a) << 8) + (b)) -#endif -#ifndef AX_RELEASE_VERSION -#define AX_RELEASE_VERSION(a,b) (((a) << 8) + (b)) -#endif - -#ifndef AX_RELEASE_CODE -#define AX_RELEASE_CODE 0 -#endif - -#if (AX_RELEASE_CODE && AX_RELEASE_CODE == AX_RELEASE_VERSION(3,0)) -#define RHEL_RELEASE_CODE RHEL_RELEASE_VERSION(5,0) -#elif (AX_RELEASE_CODE && AX_RELEASE_CODE == AX_RELEASE_VERSION(3,1)) -#define RHEL_RELEASE_CODE RHEL_RELEASE_VERSION(5,1) -#elif (AX_RELEASE_CODE && AX_RELEASE_CODE == AX_RELEASE_VERSION(3,2)) -#define RHEL_RELEASE_CODE RHEL_RELEASE_VERSION(5,3) -#endif - -#ifndef RHEL_RELEASE_CODE -/* NOTE: RHEL_RELEASE_* introduced in RHEL4.5 */ -#define RHEL_RELEASE_CODE 0 -#endif - -/* SuSE version macro is the same as Linux kernel version */ -#ifndef SLE_VERSION -#define SLE_VERSION(a,b,c) KERNEL_VERSION(a,b,c) -#endif -#ifdef CONFIG_SUSE_KERNEL -#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 57)) -/* SLES12SP3 is at least 4.4.57+ based */ -#define SLE_VERSION_CODE SLE_VERSION(12, 3, 0) -#elif ( LINUX_VERSION_CODE >= KERNEL_VERSION(3,12,28) ) -/* SLES12 is at least 3.12.28+ based */ -#define SLE_VERSION_CODE SLE_VERSION(12,0,0) -#elif ((LINUX_VERSION_CODE >= KERNEL_VERSION(3,0,61)) && \ - (LINUX_VERSION_CODE < KERNEL_VERSION(3,1,0))) -/* SLES11 SP3 is at least 3.0.61+ based */ -#define SLE_VERSION_CODE SLE_VERSION(11,3,0) -#elif ( LINUX_VERSION_CODE == KERNEL_VERSION(2,6,32) ) -/* SLES11 SP1 is 2.6.32 based */ -#define SLE_VERSION_CODE SLE_VERSION(11,1,0) -#elif ( LINUX_VERSION_CODE == KERNEL_VERSION(2,6,27) ) -/* SLES11 GA is 2.6.27 based */ -#define SLE_VERSION_CODE SLE_VERSION(11,0,0) -#endif /* LINUX_VERSION_CODE == KERNEL_VERSION(x,y,z) */ -#endif /* CONFIG_SUSE_KERNEL */ -#ifndef SLE_VERSION_CODE -#define SLE_VERSION_CODE 0 -#endif /* SLE_VERSION_CODE */ - -/* Ubuntu release and kernel codes must be specified from Makefile */ -#ifndef UBUNTU_RELEASE_VERSION -#define UBUNTU_RELEASE_VERSION(a,b) (((a) * 100) + (b)) -#endif -#ifndef UBUNTU_KERNEL_VERSION -#define UBUNTU_KERNEL_VERSION(a,b,c,abi,upload) (((a) << 40) + ((b) << 32) + ((c) << 24) + ((abi) << 8) + (upload)) -#endif -#ifndef UBUNTU_RELEASE_CODE -#define UBUNTU_RELEASE_CODE 0 -#endif -#ifndef UBUNTU_KERNEL_CODE -#define UBUNTU_KERNEL_CODE 0 -#endif - -#ifdef __KLOCWORK__ -#ifdef ARRAY_SIZE -#undef ARRAY_SIZE -#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) -#endif -#endif /* __KLOCWORK__ */ - -/*****************************************************************************/ -/* 2.4.3 => 2.4.0 */ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,4,3) ) - -/**************************************/ -/* PCI DRIVER API */ - -#ifndef pci_set_dma_mask -#define pci_set_dma_mask _kc_pci_set_dma_mask -extern int _kc_pci_set_dma_mask(struct pci_dev *dev, dma_addr_t mask); -#endif - -#ifndef pci_request_regions -#define pci_request_regions _kc_pci_request_regions -extern int _kc_pci_request_regions(struct pci_dev *pdev, char *res_name); -#endif - -#ifndef pci_release_regions -#define pci_release_regions _kc_pci_release_regions -extern void _kc_pci_release_regions(struct pci_dev *pdev); -#endif - -/**************************************/ -/* NETWORK DRIVER API */ - -#ifndef alloc_etherdev -#define alloc_etherdev _kc_alloc_etherdev -extern struct net_device * _kc_alloc_etherdev(int sizeof_priv); -#endif - -#ifndef is_valid_ether_addr -#define is_valid_ether_addr _kc_is_valid_ether_addr -extern int _kc_is_valid_ether_addr(u8 *addr); -#endif - -/**************************************/ -/* MISCELLANEOUS */ - -#ifndef INIT_TQUEUE -#define INIT_TQUEUE(_tq, _routine, _data) \ - do { \ - INIT_LIST_HEAD(&(_tq)->list); \ - (_tq)->sync = 0; \ - (_tq)->routine = _routine; \ - (_tq)->data = _data; \ - } while (0) -#endif - -#endif /* 2.4.3 => 2.4.0 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,4,5) ) -/* Generic MII registers. */ -#define MII_BMCR 0x00 /* Basic mode control register */ -#define MII_BMSR 0x01 /* Basic mode status register */ -#define MII_PHYSID1 0x02 /* PHYS ID 1 */ -#define MII_PHYSID2 0x03 /* PHYS ID 2 */ -#define MII_ADVERTISE 0x04 /* Advertisement control reg */ -#define MII_LPA 0x05 /* Link partner ability reg */ -#define MII_EXPANSION 0x06 /* Expansion register */ -/* Basic mode control register. */ -#define BMCR_FULLDPLX 0x0100 /* Full duplex */ -#define BMCR_ANENABLE 0x1000 /* Enable auto negotiation */ -/* Basic mode status register. */ -#define BMSR_ERCAP 0x0001 /* Ext-reg capability */ -#define BMSR_ANEGCAPABLE 0x0008 /* Able to do auto-negotiation */ -#define BMSR_10HALF 0x0800 /* Can do 10mbps, half-duplex */ -#define BMSR_10FULL 0x1000 /* Can do 10mbps, full-duplex */ -#define BMSR_100HALF 0x2000 /* Can do 100mbps, half-duplex */ -#define BMSR_100FULL 0x4000 /* Can do 100mbps, full-duplex */ -/* Advertisement control register. */ -#define ADVERTISE_CSMA 0x0001 /* Only selector supported */ -#define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */ -#define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */ -#define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */ -#define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */ -#define ADVERTISE_ALL (ADVERTISE_10HALF | ADVERTISE_10FULL | \ - ADVERTISE_100HALF | ADVERTISE_100FULL) -/* Expansion register for auto-negotiation. */ -#define EXPANSION_ENABLENPAGE 0x0004 /* This enables npage words */ -#endif - -/*****************************************************************************/ -/* 2.4.6 => 2.4.3 */ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,4,6) ) - -#ifndef pci_set_power_state -#define pci_set_power_state _kc_pci_set_power_state -extern int _kc_pci_set_power_state(struct pci_dev *dev, int state); -#endif - -#ifndef pci_enable_wake -#define pci_enable_wake _kc_pci_enable_wake -extern int _kc_pci_enable_wake(struct pci_dev *pdev, u32 state, int enable); -#endif - -#ifndef pci_disable_device -#define pci_disable_device _kc_pci_disable_device -extern void _kc_pci_disable_device(struct pci_dev *pdev); -#endif - -/* PCI PM entry point syntax changed, so don't support suspend/resume */ -#undef CONFIG_PM - -#endif /* 2.4.6 => 2.4.3 */ - -#ifndef HAVE_PCI_SET_MWI -#define pci_set_mwi(X) pci_write_config_word(X, \ - PCI_COMMAND, adapter->hw.bus.pci_cmd_word | \ - PCI_COMMAND_INVALIDATE); -#define pci_clear_mwi(X) pci_write_config_word(X, \ - PCI_COMMAND, adapter->hw.bus.pci_cmd_word & \ - ~PCI_COMMAND_INVALIDATE); -#endif - -/*****************************************************************************/ -/* 2.4.10 => 2.4.9 */ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,4,10) ) - -/**************************************/ -/* MODULE API */ - -#ifndef MODULE_LICENSE - #define MODULE_LICENSE(X) -#endif - -/**************************************/ -/* OTHER */ - -#undef min -#define min(x,y) ({ \ - const typeof(x) _x = (x); \ - const typeof(y) _y = (y); \ - (void) (&_x == &_y); \ - _x < _y ? _x : _y; }) - -#undef max -#define max(x,y) ({ \ - const typeof(x) _x = (x); \ - const typeof(y) _y = (y); \ - (void) (&_x == &_y); \ - _x > _y ? _x : _y; }) - -#define min_t(type,x,y) ({ \ - type _x = (x); \ - type _y = (y); \ - _x < _y ? _x : _y; }) - -#define max_t(type,x,y) ({ \ - type _x = (x); \ - type _y = (y); \ - _x > _y ? _x : _y; }) - -#ifndef list_for_each_safe -#define list_for_each_safe(pos, n, head) \ - for (pos = (head)->next, n = pos->next; pos != (head); \ - pos = n, n = pos->next) -#endif - -#ifndef ____cacheline_aligned_in_smp -#ifdef CONFIG_SMP -#define ____cacheline_aligned_in_smp ____cacheline_aligned -#else -#define ____cacheline_aligned_in_smp -#endif /* CONFIG_SMP */ -#endif - -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,4,8) ) -extern int _kc_snprintf(char * buf, size_t size, const char *fmt, ...); -#define snprintf(buf, size, fmt, args...) _kc_snprintf(buf, size, fmt, ##args) -extern int _kc_vsnprintf(char *buf, size_t size, const char *fmt, va_list args); -#define vsnprintf(buf, size, fmt, args) _kc_vsnprintf(buf, size, fmt, args) -#else /* 2.4.8 => 2.4.9 */ -extern int snprintf(char * buf, size_t size, const char *fmt, ...); -extern int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); -#endif -#endif /* 2.4.10 -> 2.4.6 */ - - -/*****************************************************************************/ -/* 2.4.12 => 2.4.10 */ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,4,12) ) -#ifndef HAVE_NETIF_MSG -#define HAVE_NETIF_MSG 1 -enum { - NETIF_MSG_DRV = 0x0001, - NETIF_MSG_PROBE = 0x0002, - NETIF_MSG_LINK = 0x0004, - NETIF_MSG_TIMER = 0x0008, - NETIF_MSG_IFDOWN = 0x0010, - NETIF_MSG_IFUP = 0x0020, - NETIF_MSG_RX_ERR = 0x0040, - NETIF_MSG_TX_ERR = 0x0080, - NETIF_MSG_TX_QUEUED = 0x0100, - NETIF_MSG_INTR = 0x0200, - NETIF_MSG_TX_DONE = 0x0400, - NETIF_MSG_RX_STATUS = 0x0800, - NETIF_MSG_PKTDATA = 0x1000, - NETIF_MSG_HW = 0x2000, - NETIF_MSG_WOL = 0x4000, -}; - -#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) -#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) -#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) -#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) -#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) -#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) -#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) -#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) -#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) -#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) -#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) -#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) -#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) -#endif /* !HAVE_NETIF_MSG */ -#endif /* 2.4.12 => 2.4.10 */ - -/*****************************************************************************/ -/* 2.4.13 => 2.4.12 */ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,4,13) ) - -/**************************************/ -/* PCI DMA MAPPING */ - -#ifndef virt_to_page - #define virt_to_page(v) (mem_map + (virt_to_phys(v) >> PAGE_SHIFT)) -#endif - -#ifndef pci_map_page -#define pci_map_page _kc_pci_map_page -extern u64 _kc_pci_map_page(struct pci_dev *dev, struct page *page, unsigned long offset, size_t size, int direction); -#endif - -#ifndef pci_unmap_page -#define pci_unmap_page _kc_pci_unmap_page -extern void _kc_pci_unmap_page(struct pci_dev *dev, u64 dma_addr, size_t size, int direction); -#endif - -/* pci_set_dma_mask takes dma_addr_t, which is only 32-bits prior to 2.4.13 */ - -#undef DMA_32BIT_MASK -#define DMA_32BIT_MASK 0xffffffff -#undef DMA_64BIT_MASK -#define DMA_64BIT_MASK 0xffffffff - -/**************************************/ -/* OTHER */ - -#ifndef cpu_relax -#define cpu_relax() rep_nop() -#endif - -struct vlan_ethhdr { - unsigned char h_dest[ETH_ALEN]; - unsigned char h_source[ETH_ALEN]; - unsigned short h_vlan_proto; - unsigned short h_vlan_TCI; - unsigned short h_vlan_encapsulated_proto; -}; -#endif /* 2.4.13 => 2.4.12 */ - -/*****************************************************************************/ -/* 2.4.17 => 2.4.12 */ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,4,17) ) - -#ifndef __devexit_p - #define __devexit_p(x) &(x) -#endif - -#else - /* For Kernel 3.8 these are not defined - so undefine all */ - #undef __devexit_p - #undef __devexit - #undef __devinit - #undef __devinitdata - #define __devexit_p(x) &(x) - #define __devexit - #define __devinit - #define __devinitdata - -#endif /* 2.4.17 => 2.4.13 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,4,18) ) -#define NETIF_MSG_HW 0x2000 -#define NETIF_MSG_WOL 0x4000 - -#ifndef netif_msg_hw -#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) -#endif -#ifndef netif_msg_wol -#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) -#endif -#endif /* 2.4.18 */ - -/*****************************************************************************/ - -/*****************************************************************************/ -/* 2.4.20 => 2.4.19 */ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,4,20) ) - -/* we won't support NAPI on less than 2.4.20 */ -#ifdef NAPI -#undef NAPI -#endif - -#endif /* 2.4.20 => 2.4.19 */ - -/*****************************************************************************/ -/* 2.4.22 => 2.4.17 */ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,4,22) ) -#define pci_name(x) ((x)->slot_name) - -#ifndef SUPPORTED_10000baseT_Full -#define SUPPORTED_10000baseT_Full (1 << 12) -#endif -#ifndef ADVERTISED_10000baseT_Full -#define ADVERTISED_10000baseT_Full (1 << 12) -#endif -#endif - -/*****************************************************************************/ -/* 2.4.22 => 2.4.17 */ - -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,4,22) ) -#ifndef IGB_NO_LRO -#define IGB_NO_LRO -#endif -#endif - -/*****************************************************************************/ -/*****************************************************************************/ -/* 2.4.23 => 2.4.22 */ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,4,23) ) -/*****************************************************************************/ -#ifdef NAPI -#ifndef netif_poll_disable -#define netif_poll_disable(x) _kc_netif_poll_disable(x) -static inline void _kc_netif_poll_disable(struct net_device *netdev) -{ - while (test_and_set_bit(__LINK_STATE_RX_SCHED, &netdev->state)) { - /* No hurry */ - current->state = TASK_INTERRUPTIBLE; - schedule_timeout(1); - } -} -#endif -#ifndef netif_poll_enable -#define netif_poll_enable(x) _kc_netif_poll_enable(x) -static inline void _kc_netif_poll_enable(struct net_device *netdev) -{ - clear_bit(__LINK_STATE_RX_SCHED, &netdev->state); -} -#endif -#endif /* NAPI */ -#ifndef netif_tx_disable -#define netif_tx_disable(x) _kc_netif_tx_disable(x) -static inline void _kc_netif_tx_disable(struct net_device *dev) -{ - spin_lock_bh(&dev->xmit_lock); - netif_stop_queue(dev); - spin_unlock_bh(&dev->xmit_lock); -} -#endif -#else /* 2.4.23 => 2.4.22 */ -#define HAVE_SCTP -#endif /* 2.4.23 => 2.4.22 */ - -/*****************************************************************************/ -/* 2.6.4 => 2.6.0 */ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,4,25) || \ - ( LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) && \ - LINUX_VERSION_CODE < KERNEL_VERSION(2,6,4) ) ) -#define ETHTOOL_OPS_COMPAT -#endif /* 2.6.4 => 2.6.0 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,4,27) ) -#define __user -#endif /* < 2.4.27 */ - -/*****************************************************************************/ -/* 2.5.71 => 2.4.x */ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,5,71) ) -#define sk_protocol protocol -#define pci_get_device pci_find_device -#endif /* 2.5.70 => 2.4.x */ - -/*****************************************************************************/ -/* < 2.4.27 or 2.6.0 <= 2.6.5 */ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,4,27) || \ - ( LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) && \ - LINUX_VERSION_CODE < KERNEL_VERSION(2,6,5) ) ) - -#ifndef netif_msg_init -#define netif_msg_init _kc_netif_msg_init -static inline u32 _kc_netif_msg_init(int debug_value, int default_msg_enable_bits) -{ - /* use default */ - if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) - return default_msg_enable_bits; - if (debug_value == 0) /* no output */ - return 0; - /* set low N bits */ - return (1 << debug_value) -1; -} -#endif - -#endif /* < 2.4.27 or 2.6.0 <= 2.6.5 */ -/*****************************************************************************/ -#if (( LINUX_VERSION_CODE < KERNEL_VERSION(2,4,27) ) || \ - (( LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) ) && \ - ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,3) ))) -#define netdev_priv(x) x->priv -#endif - -/*****************************************************************************/ -/* <= 2.5.0 */ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) ) -#include <linux/rtnetlink.h> -#undef pci_register_driver -#define pci_register_driver pci_module_init - -/* - * Most of the dma compat code is copied/modified from the 2.4.37 - * /include/linux/libata-compat.h header file - */ -/* These definitions mirror those in pci.h, so they can be used - * interchangeably with their PCI_ counterparts */ -enum dma_data_direction { - DMA_BIDIRECTIONAL = 0, - DMA_TO_DEVICE = 1, - DMA_FROM_DEVICE = 2, - DMA_NONE = 3, -}; - -struct device { - struct pci_dev pdev; -}; - -static inline struct pci_dev *to_pci_dev (struct device *dev) -{ - return (struct pci_dev *) dev; -} -static inline struct device *pci_dev_to_dev(struct pci_dev *pdev) -{ - return (struct device *) pdev; -} - -#define pdev_printk(lvl, pdev, fmt, args...) \ - printk("%s %s: " fmt, lvl, pci_name(pdev), ## args) -#define dev_err(dev, fmt, args...) \ - pdev_printk(KERN_ERR, to_pci_dev(dev), fmt, ## args) -#define dev_info(dev, fmt, args...) \ - pdev_printk(KERN_INFO, to_pci_dev(dev), fmt, ## args) -#define dev_warn(dev, fmt, args...) \ - pdev_printk(KERN_WARNING, to_pci_dev(dev), fmt, ## args) -#define dev_notice(dev, fmt, args...) \ - pdev_printk(KERN_NOTICE, to_pci_dev(dev), fmt, ## args) -#define dev_dbg(dev, fmt, args...) \ - pdev_printk(KERN_DEBUG, to_pci_dev(dev), fmt, ## args) - -/* NOTE: dangerous! we ignore the 'gfp' argument */ -#define dma_alloc_coherent(dev,sz,dma,gfp) \ - pci_alloc_consistent(to_pci_dev(dev),(sz),(dma)) -#define dma_free_coherent(dev,sz,addr,dma_addr) \ - pci_free_consistent(to_pci_dev(dev),(sz),(addr),(dma_addr)) - -#define dma_map_page(dev,a,b,c,d) \ - pci_map_page(to_pci_dev(dev),(a),(b),(c),(d)) -#define dma_unmap_page(dev,a,b,c) \ - pci_unmap_page(to_pci_dev(dev),(a),(b),(c)) - -#define dma_map_single(dev,a,b,c) \ - pci_map_single(to_pci_dev(dev),(a),(b),(c)) -#define dma_unmap_single(dev,a,b,c) \ - pci_unmap_single(to_pci_dev(dev),(a),(b),(c)) - -#define dma_map_sg(dev, sg, nents, dir) \ - pci_map_sg(to_pci_dev(dev), (sg), (nents), (dir) -#define dma_unmap_sg(dev, sg, nents, dir) \ - pci_unmap_sg(to_pci_dev(dev), (sg), (nents), (dir) - -#define dma_sync_single(dev,a,b,c) \ - pci_dma_sync_single(to_pci_dev(dev),(a),(b),(c)) - -/* for range just sync everything, that's all the pci API can do */ -#define dma_sync_single_range(dev,addr,off,sz,dir) \ - pci_dma_sync_single(to_pci_dev(dev),(addr),(off)+(sz),(dir)) - -#define dma_set_mask(dev,mask) \ - pci_set_dma_mask(to_pci_dev(dev),(mask)) - -/* hlist_* code - double linked lists */ -struct hlist_head { - struct hlist_node *first; -}; - -struct hlist_node { - struct hlist_node *next, **pprev; -}; - -static inline void __hlist_del(struct hlist_node *n) -{ - struct hlist_node *next = n->next; - struct hlist_node **pprev = n->pprev; - *pprev = next; - if (next) - next->pprev = pprev; -} - -static inline void hlist_del(struct hlist_node *n) -{ - __hlist_del(n); - n->next = NULL; - n->pprev = NULL; -} - -static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) -{ - struct hlist_node *first = h->first; - n->next = first; - if (first) - first->pprev = &n->next; - h->first = n; - n->pprev = &h->first; -} - -static inline int hlist_empty(const struct hlist_head *h) -{ - return !h->first; -} -#define HLIST_HEAD_INIT { .first = NULL } -#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } -#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) -static inline void INIT_HLIST_NODE(struct hlist_node *h) -{ - h->next = NULL; - h->pprev = NULL; -} - -#ifndef might_sleep -#define might_sleep() -#endif -#else -static inline struct device *pci_dev_to_dev(struct pci_dev *pdev) -{ - return &pdev->dev; -} -#endif /* <= 2.5.0 */ - -/*****************************************************************************/ -/* 2.5.28 => 2.4.23 */ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,5,28) ) - -#include <linux/tqueue.h> -#define work_struct tq_struct -#undef INIT_WORK -#define INIT_WORK(a,b) INIT_TQUEUE(a,(void (*)(void *))b,a) -#undef container_of -#define container_of list_entry -#define schedule_work schedule_task -#define flush_scheduled_work flush_scheduled_tasks -#define cancel_work_sync(x) flush_scheduled_work() - -#endif /* 2.5.28 => 2.4.17 */ - -/*****************************************************************************/ -/* 2.6.0 => 2.5.28 */ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) ) -#ifndef read_barrier_depends -#define read_barrier_depends() rmb() -#endif - -#undef get_cpu -#define get_cpu() smp_processor_id() -#undef put_cpu -#define put_cpu() do { } while(0) -#define MODULE_INFO(version, _version) -#ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT -#define CONFIG_E1000_DISABLE_PACKET_SPLIT 1 -#endif -#ifndef CONFIG_IGB_DISABLE_PACKET_SPLIT -#define CONFIG_IGB_DISABLE_PACKET_SPLIT 1 -#endif - -#define dma_set_coherent_mask(dev,mask) 1 - -#undef dev_put -#define dev_put(dev) __dev_put(dev) - -#ifndef skb_fill_page_desc -#define skb_fill_page_desc _kc_skb_fill_page_desc -extern void _kc_skb_fill_page_desc(struct sk_buff *skb, int i, struct page *page, int off, int size); -#endif - -#undef ALIGN -#define ALIGN(x,a) (((x)+(a)-1)&~((a)-1)) - -#ifndef page_count -#define page_count(p) atomic_read(&(p)->count) -#endif - -#ifdef MAX_NUMNODES -#undef MAX_NUMNODES -#endif -#define MAX_NUMNODES 1 - -/* find_first_bit and find_next bit are not defined for most - * 2.4 kernels (except for the redhat 2.4.21 kernels - */ -#include <linux/bitops.h> -#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG) -#undef find_next_bit -#define find_next_bit _kc_find_next_bit -extern unsigned long _kc_find_next_bit(const unsigned long *addr, - unsigned long size, - unsigned long offset); -#define find_first_bit(addr, size) find_next_bit((addr), (size), 0) - - -#ifndef netdev_name -static inline const char *_kc_netdev_name(const struct net_device *dev) -{ - if (strchr(dev->name, '%')) - return "(unregistered net_device)"; - return dev->name; -} -#define netdev_name(netdev) _kc_netdev_name(netdev) -#endif /* netdev_name */ - -#ifndef strlcpy -#define strlcpy _kc_strlcpy -extern size_t _kc_strlcpy(char *dest, const char *src, size_t size); -#endif /* strlcpy */ - -#ifndef do_div -#if BITS_PER_LONG == 64 -# define do_div(n,base) ({ \ - uint32_t __base = (base); \ - uint32_t __rem; \ - __rem = ((uint64_t)(n)) % __base; \ - (n) = ((uint64_t)(n)) / __base; \ - __rem; \ - }) -#elif BITS_PER_LONG == 32 -extern uint32_t _kc__div64_32(uint64_t *dividend, uint32_t divisor); -# define do_div(n,base) ({ \ - uint32_t __base = (base); \ - uint32_t __rem; \ - if (likely(((n) >> 32) == 0)) { \ - __rem = (uint32_t)(n) % __base; \ - (n) = (uint32_t)(n) / __base; \ - } else \ - __rem = _kc__div64_32(&(n), __base); \ - __rem; \ - }) -#else /* BITS_PER_LONG == ?? */ -# error do_div() does not yet support the C64 -#endif /* BITS_PER_LONG */ -#endif /* do_div */ - -#ifndef NSEC_PER_SEC -#define NSEC_PER_SEC 1000000000L -#endif - -#undef HAVE_I2C_SUPPORT -#else /* 2.6.0 */ -#if IS_ENABLED(CONFIG_I2C_ALGOBIT) && \ - (RHEL_RELEASE_CODE && (RHEL_RELEASE_CODE > RHEL_RELEASE_VERSION(4,9))) -#define HAVE_I2C_SUPPORT -#endif /* IS_ENABLED(CONFIG_I2C_ALGOBIT) */ - -#endif /* 2.6.0 => 2.5.28 */ -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,3) ) -#define dma_pool pci_pool -#define dma_pool_destroy pci_pool_destroy -#define dma_pool_alloc pci_pool_alloc -#define dma_pool_free pci_pool_free - -#define dma_pool_create(name,dev,size,align,allocation) \ - pci_pool_create((name),to_pci_dev(dev),(size),(align),(allocation)) -#endif /* < 2.6.3 */ - -/*****************************************************************************/ -/* 2.6.4 => 2.6.0 */ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,4) ) -#define MODULE_VERSION(_version) MODULE_INFO(version, _version) -#endif /* 2.6.4 => 2.6.0 */ - -/*****************************************************************************/ -/* 2.6.5 => 2.6.0 */ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,5) ) -#define dma_sync_single_for_cpu dma_sync_single -#define dma_sync_single_for_device dma_sync_single -#define dma_sync_single_range_for_cpu dma_sync_single_range -#define dma_sync_single_range_for_device dma_sync_single_range -#ifndef pci_dma_mapping_error -#define pci_dma_mapping_error _kc_pci_dma_mapping_error -static inline int _kc_pci_dma_mapping_error(dma_addr_t dma_addr) -{ - return dma_addr == 0; -} -#endif -#endif /* 2.6.5 => 2.6.0 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,4) ) -extern int _kc_scnprintf(char * buf, size_t size, const char *fmt, ...); -#define scnprintf(buf, size, fmt, args...) _kc_scnprintf(buf, size, fmt, ##args) -#endif /* < 2.6.4 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,6) ) -/* taken from 2.6 include/linux/bitmap.h */ -#undef bitmap_zero -#define bitmap_zero _kc_bitmap_zero -static inline void _kc_bitmap_zero(unsigned long *dst, int nbits) -{ - if (nbits <= BITS_PER_LONG) - *dst = 0UL; - else { - int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); - memset(dst, 0, len); - } -} -#define random_ether_addr _kc_random_ether_addr -static inline void _kc_random_ether_addr(u8 *addr) -{ - get_random_bytes(addr, ETH_ALEN); - addr[0] &= 0xfe; /* clear multicast */ - addr[0] |= 0x02; /* set local assignment */ -} -#define page_to_nid(x) 0 - -#endif /* < 2.6.6 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,7) ) -#undef if_mii -#define if_mii _kc_if_mii -static inline struct mii_ioctl_data *_kc_if_mii(struct ifreq *rq) -{ - return (struct mii_ioctl_data *) &rq->ifr_ifru; -} - -#ifndef __force -#define __force -#endif -#endif /* < 2.6.7 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,8) ) -#ifndef PCI_EXP_DEVCTL -#define PCI_EXP_DEVCTL 8 -#endif -#ifndef PCI_EXP_DEVCTL_CERE -#define PCI_EXP_DEVCTL_CERE 0x0001 -#endif -#define PCI_EXP_FLAGS 2 /* Capabilities register */ -#define PCI_EXP_FLAGS_VERS 0x000f /* Capability version */ -#define PCI_EXP_FLAGS_TYPE 0x00f0 /* Device/Port type */ -#define PCI_EXP_TYPE_ENDPOINT 0x0 /* Express Endpoint */ -#define PCI_EXP_TYPE_LEG_END 0x1 /* Legacy Endpoint */ -#define PCI_EXP_TYPE_ROOT_PORT 0x4 /* Root Port */ -#define PCI_EXP_TYPE_DOWNSTREAM 0x6 /* Downstream Port */ -#define PCI_EXP_FLAGS_SLOT 0x0100 /* Slot implemented */ -#define PCI_EXP_DEVCAP 4 /* Device capabilities */ -#define PCI_EXP_DEVSTA 10 /* Device Status */ -#define msleep(x) do { set_current_state(TASK_UNINTERRUPTIBLE); \ - schedule_timeout((x * HZ)/1000 + 2); \ - } while (0) - -#endif /* < 2.6.8 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,9)) -#include <net/dsfield.h> -#define __iomem - -#ifndef kcalloc -#define kcalloc(n, size, flags) _kc_kzalloc(((n) * (size)), flags) -extern void *_kc_kzalloc(size_t size, int flags); -#endif -#define MSEC_PER_SEC 1000L -static inline unsigned int _kc_jiffies_to_msecs(const unsigned long j) -{ -#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) - return (MSEC_PER_SEC / HZ) * j; -#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) - return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); -#else - return (j * MSEC_PER_SEC) / HZ; -#endif -} -static inline unsigned long _kc_msecs_to_jiffies(const unsigned int m) -{ - if (m > _kc_jiffies_to_msecs(MAX_JIFFY_OFFSET)) - return MAX_JIFFY_OFFSET; -#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) - return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); -#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) - return m * (HZ / MSEC_PER_SEC); -#else - return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC; -#endif -} - -#define msleep_interruptible _kc_msleep_interruptible -static inline unsigned long _kc_msleep_interruptible(unsigned int msecs) -{ - unsigned long timeout = _kc_msecs_to_jiffies(msecs) + 1; - - while (timeout && !signal_pending(current)) { - __set_current_state(TASK_INTERRUPTIBLE); - timeout = schedule_timeout(timeout); - } - return _kc_jiffies_to_msecs(timeout); -} - -/* Basic mode control register. */ -#define BMCR_SPEED1000 0x0040 /* MSB of Speed (1000) */ - -#ifndef __le16 -#define __le16 u16 -#endif -#ifndef __le32 -#define __le32 u32 -#endif -#ifndef __le64 -#define __le64 u64 -#endif -#ifndef __be16 -#define __be16 u16 -#endif -#ifndef __be32 -#define __be32 u32 -#endif -#ifndef __be64 -#define __be64 u64 -#endif - -static inline struct vlan_ethhdr *vlan_eth_hdr(const struct sk_buff *skb) -{ - return (struct vlan_ethhdr *)skb->mac.raw; -} - -/* Wake-On-Lan options. */ -#define WAKE_PHY (1 << 0) -#define WAKE_UCAST (1 << 1) -#define WAKE_MCAST (1 << 2) -#define WAKE_BCAST (1 << 3) -#define WAKE_ARP (1 << 4) -#define WAKE_MAGIC (1 << 5) -#define WAKE_MAGICSECURE (1 << 6) /* only meaningful if WAKE_MAGIC */ - -#define skb_header_pointer _kc_skb_header_pointer -static inline void *_kc_skb_header_pointer(const struct sk_buff *skb, - int offset, int len, void *buffer) -{ - int hlen = skb_headlen(skb); - - if (hlen - offset >= len) - return skb->data + offset; - -#ifdef MAX_SKB_FRAGS - if (skb_copy_bits(skb, offset, buffer, len) < 0) - return NULL; - - return buffer; -#else - return NULL; -#endif - -#ifndef NETDEV_TX_OK -#define NETDEV_TX_OK 0 -#endif -#ifndef NETDEV_TX_BUSY -#define NETDEV_TX_BUSY 1 -#endif -#ifndef NETDEV_TX_LOCKED -#define NETDEV_TX_LOCKED -1 -#endif -} - -#ifndef __bitwise -#define __bitwise -#endif -#endif /* < 2.6.9 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10) ) -#ifdef module_param_array_named -#undef module_param_array_named -#define module_param_array_named(name, array, type, nump, perm) \ - static struct kparam_array __param_arr_##name \ - = { ARRAY_SIZE(array), nump, param_set_##type, param_get_##type, \ - sizeof(array[0]), array }; \ - module_param_call(name, param_array_set, param_array_get, \ - &__param_arr_##name, perm) -#endif /* module_param_array_named */ -/* - * num_online is broken for all < 2.6.10 kernels. This is needed to support - * Node module parameter of ixgbe. - */ -#undef num_online_nodes -#define num_online_nodes(n) 1 -extern DECLARE_BITMAP(_kcompat_node_online_map, MAX_NUMNODES); -#undef node_online_map -#define node_online_map _kcompat_node_online_map -#define pci_get_class pci_find_class -#endif /* < 2.6.10 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,11) ) -#define PCI_D0 0 -#define PCI_D1 1 -#define PCI_D2 2 -#define PCI_D3hot 3 -#define PCI_D3cold 4 -typedef int pci_power_t; -#define pci_choose_state(pdev,state) state -#define PMSG_SUSPEND 3 -#define PCI_EXP_LNKCTL 16 - -#undef NETIF_F_LLTX - -#ifndef ARCH_HAS_PREFETCH -#define prefetch(X) -#endif - -#ifndef NET_IP_ALIGN -#define NET_IP_ALIGN 2 -#endif - -#define KC_USEC_PER_SEC 1000000L -#define usecs_to_jiffies _kc_usecs_to_jiffies -static inline unsigned int _kc_jiffies_to_usecs(const unsigned long j) -{ -#if HZ <= KC_USEC_PER_SEC && !(KC_USEC_PER_SEC % HZ) - return (KC_USEC_PER_SEC / HZ) * j; -#elif HZ > KC_USEC_PER_SEC && !(HZ % KC_USEC_PER_SEC) - return (j + (HZ / KC_USEC_PER_SEC) - 1)/(HZ / KC_USEC_PER_SEC); -#else - return (j * KC_USEC_PER_SEC) / HZ; -#endif -} -static inline unsigned long _kc_usecs_to_jiffies(const unsigned int m) -{ - if (m > _kc_jiffies_to_usecs(MAX_JIFFY_OFFSET)) - return MAX_JIFFY_OFFSET; -#if HZ <= KC_USEC_PER_SEC && !(KC_USEC_PER_SEC % HZ) - return (m + (KC_USEC_PER_SEC / HZ) - 1) / (KC_USEC_PER_SEC / HZ); -#elif HZ > KC_USEC_PER_SEC && !(HZ % KC_USEC_PER_SEC) - return m * (HZ / KC_USEC_PER_SEC); -#else - return (m * HZ + KC_USEC_PER_SEC - 1) / KC_USEC_PER_SEC; -#endif -} - -#define PCI_EXP_LNKCAP 12 /* Link Capabilities */ -#define PCI_EXP_LNKSTA 18 /* Link Status */ -#define PCI_EXP_SLTCAP 20 /* Slot Capabilities */ -#define PCI_EXP_SLTCTL 24 /* Slot Control */ -#define PCI_EXP_SLTSTA 26 /* Slot Status */ -#define PCI_EXP_RTCTL 28 /* Root Control */ -#define PCI_EXP_RTCAP 30 /* Root Capabilities */ -#define PCI_EXP_RTSTA 32 /* Root Status */ -#endif /* < 2.6.11 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,12) ) -#include <linux/reboot.h> -#define USE_REBOOT_NOTIFIER - -/* Generic MII registers. */ -#define MII_CTRL1000 0x09 /* 1000BASE-T control */ -#define MII_STAT1000 0x0a /* 1000BASE-T status */ -/* Advertisement control register. */ -#define ADVERTISE_PAUSE_CAP 0x0400 /* Try for pause */ -#define ADVERTISE_PAUSE_ASYM 0x0800 /* Try for asymmetric pause */ -/* Link partner ability register. */ -#define LPA_PAUSE_CAP 0x0400 /* Can pause */ -#define LPA_PAUSE_ASYM 0x0800 /* Can pause asymetrically */ -/* 1000BASE-T Control register */ -#define ADVERTISE_1000FULL 0x0200 /* Advertise 1000BASE-T full duplex */ -#define ADVERTISE_1000HALF 0x0100 /* Advertise 1000BASE-T half duplex */ -/* 1000BASE-T Status register */ -#define LPA_1000LOCALRXOK 0x2000 /* Link partner local receiver status */ -#define LPA_1000REMRXOK 0x1000 /* Link partner remote receiver status */ - -#ifndef is_zero_ether_addr -#define is_zero_ether_addr _kc_is_zero_ether_addr -static inline int _kc_is_zero_ether_addr(const u8 *addr) -{ - return !(addr[0] | addr[1] | addr[2] | addr[3] | addr[4] | addr[5]); -} -#endif /* is_zero_ether_addr */ -#ifndef is_multicast_ether_addr -#define is_multicast_ether_addr _kc_is_multicast_ether_addr -static inline int _kc_is_multicast_ether_addr(const u8 *addr) -{ - return addr[0] & 0x01; -} -#endif /* is_multicast_ether_addr */ -#endif /* < 2.6.12 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,13) ) -#ifndef kstrdup -#define kstrdup _kc_kstrdup -extern char *_kc_kstrdup(const char *s, unsigned int gfp); -#endif -#endif /* < 2.6.13 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,14) ) -#define pm_message_t u32 -#ifndef kzalloc -#define kzalloc _kc_kzalloc -extern void *_kc_kzalloc(size_t size, int flags); -#endif - -/* Generic MII registers. */ -#define MII_ESTATUS 0x0f /* Extended Status */ -/* Basic mode status register. */ -#define BMSR_ESTATEN 0x0100 /* Extended Status in R15 */ -/* Extended status register. */ -#define ESTATUS_1000_TFULL 0x2000 /* Can do 1000BT Full */ -#define ESTATUS_1000_THALF 0x1000 /* Can do 1000BT Half */ - -#define SUPPORTED_Pause (1 << 13) -#define SUPPORTED_Asym_Pause (1 << 14) -#define ADVERTISED_Pause (1 << 13) -#define ADVERTISED_Asym_Pause (1 << 14) - -#if (!(RHEL_RELEASE_CODE && \ - (RHEL_RELEASE_CODE > RHEL_RELEASE_VERSION(4,3)) && \ - (RHEL_RELEASE_CODE < RHEL_RELEASE_VERSION(5,0)))) -#if ((LINUX_VERSION_CODE == KERNEL_VERSION(2,6,9)) && !defined(gfp_t)) -#define gfp_t unsigned -#else -typedef unsigned gfp_t; -#endif -#endif /* !RHEL4.3->RHEL5.0 */ - -#if ( LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,9) ) -#ifdef CONFIG_X86_64 -#define dma_sync_single_range_for_cpu(dev, addr, off, sz, dir) \ - dma_sync_single_for_cpu((dev), (addr), (off) + (sz), (dir)) -#define dma_sync_single_range_for_device(dev, addr, off, sz, dir) \ - dma_sync_single_for_device((dev), (addr), (off) + (sz), (dir)) -#endif -#endif -#endif /* < 2.6.14 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,15) ) -#ifndef vmalloc_node -#define vmalloc_node(a,b) vmalloc(a) -#endif /* vmalloc_node*/ - -#define setup_timer(_timer, _function, _data) \ -do { \ - (_timer)->function = _function; \ - (_timer)->data = _data; \ - init_timer(_timer); \ -} while (0) -#ifndef device_can_wakeup -#define device_can_wakeup(dev) (1) -#endif -#ifndef device_set_wakeup_enable -#define device_set_wakeup_enable(dev, val) do{}while(0) -#endif -#ifndef device_init_wakeup -#define device_init_wakeup(dev,val) do {} while (0) -#endif -static inline unsigned _kc_compare_ether_addr(const u8 *addr1, const u8 *addr2) -{ - const u16 *a = (const u16 *) addr1; - const u16 *b = (const u16 *) addr2; - - return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | (a[2] ^ b[2])) != 0; -} -#undef compare_ether_addr -#define compare_ether_addr(addr1, addr2) _kc_compare_ether_addr(addr1, addr2) -#endif /* < 2.6.15 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,16) ) -#undef DEFINE_MUTEX -#define DEFINE_MUTEX(x) DECLARE_MUTEX(x) -#define mutex_lock(x) down_interruptible(x) -#define mutex_unlock(x) up(x) - -#ifndef ____cacheline_internodealigned_in_smp -#ifdef CONFIG_SMP -#define ____cacheline_internodealigned_in_smp ____cacheline_aligned_in_smp -#else -#define ____cacheline_internodealigned_in_smp -#endif /* CONFIG_SMP */ -#endif /* ____cacheline_internodealigned_in_smp */ -#undef HAVE_PCI_ERS -#else /* 2.6.16 and above */ -#undef HAVE_PCI_ERS -#define HAVE_PCI_ERS -#if ( SLE_VERSION_CODE && SLE_VERSION_CODE == SLE_VERSION(10,4,0) ) -#ifdef device_can_wakeup -#undef device_can_wakeup -#endif /* device_can_wakeup */ -#define device_can_wakeup(dev) 1 -#endif /* SLE_VERSION(10,4,0) */ -#endif /* < 2.6.16 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,17) ) -#ifndef dev_notice -#define dev_notice(dev, fmt, args...) \ - dev_printk(KERN_NOTICE, dev, fmt, ## args) -#endif - -#ifndef first_online_node -#define first_online_node 0 -#endif -#ifndef NET_SKB_PAD -#define NET_SKB_PAD 16 -#endif -#endif /* < 2.6.17 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,18) ) - -#ifndef IRQ_HANDLED -#define irqreturn_t void -#define IRQ_HANDLED -#define IRQ_NONE -#endif - -#ifndef IRQF_PROBE_SHARED -#ifdef SA_PROBEIRQ -#define IRQF_PROBE_SHARED SA_PROBEIRQ -#else -#define IRQF_PROBE_SHARED 0 -#endif -#endif - -#ifndef IRQF_SHARED -#define IRQF_SHARED SA_SHIRQ -#endif - -#ifndef ARRAY_SIZE -#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) -#endif - -#ifndef FIELD_SIZEOF -#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) -#endif - -#ifndef skb_is_gso -#ifdef NETIF_F_TSO -#define skb_is_gso _kc_skb_is_gso -static inline int _kc_skb_is_gso(const struct sk_buff *skb) -{ - return skb_shinfo(skb)->gso_size; -} -#else -#define skb_is_gso(a) 0 -#endif -#endif - -#ifndef resource_size_t -#define resource_size_t unsigned long -#endif - -#ifdef skb_pad -#undef skb_pad -#endif -#define skb_pad(x,y) _kc_skb_pad(x, y) -int _kc_skb_pad(struct sk_buff *skb, int pad); -#ifdef skb_padto -#undef skb_padto -#endif -#define skb_padto(x,y) _kc_skb_padto(x, y) -static inline int _kc_skb_padto(struct sk_buff *skb, unsigned int len) -{ - unsigned int size = skb->len; - if(likely(size >= len)) - return 0; - return _kc_skb_pad(skb, len - size); -} - -#ifndef DECLARE_PCI_UNMAP_ADDR -#define DECLARE_PCI_UNMAP_ADDR(ADDR_NAME) \ - dma_addr_t ADDR_NAME -#define DECLARE_PCI_UNMAP_LEN(LEN_NAME) \ - u32 LEN_NAME -#define pci_unmap_addr(PTR, ADDR_NAME) \ - ((PTR)->ADDR_NAME) -#define pci_unmap_addr_set(PTR, ADDR_NAME, VAL) \ - (((PTR)->ADDR_NAME) = (VAL)) -#define pci_unmap_len(PTR, LEN_NAME) \ - ((PTR)->LEN_NAME) -#define pci_unmap_len_set(PTR, LEN_NAME, VAL) \ - (((PTR)->LEN_NAME) = (VAL)) -#endif /* DECLARE_PCI_UNMAP_ADDR */ -#endif /* < 2.6.18 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) ) - -#if (!(RHEL_RELEASE_CODE && RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(5,0))) -#define i_private u.generic_ip -#endif /* >= RHEL 5.0 */ - -#ifndef DIV_ROUND_UP -#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) -#endif -#ifndef __ALIGN_MASK -#define __ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask)) -#endif -#if ( LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) ) -#if (!((RHEL_RELEASE_CODE && \ - ((RHEL_RELEASE_CODE > RHEL_RELEASE_VERSION(4,4) && \ - RHEL_RELEASE_CODE < RHEL_RELEASE_VERSION(5,0)) || \ - (RHEL_RELEASE_CODE > RHEL_RELEASE_VERSION(5,0)))))) -typedef irqreturn_t (*irq_handler_t)(int, void*, struct pt_regs *); -#endif -#if (RHEL_RELEASE_CODE && RHEL_RELEASE_CODE < RHEL_RELEASE_VERSION(6,0)) -#undef CONFIG_INET_LRO -#undef CONFIG_INET_LRO_MODULE -#ifdef IXGBE_FCOE -#undef CONFIG_FCOE -#undef CONFIG_FCOE_MODULE -#endif /* IXGBE_FCOE */ -#endif -typedef irqreturn_t (*new_handler_t)(int, void*); -static inline irqreturn_t _kc_request_irq(unsigned int irq, new_handler_t handler, unsigned long flags, const char *devname, void *dev_id) -#else /* 2.4.x */ -typedef void (*irq_handler_t)(int, void*, struct pt_regs *); -typedef void (*new_handler_t)(int, void*); -static inline int _kc_request_irq(unsigned int irq, new_handler_t handler, unsigned long flags, const char *devname, void *dev_id) -#endif /* >= 2.5.x */ -{ - irq_handler_t new_handler = (irq_handler_t) handler; - return request_irq(irq, new_handler, flags, devname, dev_id); -} - -#undef request_irq -#define request_irq(irq, handler, flags, devname, dev_id) _kc_request_irq((irq), (handler), (flags), (devname), (dev_id)) - -#define irq_handler_t new_handler_t -/* pci_restore_state and pci_save_state handles MSI/PCIE from 2.6.19 */ -#if (!(RHEL_RELEASE_CODE && RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(5,4))) -#define PCIE_CONFIG_SPACE_LEN 256 -#define PCI_CONFIG_SPACE_LEN 64 -#define PCIE_LINK_STATUS 0x12 -#define pci_config_space_ich8lan() do {} while(0) -#undef pci_save_state -extern int _kc_pci_save_state(struct pci_dev *); -#define pci_save_state(pdev) _kc_pci_save_state(pdev) -#undef pci_restore_state -extern void _kc_pci_restore_state(struct pci_dev *); -#define pci_restore_state(pdev) _kc_pci_restore_state(pdev) -#endif /* !(RHEL_RELEASE_CODE >= RHEL 5.4) */ - -#ifdef HAVE_PCI_ERS -#undef free_netdev -extern void _kc_free_netdev(struct net_device *); -#define free_netdev(netdev) _kc_free_netdev(netdev) -#endif -static inline int pci_enable_pcie_error_reporting(struct pci_dev *dev) -{ - return 0; -} -#define pci_disable_pcie_error_reporting(dev) do {} while (0) -#define pci_cleanup_aer_uncorrect_error_status(dev) do {} while (0) - -extern void *_kc_kmemdup(const void *src, size_t len, unsigned gfp); -#define kmemdup(src, len, gfp) _kc_kmemdup(src, len, gfp) -#ifndef bool -#define bool _Bool -#define true 1 -#define false 0 -#endif -#else /* 2.6.19 */ -#include <linux/aer.h> -#include <linux/string.h> -#endif /* < 2.6.19 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) ) -#if ( LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,28) ) -#undef INIT_WORK -#define INIT_WORK(_work, _func) \ -do { \ - INIT_LIST_HEAD(&(_work)->entry); \ - (_work)->pending = 0; \ - (_work)->func = (void (*)(void *))_func; \ - (_work)->data = _work; \ - init_timer(&(_work)->timer); \ -} while (0) -#endif - -#ifndef PCI_VDEVICE -#define PCI_VDEVICE(ven, dev) \ - PCI_VENDOR_ID_##ven, (dev), \ - PCI_ANY_ID, PCI_ANY_ID, 0, 0 -#endif - -#ifndef PCI_VENDOR_ID_INTEL -#define PCI_VENDOR_ID_INTEL 0x8086 -#endif - -#ifndef round_jiffies -#define round_jiffies(x) x -#endif - -#define csum_offset csum - -#define HAVE_EARLY_VMALLOC_NODE -#define dev_to_node(dev) -1 -#undef set_dev_node -/* remove compiler warning with b=b, for unused variable */ -#define set_dev_node(a, b) do { (b) = (b); } while(0) - -#if (!(RHEL_RELEASE_CODE && \ - (((RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(4,7)) && \ - (RHEL_RELEASE_CODE < RHEL_RELEASE_VERSION(5,0))) || \ - (RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(5,6)))) && \ - !(SLE_VERSION_CODE && SLE_VERSION_CODE >= SLE_VERSION(10,2,0))) -typedef __u16 __bitwise __sum16; -typedef __u32 __bitwise __wsum; -#endif - -#if (!(RHEL_RELEASE_CODE && \ - (((RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(4,7)) && \ - (RHEL_RELEASE_CODE < RHEL_RELEASE_VERSION(5,0))) || \ - (RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(5,4)))) && \ - !(SLE_VERSION_CODE && SLE_VERSION_CODE >= SLE_VERSION(10,2,0))) -static inline __wsum csum_unfold(__sum16 n) -{ - return (__force __wsum)n; -} -#endif - -#else /* < 2.6.20 */ -#define HAVE_DEVICE_NUMA_NODE -#endif /* < 2.6.20 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,21) ) -#define to_net_dev(class) container_of(class, struct net_device, class_dev) -#define NETDEV_CLASS_DEV -#if (!(RHEL_RELEASE_CODE && RHEL_RELEASE_CODE > RHEL_RELEASE_VERSION(5,5))) -#define vlan_group_get_device(vg, id) (vg->vlan_devices[id]) -#define vlan_group_set_device(vg, id, dev) \ - do { \ - if (vg) vg->vlan_devices[id] = dev; \ - } while (0) -#endif /* !(RHEL_RELEASE_CODE > RHEL_RELEASE_VERSION(5,5)) */ -#define pci_channel_offline(pdev) (pdev->error_state && \ - pdev->error_state != pci_channel_io_normal) -#define pci_request_selected_regions(pdev, bars, name) \ - pci_request_regions(pdev, name) -#define pci_release_selected_regions(pdev, bars) pci_release_regions(pdev); - -#ifndef __aligned -#define __aligned(x) __attribute__((aligned(x))) -#endif - -extern struct pci_dev *_kc_netdev_to_pdev(struct net_device *netdev); -#define netdev_to_dev(netdev) \ - pci_dev_to_dev(_kc_netdev_to_pdev(netdev)) -#else -static inline struct device *netdev_to_dev(struct net_device *netdev) -{ - return &netdev->dev; -} - -#endif /* < 2.6.21 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,22) ) -#define tcp_hdr(skb) (skb->h.th) -#define tcp_hdrlen(skb) (skb->h.th->doff << 2) -#define skb_transport_offset(skb) (skb->h.raw - skb->data) -#define skb_transport_header(skb) (skb->h.raw) -#define ipv6_hdr(skb) (skb->nh.ipv6h) -#define ip_hdr(skb) (skb->nh.iph) -#define skb_network_offset(skb) (skb->nh.raw - skb->data) -#define skb_network_header(skb) (skb->nh.raw) -#define skb_tail_pointer(skb) skb->tail -#define skb_reset_tail_pointer(skb) \ - do { \ - skb->tail = skb->data; \ - } while (0) -#define skb_set_tail_pointer(skb, offset) \ - do { \ - skb->tail = skb->data + offset; \ - } while (0) -#define skb_copy_to_linear_data(skb, from, len) \ - memcpy(skb->data, from, len) -#define skb_copy_to_linear_data_offset(skb, offset, from, len) \ - memcpy(skb->data + offset, from, len) -#define skb_network_header_len(skb) (skb->h.raw - skb->nh.raw) -#define pci_register_driver pci_module_init -#define skb_mac_header(skb) skb->mac.raw - -#ifdef NETIF_F_MULTI_QUEUE -#ifndef alloc_etherdev_mq -#define alloc_etherdev_mq(_a, _b) alloc_etherdev(_a) -#endif -#endif /* NETIF_F_MULTI_QUEUE */ - -#ifndef ETH_FCS_LEN -#define ETH_FCS_LEN 4 -#endif -#define cancel_work_sync(x) flush_scheduled_work() -#ifndef udp_hdr -#define udp_hdr _udp_hdr -static inline struct udphdr *_udp_hdr(const struct sk_buff *skb) -{ - return (struct udphdr *)skb_transport_header(skb); -} -#endif - -#ifdef cpu_to_be16 -#undef cpu_to_be16 -#endif -#define cpu_to_be16(x) __constant_htons(x) - -#if (!(RHEL_RELEASE_CODE && RHEL_RELEASE_CODE > RHEL_RELEASE_VERSION(5,1))) -enum { - DUMP_PREFIX_NONE, - DUMP_PREFIX_ADDRESS, - DUMP_PREFIX_OFFSET -}; -#endif /* !(RHEL_RELEASE_CODE > RHEL_RELEASE_VERSION(5,1)) */ -#ifndef hex_asc -#define hex_asc(x) "0123456789abcdef"[x] -#endif -#include <linux/ctype.h> -extern void _kc_print_hex_dump(const char *level, const char *prefix_str, - int prefix_type, int rowsize, int groupsize, - const void *buf, size_t len, bool ascii); -#define print_hex_dump(lvl, s, t, r, g, b, l, a) \ - _kc_print_hex_dump(lvl, s, t, r, g, b, l, a) -#ifndef ADVERTISED_2500baseX_Full -#define ADVERTISED_2500baseX_Full (1 << 15) -#endif -#ifndef SUPPORTED_2500baseX_Full -#define SUPPORTED_2500baseX_Full (1 << 15) -#endif - -#ifdef HAVE_I2C_SUPPORT -#include <linux/i2c.h> -#if (!(RHEL_RELEASE_CODE && RHEL_RELEASE_CODE > RHEL_RELEASE_VERSION(5,5))) -struct i2c_board_info { - char driver_name[KOBJ_NAME_LEN]; - char type[I2C_NAME_SIZE]; - unsigned short flags; - unsigned short addr; - void *platform_data; -}; -#define I2C_BOARD_INFO(driver, dev_addr) .driver_name = (driver),\ - .addr = (dev_addr) -#endif /* !(RHEL_RELEASE_CODE > RHEL_RELEASE_VERSION(5,5)) */ -#define i2c_new_device(adap, info) _kc_i2c_new_device(adap, info) -extern struct i2c_client * -_kc_i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info); -#endif /* HAVE_I2C_SUPPORT */ - -#else /* 2.6.22 */ -#define ETH_TYPE_TRANS_SETS_DEV -#define HAVE_NETDEV_STATS_IN_NETDEV -#endif /* < 2.6.22 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE > KERNEL_VERSION(2,6,22) ) -#undef SET_MODULE_OWNER -#define SET_MODULE_OWNER(dev) do { } while (0) -#endif /* > 2.6.22 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) ) -#define netif_subqueue_stopped(_a, _b) 0 -#ifndef PTR_ALIGN -#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) -#endif - -#ifndef CONFIG_PM_SLEEP -#define CONFIG_PM_SLEEP CONFIG_PM -#endif - -#if ( LINUX_VERSION_CODE > KERNEL_VERSION(2,6,13) ) -#define HAVE_ETHTOOL_GET_PERM_ADDR -#endif /* 2.6.14 through 2.6.22 */ -#endif /* < 2.6.23 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,24) ) -#ifndef ETH_FLAG_LRO -#define ETH_FLAG_LRO NETIF_F_LRO -#endif - -/* if GRO is supported then the napi struct must already exist */ -#ifndef NETIF_F_GRO -/* NAPI API changes in 2.6.24 break everything */ -struct napi_struct { - /* used to look up the real NAPI polling routine */ - int (*poll)(struct napi_struct *, int); - struct net_device *dev; - int weight; -}; -#endif - -#ifdef NAPI -extern int __kc_adapter_clean(struct net_device *, int *); -extern struct net_device *napi_to_poll_dev(const struct napi_struct *napi); -#define netif_napi_add(_netdev, _napi, _poll, _weight) \ - do { \ - struct napi_struct *__napi = (_napi); \ - struct net_device *poll_dev = napi_to_poll_dev(__napi); \ - poll_dev->poll = &(__kc_adapter_clean); \ - poll_dev->priv = (_napi); \ - poll_dev->weight = (_weight); \ - set_bit(__LINK_STATE_RX_SCHED, &poll_dev->state); \ - set_bit(__LINK_STATE_START, &poll_dev->state);\ - dev_hold(poll_dev); \ - __napi->poll = &(_poll); \ - __napi->weight = (_weight); \ - __napi->dev = (_netdev); \ - } while (0) -#define netif_napi_del(_napi) \ - do { \ - struct net_device *poll_dev = napi_to_poll_dev(_napi); \ - WARN_ON(!test_bit(__LINK_STATE_RX_SCHED, &poll_dev->state)); \ - dev_put(poll_dev); \ - memset(poll_dev, 0, sizeof(struct net_device));\ - } while (0) -#define napi_schedule_prep(_napi) \ - (netif_running((_napi)->dev) && netif_rx_schedule_prep(napi_to_poll_dev(_napi))) -#define napi_schedule(_napi) \ - do { \ - if (napi_schedule_prep(_napi)) \ - __netif_rx_schedule(napi_to_poll_dev(_napi)); \ - } while (0) -#define napi_enable(_napi) netif_poll_enable(napi_to_poll_dev(_napi)) -#define napi_disable(_napi) netif_poll_disable(napi_to_poll_dev(_napi)) -#ifdef CONFIG_SMP -static inline void napi_synchronize(const struct napi_struct *n) -{ - struct net_device *dev = napi_to_poll_dev(n); - - while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) { - /* No hurry. */ - msleep(1); - } -} -#else -#define napi_synchronize(n) barrier() -#endif /* CONFIG_SMP */ -#define __napi_schedule(_napi) __netif_rx_schedule(napi_to_poll_dev(_napi)) -#ifndef NETIF_F_GRO -#define napi_complete(_napi) netif_rx_complete(napi_to_poll_dev(_napi)) -#else -#define napi_complete(_napi) \ - do { \ - napi_gro_flush(_napi); \ - netif_rx_complete(napi_to_poll_dev(_napi)); \ - } while (0) -#endif /* NETIF_F_GRO */ -#else /* NAPI */ -#define netif_napi_add(_netdev, _napi, _poll, _weight) \ - do { \ - struct napi_struct *__napi = _napi; \ - _netdev->poll = &(_poll); \ - _netdev->weight = (_weight); \ - __napi->poll = &(_poll); \ - __napi->weight = (_weight); \ - __napi->dev = (_netdev); \ - } while (0) -#define netif_napi_del(_a) do {} while (0) -#endif /* NAPI */ - -#undef dev_get_by_name -#define dev_get_by_name(_a, _b) dev_get_by_name(_b) -#define __netif_subqueue_stopped(_a, _b) netif_subqueue_stopped(_a, _b) -#ifndef DMA_BIT_MASK -#define DMA_BIT_MASK(n) (((n) == 64) ? DMA_64BIT_MASK : ((1ULL<<(n))-1)) -#endif - -#ifdef NETIF_F_TSO6 -#define skb_is_gso_v6 _kc_skb_is_gso_v6 -static inline int _kc_skb_is_gso_v6(const struct sk_buff *skb) -{ - return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; -} -#endif /* NETIF_F_TSO6 */ - -#ifndef KERN_CONT -#define KERN_CONT "" -#endif -#ifndef pr_err -#define pr_err(fmt, arg...) \ - printk(KERN_ERR fmt, ##arg) -#endif -#else /* < 2.6.24 */ -#define HAVE_ETHTOOL_GET_SSET_COUNT -#define HAVE_NETDEV_NAPI_LIST -#endif /* < 2.6.24 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE > KERNEL_VERSION(2,6,24) ) -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(3,2,0) ) -#include <linux/pm_qos_params.h> -#else /* >= 3.2.0 */ -#include <linux/pm_qos.h> -#endif /* else >= 3.2.0 */ -#endif /* > 2.6.24 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,25) ) -#define PM_QOS_CPU_DMA_LATENCY 1 - -#if ( LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18) ) -#include <linux/latency.h> -#define PM_QOS_DEFAULT_VALUE INFINITE_LATENCY -#define pm_qos_add_requirement(pm_qos_class, name, value) \ - set_acceptable_latency(name, value) -#define pm_qos_remove_requirement(pm_qos_class, name) \ - remove_acceptable_latency(name) -#define pm_qos_update_requirement(pm_qos_class, name, value) \ - modify_acceptable_latency(name, value) -#else -#define PM_QOS_DEFAULT_VALUE -1 -#define pm_qos_add_requirement(pm_qos_class, name, value) -#define pm_qos_remove_requirement(pm_qos_class, name) -#define pm_qos_update_requirement(pm_qos_class, name, value) { \ - if (value != PM_QOS_DEFAULT_VALUE) { \ - printk(KERN_WARNING "%s: unable to set PM QoS requirement\n", \ - pci_name(adapter->pdev)); \ - } \ -} - -#endif /* > 2.6.18 */ - -#define pci_enable_device_mem(pdev) pci_enable_device(pdev) - -#ifndef DEFINE_PCI_DEVICE_TABLE -#define DEFINE_PCI_DEVICE_TABLE(_table) struct pci_device_id _table[] -#endif /* DEFINE_PCI_DEVICE_TABLE */ - - -#if ( LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) ) -#ifndef IGB_PROCFS -#define IGB_PROCFS -#endif /* IGB_PROCFS */ -#endif /* >= 2.6.0 */ - -#else /* < 2.6.25 */ - - -#if IS_ENABLED(CONFIG_HWMON) -#ifndef IGB_HWMON -#define IGB_HWMON -#endif /* IGB_HWMON */ -#endif /* CONFIG_HWMON */ - -#endif /* < 2.6.25 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,26) ) -#ifndef clamp_t -#define clamp_t(type, val, min, max) ({ \ - type __val = (val); \ - type __min = (min); \ - type __max = (max); \ - __val = __val < __min ? __min : __val; \ - __val > __max ? __max : __val; }) -#endif /* clamp_t */ -#undef kzalloc_node -#define kzalloc_node(_size, _flags, _node) kzalloc(_size, _flags) - -extern void _kc_pci_disable_link_state(struct pci_dev *dev, int state); -#define pci_disable_link_state(p, s) _kc_pci_disable_link_state(p, s) -#else /* < 2.6.26 */ -#include <linux/pci-aspm.h> -#define HAVE_NETDEV_VLAN_FEATURES -#ifndef PCI_EXP_LNKCAP_ASPMS -#define PCI_EXP_LNKCAP_ASPMS 0x00000c00 /* ASPM Support */ -#endif /* PCI_EXP_LNKCAP_ASPMS */ -#endif /* < 2.6.26 */ -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,27) ) -static inline void _kc_ethtool_cmd_speed_set(struct ethtool_cmd *ep, - __u32 speed) -{ - ep->speed = (__u16)speed; - /* ep->speed_hi = (__u16)(speed >> 16); */ -} -#define ethtool_cmd_speed_set _kc_ethtool_cmd_speed_set - -static inline __u32 _kc_ethtool_cmd_speed(struct ethtool_cmd *ep) -{ - /* no speed_hi before 2.6.27, and probably no need for it yet */ - return (__u32)ep->speed; -} -#define ethtool_cmd_speed _kc_ethtool_cmd_speed - -#if ( LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,15) ) -#if ((LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)) && defined(CONFIG_PM)) -#define ANCIENT_PM 1 -#elif ((LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)) && \ - (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,26)) && \ - defined(CONFIG_PM_SLEEP)) -#define NEWER_PM 1 -#endif -#if defined(ANCIENT_PM) || defined(NEWER_PM) -#undef device_set_wakeup_enable -#define device_set_wakeup_enable(dev, val) \ - do { \ - u16 pmc = 0; \ - int pm = pci_find_capability(adapter->pdev, PCI_CAP_ID_PM); \ - if (pm) { \ - pci_read_config_word(adapter->pdev, pm + PCI_PM_PMC, \ - &pmc); \ - } \ - (dev)->power.can_wakeup = !!(pmc >> 11); \ - (dev)->power.should_wakeup = (val && (pmc >> 11)); \ - } while (0) -#endif /* 2.6.15-2.6.22 and CONFIG_PM or 2.6.23-2.6.25 and CONFIG_PM_SLEEP */ -#endif /* 2.6.15 through 2.6.27 */ -#ifndef netif_napi_del -#define netif_napi_del(_a) do {} while (0) -#ifdef NAPI -#ifdef CONFIG_NETPOLL -#undef netif_napi_del -#define netif_napi_del(_a) list_del(&(_a)->dev_list); -#endif -#endif -#endif /* netif_napi_del */ -#ifdef dma_mapping_error -#undef dma_mapping_error -#endif -#define dma_mapping_error(dev, dma_addr) pci_dma_mapping_error(dma_addr) - -#ifdef CONFIG_NETDEVICES_MULTIQUEUE -#define HAVE_TX_MQ -#endif - -#ifdef HAVE_TX_MQ -extern void _kc_netif_tx_stop_all_queues(struct net_device *); -extern void _kc_netif_tx_wake_all_queues(struct net_device *); -extern void _kc_netif_tx_start_all_queues(struct net_device *); -#define netif_tx_stop_all_queues(a) _kc_netif_tx_stop_all_queues(a) -#define netif_tx_wake_all_queues(a) _kc_netif_tx_wake_all_queues(a) -#define netif_tx_start_all_queues(a) _kc_netif_tx_start_all_queues(a) -#undef netif_stop_subqueue -#define netif_stop_subqueue(_ndev,_qi) do { \ - if (netif_is_multiqueue((_ndev))) \ - netif_stop_subqueue((_ndev), (_qi)); \ - else \ - netif_stop_queue((_ndev)); \ - } while (0) -#undef netif_start_subqueue -#define netif_start_subqueue(_ndev,_qi) do { \ - if (netif_is_multiqueue((_ndev))) \ - netif_start_subqueue((_ndev), (_qi)); \ - else \ - netif_start_queue((_ndev)); \ - } while (0) -#else /* HAVE_TX_MQ */ -#define netif_tx_stop_all_queues(a) netif_stop_queue(a) -#define netif_tx_wake_all_queues(a) netif_wake_queue(a) -#if ( LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,12) ) -#define netif_tx_start_all_queues(a) netif_start_queue(a) -#else -#define netif_tx_start_all_queues(a) do {} while (0) -#endif -#define netif_stop_subqueue(_ndev,_qi) netif_stop_queue((_ndev)) -#define netif_start_subqueue(_ndev,_qi) netif_start_queue((_ndev)) -#endif /* HAVE_TX_MQ */ -#ifndef NETIF_F_MULTI_QUEUE -#define NETIF_F_MULTI_QUEUE 0 -#define netif_is_multiqueue(a) 0 -#define netif_wake_subqueue(a, b) -#endif /* NETIF_F_MULTI_QUEUE */ - -#ifndef __WARN_printf -extern void __kc_warn_slowpath(const char *file, const int line, - const char *fmt, ...) __attribute__((format(printf, 3, 4))); -#define __WARN_printf(arg...) __kc_warn_slowpath(__FILE__, __LINE__, arg) -#endif /* __WARN_printf */ - -#ifndef WARN -#define WARN(condition, format...) ({ \ - int __ret_warn_on = !!(condition); \ - if (unlikely(__ret_warn_on)) \ - __WARN_printf(format); \ - unlikely(__ret_warn_on); \ -}) -#endif /* WARN */ -#undef HAVE_IXGBE_DEBUG_FS -#undef HAVE_IGB_DEBUG_FS -#else /* < 2.6.27 */ -#define HAVE_TX_MQ -#define HAVE_NETDEV_SELECT_QUEUE -#ifdef CONFIG_DEBUG_FS -#define HAVE_IXGBE_DEBUG_FS -#define HAVE_IGB_DEBUG_FS -#endif /* CONFIG_DEBUG_FS */ -#endif /* < 2.6.27 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28) ) -#define pci_ioremap_bar(pdev, bar) ioremap(pci_resource_start(pdev, bar), \ - pci_resource_len(pdev, bar)) -#define pci_wake_from_d3 _kc_pci_wake_from_d3 -#define pci_prepare_to_sleep _kc_pci_prepare_to_sleep -extern int _kc_pci_wake_from_d3(struct pci_dev *dev, bool enable); -extern int _kc_pci_prepare_to_sleep(struct pci_dev *dev); -#define netdev_alloc_page(a) alloc_page(GFP_ATOMIC) -#ifndef __skb_queue_head_init -static inline void __kc_skb_queue_head_init(struct sk_buff_head *list) -{ - list->prev = list->next = (struct sk_buff *)list; - list->qlen = 0; -} -#define __skb_queue_head_init(_q) __kc_skb_queue_head_init(_q) -#endif - -#define PCI_EXP_DEVCAP2 36 /* Device Capabilities 2 */ -#define PCI_EXP_DEVCTL2 40 /* Device Control 2 */ - -#endif /* < 2.6.28 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,29) ) -#ifndef swap -#define swap(a, b) \ - do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) -#endif -#define pci_request_selected_regions_exclusive(pdev, bars, name) \ - pci_request_selected_regions(pdev, bars, name) -#ifndef CONFIG_NR_CPUS -#define CONFIG_NR_CPUS 1 -#endif /* CONFIG_NR_CPUS */ -#ifndef pcie_aspm_enabled -#define pcie_aspm_enabled() (1) -#endif /* pcie_aspm_enabled */ - -#define PCI_EXP_SLTSTA_PDS 0x0040 /* Presence Detect State */ - -#ifndef pci_clear_master -extern void _kc_pci_clear_master(struct pci_dev *dev); -#define pci_clear_master(dev) _kc_pci_clear_master(dev) -#endif - -#ifndef PCI_EXP_LNKCTL_ASPMC -#define PCI_EXP_LNKCTL_ASPMC 0x0003 /* ASPM Control */ -#endif -#else /* < 2.6.29 */ -#ifndef HAVE_NET_DEVICE_OPS -#define HAVE_NET_DEVICE_OPS -#endif -#ifdef CONFIG_DCB -#define HAVE_PFC_MODE_ENABLE -#endif /* CONFIG_DCB */ -#endif /* < 2.6.29 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,30) ) -#define skb_rx_queue_recorded(a) false -#define skb_get_rx_queue(a) 0 -#define skb_record_rx_queue(a, b) do {} while (0) -#define skb_tx_hash(n, s) ___kc_skb_tx_hash((n), (s), (n)->real_num_tx_queues) -#ifndef CONFIG_PCI_IOV -#undef pci_enable_sriov -#define pci_enable_sriov(a, b) -ENOTSUPP -#undef pci_disable_sriov -#define pci_disable_sriov(a) do {} while (0) -#endif /* CONFIG_PCI_IOV */ -#ifndef pr_cont -#define pr_cont(fmt, ...) \ - printk(KERN_CONT fmt, ##__VA_ARGS__) -#endif /* pr_cont */ -static inline void _kc_synchronize_irq(unsigned int a) -{ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,5,28) ) - synchronize_irq(); -#else /* < 2.5.28 */ - synchronize_irq(a); -#endif /* < 2.5.28 */ -} -#undef synchronize_irq -#define synchronize_irq(a) _kc_synchronize_irq(a) - -#define PCI_EXP_LNKCTL2 48 /* Link Control 2 */ - -#else /* < 2.6.30 */ -#define HAVE_ASPM_QUIRKS -#endif /* < 2.6.30 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,31) ) -#define ETH_P_1588 0x88F7 -#define ETH_P_FIP 0x8914 -#ifndef netdev_uc_count -#define netdev_uc_count(dev) ((dev)->uc_count) -#endif -#ifndef netdev_for_each_uc_addr -#define netdev_for_each_uc_addr(uclist, dev) \ - for (uclist = dev->uc_list; uclist; uclist = uclist->next) -#endif -#ifndef PORT_OTHER -#define PORT_OTHER 0xff -#endif -#ifndef MDIO_PHY_ID_PRTAD -#define MDIO_PHY_ID_PRTAD 0x03e0 -#endif -#ifndef MDIO_PHY_ID_DEVAD -#define MDIO_PHY_ID_DEVAD 0x001f -#endif -#ifndef skb_dst -#define skb_dst(s) ((s)->dst) -#endif - -#ifndef SUPPORTED_1000baseKX_Full -#define SUPPORTED_1000baseKX_Full (1 << 17) -#endif -#ifndef SUPPORTED_10000baseKX4_Full -#define SUPPORTED_10000baseKX4_Full (1 << 18) -#endif -#ifndef SUPPORTED_10000baseKR_Full -#define SUPPORTED_10000baseKR_Full (1 << 19) -#endif - -#ifndef ADVERTISED_1000baseKX_Full -#define ADVERTISED_1000baseKX_Full (1 << 17) -#endif -#ifndef ADVERTISED_10000baseKX4_Full -#define ADVERTISED_10000baseKX4_Full (1 << 18) -#endif -#ifndef ADVERTISED_10000baseKR_Full -#define ADVERTISED_10000baseKR_Full (1 << 19) -#endif - -#else /* < 2.6.31 */ -#ifndef HAVE_NETDEV_STORAGE_ADDRESS -#define HAVE_NETDEV_STORAGE_ADDRESS -#endif -#ifndef HAVE_NETDEV_HW_ADDR -#define HAVE_NETDEV_HW_ADDR -#endif -#ifndef HAVE_TRANS_START_IN_QUEUE -#define HAVE_TRANS_START_IN_QUEUE -#endif -#ifndef HAVE_INCLUDE_LINUX_MDIO_H -#define HAVE_INCLUDE_LINUX_MDIO_H -#endif -#endif /* < 2.6.31 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,32) ) -#undef netdev_tx_t -#define netdev_tx_t int -#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) -#ifndef NETIF_F_FCOE_MTU -#define NETIF_F_FCOE_MTU (1 << 26) -#endif -#endif /* CONFIG_FCOE || CONFIG_FCOE_MODULE */ - -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) ) -static inline int _kc_pm_runtime_get_sync() -{ - return 1; -} -#define pm_runtime_get_sync(dev) _kc_pm_runtime_get_sync() -#else /* 2.6.0 => 2.6.32 */ -static inline int _kc_pm_runtime_get_sync(struct device *dev) -{ - return 1; -} -#ifndef pm_runtime_get_sync -#define pm_runtime_get_sync(dev) _kc_pm_runtime_get_sync(dev) -#endif -#endif /* 2.6.0 => 2.6.32 */ -#ifndef pm_runtime_put -#define pm_runtime_put(dev) do {} while (0) -#endif -#ifndef pm_runtime_put_sync -#define pm_runtime_put_sync(dev) do {} while (0) -#endif -#ifndef pm_runtime_resume -#define pm_runtime_resume(dev) do {} while (0) -#endif -#ifndef pm_schedule_suspend -#define pm_schedule_suspend(dev, t) do {} while (0) -#endif -#ifndef pm_runtime_set_suspended -#define pm_runtime_set_suspended(dev) do {} while (0) -#endif -#ifndef pm_runtime_disable -#define pm_runtime_disable(dev) do {} while (0) -#endif -#ifndef pm_runtime_put_noidle -#define pm_runtime_put_noidle(dev) do {} while (0) -#endif -#ifndef pm_runtime_set_active -#define pm_runtime_set_active(dev) do {} while (0) -#endif -#ifndef pm_runtime_enable -#define pm_runtime_enable(dev) do {} while (0) -#endif -#ifndef pm_runtime_get_noresume -#define pm_runtime_get_noresume(dev) do {} while (0) -#endif -#else /* < 2.6.32 */ -#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) -#ifndef HAVE_NETDEV_OPS_FCOE_ENABLE -#define HAVE_NETDEV_OPS_FCOE_ENABLE -#endif -#endif /* CONFIG_FCOE || CONFIG_FCOE_MODULE */ -#ifdef CONFIG_DCB -#ifndef HAVE_DCBNL_OPS_GETAPP -#define HAVE_DCBNL_OPS_GETAPP -#endif -#endif /* CONFIG_DCB */ -#include <linux/pm_runtime.h> -/* IOV bad DMA target work arounds require at least this kernel rev support */ -#define HAVE_PCIE_TYPE -#endif /* < 2.6.32 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,33) ) -#ifndef pci_pcie_cap -#define pci_pcie_cap(pdev) pci_find_capability(pdev, PCI_CAP_ID_EXP) -#endif -#ifndef IPV4_FLOW -#define IPV4_FLOW 0x10 -#endif /* IPV4_FLOW */ -#ifndef IPV6_FLOW -#define IPV6_FLOW 0x11 -#endif /* IPV6_FLOW */ -/* Features back-ported to RHEL6 or SLES11 SP1 after 2.6.32 */ -#if ( (RHEL_RELEASE_CODE && RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(6,0)) || \ - (SLE_VERSION_CODE && SLE_VERSION_CODE >= SLE_VERSION(11,1,0)) ) -#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) -#ifndef HAVE_NETDEV_OPS_FCOE_GETWWN -#define HAVE_NETDEV_OPS_FCOE_GETWWN -#endif -#endif /* CONFIG_FCOE || CONFIG_FCOE_MODULE */ -#endif /* RHEL6 or SLES11 SP1 */ -#ifndef __percpu -#define __percpu -#endif /* __percpu */ -#ifndef PORT_DA -#define PORT_DA PORT_OTHER -#endif -#ifndef PORT_NONE -#define PORT_NONE PORT_OTHER -#endif - -#if ((RHEL_RELEASE_CODE && \ - (RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(6,3)) && \ - (RHEL_RELEASE_CODE < RHEL_RELEASE_VERSION(7,0)))) -#if !defined(CONFIG_X86_32) && !defined(CONFIG_NEED_DMA_MAP_STATE) -#undef DEFINE_DMA_UNMAP_ADDR -#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME -#undef DEFINE_DMA_UNMAP_LEN -#define DEFINE_DMA_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME -#undef dma_unmap_addr -#define dma_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME) -#undef dma_unmap_addr_set -#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL)) -#undef dma_unmap_len -#define dma_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME) -#undef dma_unmap_len_set -#define dma_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL)) -#endif /* CONFIG_X86_64 && !CONFIG_NEED_DMA_MAP_STATE */ -#endif /* RHEL_RELEASE_CODE */ - -#if (!(RHEL_RELEASE_CODE && \ - (((RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(5,8)) && \ - (RHEL_RELEASE_CODE < RHEL_RELEASE_VERSION(6,0))) || \ - ((RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(6,1)) && \ - (RHEL_RELEASE_CODE < RHEL_RELEASE_VERSION(7,0)))))) -static inline bool pci_is_pcie(struct pci_dev *dev) -{ - return !!pci_pcie_cap(dev); -} -#endif /* RHEL_RELEASE_CODE */ - -#ifndef __always_unused -#define __always_unused __attribute__((__unused__)) -#endif -#ifndef __maybe_unused -#define __maybe_unused __attribute__((__unused__)) -#endif - -#if (!(RHEL_RELEASE_CODE && \ - (RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(6,2)))) -#define sk_tx_queue_get(_sk) (-1) -#define sk_tx_queue_set(_sk, _tx_queue) do {} while(0) -#endif /* !(RHEL >= 6.2) */ - -#if (RHEL_RELEASE_CODE && \ - (RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(6,4)) && \ - (RHEL_RELEASE_CODE < RHEL_RELEASE_VERSION(7,0))) -#define HAVE_RHEL6_ETHTOOL_OPS_EXT_STRUCT -#define HAVE_ETHTOOL_SET_PHYS_ID -#define HAVE_ETHTOOL_GET_TS_INFO -#endif /* RHEL >= 6.4 && RHEL < 7.0 */ - -#if (RHEL_RELEASE_CODE && \ - (RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(6,5)) && \ - (RHEL_RELEASE_CODE < RHEL_RELEASE_VERSION(7,0))) -#define HAVE_RHEL6_NETDEV_OPS_EXT_FDB -#endif /* RHEL >= 6.5 && RHEL < 7.0 */ - -#else /* < 2.6.33 */ -#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) -#ifndef HAVE_NETDEV_OPS_FCOE_GETWWN -#define HAVE_NETDEV_OPS_FCOE_GETWWN -#endif -#endif /* CONFIG_FCOE || CONFIG_FCOE_MODULE */ -#endif /* < 2.6.33 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,34) ) -#if (RHEL_RELEASE_CODE < RHEL_RELEASE_VERSION(6,0)) -#ifndef pci_num_vf -#define pci_num_vf(pdev) _kc_pci_num_vf(pdev) -extern int _kc_pci_num_vf(struct pci_dev *dev); -#endif -#endif /* RHEL_RELEASE_CODE */ - -#ifndef ETH_FLAG_NTUPLE -#define ETH_FLAG_NTUPLE NETIF_F_NTUPLE -#endif - -#ifndef netdev_mc_count -#define netdev_mc_count(dev) ((dev)->mc_count) -#endif -#ifndef netdev_mc_empty -#define netdev_mc_empty(dev) (netdev_mc_count(dev) == 0) -#endif -#ifndef netdev_for_each_mc_addr -#define netdev_for_each_mc_addr(mclist, dev) \ - for (mclist = dev->mc_list; mclist; mclist = mclist->next) -#endif -#ifndef netdev_uc_count -#define netdev_uc_count(dev) ((dev)->uc.count) -#endif -#ifndef netdev_uc_empty -#define netdev_uc_empty(dev) (netdev_uc_count(dev) == 0) -#endif -#ifndef netdev_for_each_uc_addr -#define netdev_for_each_uc_addr(ha, dev) \ - list_for_each_entry(ha, &dev->uc.list, list) -#endif -#ifndef dma_set_coherent_mask -#define dma_set_coherent_mask(dev,mask) \ - pci_set_consistent_dma_mask(to_pci_dev(dev),(mask)) -#endif -#ifndef pci_dev_run_wake -#define pci_dev_run_wake(pdev) (0) -#endif - -/* netdev logging taken from include/linux/netdevice.h */ -#ifndef netdev_name -static inline const char *_kc_netdev_name(const struct net_device *dev) -{ - if (dev->reg_state != NETREG_REGISTERED) - return "(unregistered net_device)"; - return dev->name; -} -#define netdev_name(netdev) _kc_netdev_name(netdev) -#endif /* netdev_name */ - -#undef netdev_printk -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) ) -#define netdev_printk(level, netdev, format, args...) \ -do { \ - struct pci_dev *pdev = _kc_netdev_to_pdev(netdev); \ - printk(level "%s: " format, pci_name(pdev), ##args); \ -} while(0) -#elif ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,21) ) -#define netdev_printk(level, netdev, format, args...) \ -do { \ - struct pci_dev *pdev = _kc_netdev_to_pdev(netdev); \ - struct device *dev = pci_dev_to_dev(pdev); \ - dev_printk(level, dev, "%s: " format, \ - netdev_name(netdev), ##args); \ -} while(0) -#else /* 2.6.21 => 2.6.34 */ -#define netdev_printk(level, netdev, format, args...) \ - dev_printk(level, (netdev)->dev.parent, \ - "%s: " format, \ - netdev_name(netdev), ##args) -#endif /* <2.6.0 <2.6.21 <2.6.34 */ -#undef netdev_emerg -#define netdev_emerg(dev, format, args...) \ - netdev_printk(KERN_EMERG, dev, format, ##args) -#undef netdev_alert -#define netdev_alert(dev, format, args...) \ - netdev_printk(KERN_ALERT, dev, format, ##args) -#undef netdev_crit -#define netdev_crit(dev, format, args...) \ - netdev_printk(KERN_CRIT, dev, format, ##args) -#undef netdev_err -#define netdev_err(dev, format, args...) \ - netdev_printk(KERN_ERR, dev, format, ##args) -#undef netdev_warn -#define netdev_warn(dev, format, args...) \ - netdev_printk(KERN_WARNING, dev, format, ##args) -#undef netdev_notice -#define netdev_notice(dev, format, args...) \ - netdev_printk(KERN_NOTICE, dev, format, ##args) -#undef netdev_info -#define netdev_info(dev, format, args...) \ - netdev_printk(KERN_INFO, dev, format, ##args) -#undef netdev_dbg -#if defined(DEBUG) -#define netdev_dbg(__dev, format, args...) \ - netdev_printk(KERN_DEBUG, __dev, format, ##args) -#elif defined(CONFIG_DYNAMIC_DEBUG) -#define netdev_dbg(__dev, format, args...) \ -do { \ - dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \ - netdev_name(__dev), ##args); \ -} while (0) -#else /* DEBUG */ -#define netdev_dbg(__dev, format, args...) \ -({ \ - if (0) \ - netdev_printk(KERN_DEBUG, __dev, format, ##args); \ - 0; \ -}) -#endif /* DEBUG */ - -#undef netif_printk -#define netif_printk(priv, type, level, dev, fmt, args...) \ -do { \ - if (netif_msg_##type(priv)) \ - netdev_printk(level, (dev), fmt, ##args); \ -} while (0) - -#undef netif_emerg -#define netif_emerg(priv, type, dev, fmt, args...) \ - netif_level(emerg, priv, type, dev, fmt, ##args) -#undef netif_alert -#define netif_alert(priv, type, dev, fmt, args...) \ - netif_level(alert, priv, type, dev, fmt, ##args) -#undef netif_crit -#define netif_crit(priv, type, dev, fmt, args...) \ - netif_level(crit, priv, type, dev, fmt, ##args) -#undef netif_err -#define netif_err(priv, type, dev, fmt, args...) \ - netif_level(err, priv, type, dev, fmt, ##args) -#undef netif_warn -#define netif_warn(priv, type, dev, fmt, args...) \ - netif_level(warn, priv, type, dev, fmt, ##args) -#undef netif_notice -#define netif_notice(priv, type, dev, fmt, args...) \ - netif_level(notice, priv, type, dev, fmt, ##args) -#undef netif_info -#define netif_info(priv, type, dev, fmt, args...) \ - netif_level(info, priv, type, dev, fmt, ##args) -#undef netif_dbg -#define netif_dbg(priv, type, dev, fmt, args...) \ - netif_level(dbg, priv, type, dev, fmt, ##args) - -#ifdef SET_SYSTEM_SLEEP_PM_OPS -#define HAVE_SYSTEM_SLEEP_PM_OPS -#endif - -#ifndef for_each_set_bit -#define for_each_set_bit(bit, addr, size) \ - for ((bit) = find_first_bit((addr), (size)); \ - (bit) < (size); \ - (bit) = find_next_bit((addr), (size), (bit) + 1)) -#endif /* for_each_set_bit */ - -#ifndef DEFINE_DMA_UNMAP_ADDR -#define DEFINE_DMA_UNMAP_ADDR DECLARE_PCI_UNMAP_ADDR -#define DEFINE_DMA_UNMAP_LEN DECLARE_PCI_UNMAP_LEN -#define dma_unmap_addr pci_unmap_addr -#define dma_unmap_addr_set pci_unmap_addr_set -#define dma_unmap_len pci_unmap_len -#define dma_unmap_len_set pci_unmap_len_set -#endif /* DEFINE_DMA_UNMAP_ADDR */ - -#if (RHEL_RELEASE_CODE < RHEL_RELEASE_VERSION(6,3)) -#ifdef IGB_HWMON -#ifdef CONFIG_DEBUG_LOCK_ALLOC -#define sysfs_attr_init(attr) \ - do { \ - static struct lock_class_key __key; \ - (attr)->key = &__key; \ - } while (0) -#else -#define sysfs_attr_init(attr) do {} while (0) -#endif /* CONFIG_DEBUG_LOCK_ALLOC */ -#endif /* IGB_HWMON */ -#endif /* RHEL_RELEASE_CODE */ - -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) ) -static inline bool _kc_pm_runtime_suspended() -{ - return false; -} -#define pm_runtime_suspended(dev) _kc_pm_runtime_suspended() -#else /* 2.6.0 => 2.6.34 */ -static inline bool _kc_pm_runtime_suspended(struct device *dev) -{ - return false; -} -#ifndef pm_runtime_suspended -#define pm_runtime_suspended(dev) _kc_pm_runtime_suspended(dev) -#endif -#endif /* 2.6.0 => 2.6.34 */ - -#else /* < 2.6.34 */ -#define HAVE_SYSTEM_SLEEP_PM_OPS -#ifndef HAVE_SET_RX_MODE -#define HAVE_SET_RX_MODE -#endif - -#endif /* < 2.6.34 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,35) ) - -ssize_t _kc_simple_write_to_buffer(void *to, size_t available, loff_t *ppos, - const void __user *from, size_t count); -#define simple_write_to_buffer _kc_simple_write_to_buffer - -#ifndef numa_node_id -#define numa_node_id() 0 -#endif -#ifdef HAVE_TX_MQ -#include <net/sch_generic.h> -#ifndef CONFIG_NETDEVICES_MULTIQUEUE -#if (!(RHEL_RELEASE_CODE && RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(6,0))) -void _kc_netif_set_real_num_tx_queues(struct net_device *, unsigned int); -#define netif_set_real_num_tx_queues _kc_netif_set_real_num_tx_queues -#endif /* !(RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(6,0)) */ -#else /* CONFIG_NETDEVICES_MULTI_QUEUE */ -#define netif_set_real_num_tx_queues(_netdev, _count) \ - do { \ - (_netdev)->egress_subqueue_count = _count; \ - } while (0) -#endif /* CONFIG_NETDEVICES_MULTI_QUEUE */ -#else /* HAVE_TX_MQ */ -#define netif_set_real_num_tx_queues(_netdev, _count) do {} while(0) -#endif /* HAVE_TX_MQ */ -#ifndef ETH_FLAG_RXHASH -#define ETH_FLAG_RXHASH (1<<28) -#endif /* ETH_FLAG_RXHASH */ -#if (RHEL_RELEASE_CODE && RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(6,0)) -#define HAVE_IRQ_AFFINITY_HINT -#endif -#else /* < 2.6.35 */ -#define HAVE_PM_QOS_REQUEST_LIST -#define HAVE_IRQ_AFFINITY_HINT -#endif /* < 2.6.35 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,36) ) -extern int _kc_ethtool_op_set_flags(struct net_device *, u32, u32); -#define ethtool_op_set_flags _kc_ethtool_op_set_flags -extern u32 _kc_ethtool_op_get_flags(struct net_device *); -#define ethtool_op_get_flags _kc_ethtool_op_get_flags - -#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS -#ifdef NET_IP_ALIGN -#undef NET_IP_ALIGN -#endif -#define NET_IP_ALIGN 0 -#endif /* CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS */ - -#ifdef NET_SKB_PAD -#undef NET_SKB_PAD -#endif - -#if (L1_CACHE_BYTES > 32) -#define NET_SKB_PAD L1_CACHE_BYTES -#else -#define NET_SKB_PAD 32 -#endif - -static inline struct sk_buff *_kc_netdev_alloc_skb_ip_align(struct net_device *dev, - unsigned int length) -{ - struct sk_buff *skb; - - skb = alloc_skb(length + NET_SKB_PAD + NET_IP_ALIGN, GFP_ATOMIC); - if (skb) { -#if (NET_IP_ALIGN + NET_SKB_PAD) - skb_reserve(skb, NET_IP_ALIGN + NET_SKB_PAD); -#endif - skb->dev = dev; - } - return skb; -} - -#ifdef netdev_alloc_skb_ip_align -#undef netdev_alloc_skb_ip_align -#endif -#define netdev_alloc_skb_ip_align(n, l) _kc_netdev_alloc_skb_ip_align(n, l) - -#undef netif_level -#define netif_level(level, priv, type, dev, fmt, args...) \ -do { \ - if (netif_msg_##type(priv)) \ - netdev_##level(dev, fmt, ##args); \ -} while (0) - -#undef usleep_range -#define usleep_range(min, max) msleep(DIV_ROUND_UP(min, 1000)) - -#define u64_stats_update_begin(a) do { } while(0) -#define u64_stats_update_end(a) do { } while(0) -#define u64_stats_fetch_begin(a) do { } while(0) -#define u64_stats_fetch_retry_bh(a) (0) -#define u64_stats_fetch_begin_bh(a) (0) - -#if (RHEL_RELEASE_CODE && RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(6,1)) -#define HAVE_8021P_SUPPORT -#endif - -#else /* < 2.6.36 */ - - -#define HAVE_PM_QOS_REQUEST_ACTIVE -#define HAVE_8021P_SUPPORT -#define HAVE_NDO_GET_STATS64 -#endif /* < 2.6.36 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,37) ) -#ifndef netif_set_real_num_rx_queues -static inline int __kc_netif_set_real_num_rx_queues(struct net_device *dev, - unsigned int rxq) -{ - return 0; -} -#define netif_set_real_num_rx_queues(dev, rxq) \ - __kc_netif_set_real_num_rx_queues((dev), (rxq)) -#endif -#ifndef ETHTOOL_RXNTUPLE_ACTION_CLEAR -#define ETHTOOL_RXNTUPLE_ACTION_CLEAR (-2) -#endif -#ifndef VLAN_N_VID -#define VLAN_N_VID VLAN_GROUP_ARRAY_LEN -#endif /* VLAN_N_VID */ -#ifndef ETH_FLAG_TXVLAN -#define ETH_FLAG_TXVLAN (1 << 7) -#endif /* ETH_FLAG_TXVLAN */ -#ifndef ETH_FLAG_RXVLAN -#define ETH_FLAG_RXVLAN (1 << 8) -#endif /* ETH_FLAG_RXVLAN */ - -static inline void _kc_skb_checksum_none_assert(struct sk_buff *skb) -{ - WARN_ON(skb->ip_summed != CHECKSUM_NONE); -} -#define skb_checksum_none_assert(skb) _kc_skb_checksum_none_assert(skb) - -static inline void *_kc_vzalloc_node(unsigned long size, int node) -{ - void *addr = vmalloc_node(size, node); - if (addr) - memset(addr, 0, size); - return addr; -} -#define vzalloc_node(_size, _node) _kc_vzalloc_node(_size, _node) - -static inline void *_kc_vzalloc(unsigned long size) -{ - void *addr = vmalloc(size); - if (addr) - memset(addr, 0, size); - return addr; -} -#define vzalloc(_size) _kc_vzalloc(_size) - -#ifndef vlan_get_protocol -static inline __be16 __kc_vlan_get_protocol(const struct sk_buff *skb) -{ - if (vlan_tx_tag_present(skb) || - skb->protocol != cpu_to_be16(ETH_P_8021Q)) - return skb->protocol; - - if (skb_headlen(skb) < sizeof(struct vlan_ethhdr)) - return 0; - - return ((struct vlan_ethhdr*)skb->data)->h_vlan_encapsulated_proto; -} -#define vlan_get_protocol(_skb) __kc_vlan_get_protocol(_skb) -#endif -#ifdef HAVE_HW_TIME_STAMP -#define SKBTX_HW_TSTAMP (1 << 0) -#define SKBTX_IN_PROGRESS (1 << 2) -#define SKB_SHARED_TX_IS_UNION -#endif - -#ifndef device_wakeup_enable -#define device_wakeup_enable(dev) device_set_wakeup_enable(dev, true) -#endif - -#if ( LINUX_VERSION_CODE > KERNEL_VERSION(2,4,18) ) -#ifndef HAVE_VLAN_RX_REGISTER -#define HAVE_VLAN_RX_REGISTER -#endif -#endif /* > 2.4.18 */ -#endif /* < 2.6.37 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,38) ) -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,22) ) -#define skb_checksum_start_offset(skb) skb_transport_offset(skb) -#else /* 2.6.22 -> 2.6.37 */ -static inline int _kc_skb_checksum_start_offset(const struct sk_buff *skb) -{ - return skb->csum_start - skb_headroom(skb); -} -#define skb_checksum_start_offset(skb) _kc_skb_checksum_start_offset(skb) -#endif /* 2.6.22 -> 2.6.37 */ -#ifdef CONFIG_DCB -#ifndef IEEE_8021QAZ_MAX_TCS -#define IEEE_8021QAZ_MAX_TCS 8 -#endif -#ifndef DCB_CAP_DCBX_HOST -#define DCB_CAP_DCBX_HOST 0x01 -#endif -#ifndef DCB_CAP_DCBX_LLD_MANAGED -#define DCB_CAP_DCBX_LLD_MANAGED 0x02 -#endif -#ifndef DCB_CAP_DCBX_VER_CEE -#define DCB_CAP_DCBX_VER_CEE 0x04 -#endif -#ifndef DCB_CAP_DCBX_VER_IEEE -#define DCB_CAP_DCBX_VER_IEEE 0x08 -#endif -#ifndef DCB_CAP_DCBX_STATIC -#define DCB_CAP_DCBX_STATIC 0x10 -#endif -#endif /* CONFIG_DCB */ -#if (RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(6,2)) -#define CONFIG_XPS -#endif /* RHEL_RELEASE_VERSION(6,2) */ -#endif /* < 2.6.38 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,39) ) -#ifndef NETIF_F_RXCSUM -#define NETIF_F_RXCSUM (1 << 29) -#endif -#ifndef skb_queue_reverse_walk_safe -#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ - for (skb = (queue)->prev, tmp = skb->prev; \ - skb != (struct sk_buff *)(queue); \ - skb = tmp, tmp = skb->prev) -#endif -#else /* < 2.6.39 */ -#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) -#ifndef HAVE_NETDEV_OPS_FCOE_DDP_TARGET -#define HAVE_NETDEV_OPS_FCOE_DDP_TARGET -#endif -#endif /* CONFIG_FCOE || CONFIG_FCOE_MODULE */ -#ifndef HAVE_MQPRIO -#define HAVE_MQPRIO -#endif -#ifndef HAVE_SETUP_TC -#define HAVE_SETUP_TC -#endif -#ifdef CONFIG_DCB -#ifndef HAVE_DCBNL_IEEE -#define HAVE_DCBNL_IEEE -#endif -#endif /* CONFIG_DCB */ -#ifndef HAVE_NDO_SET_FEATURES -#define HAVE_NDO_SET_FEATURES -#endif -#endif /* < 2.6.39 */ - -/*****************************************************************************/ -/* use < 2.6.40 because of a Fedora 15 kernel update where they - * updated the kernel version to 2.6.40.x and they back-ported 3.0 features - * like set_phys_id for ethtool. - */ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,40) ) -#ifdef ETHTOOL_GRXRINGS -#ifndef FLOW_EXT -#define FLOW_EXT 0x80000000 -union _kc_ethtool_flow_union { - struct ethtool_tcpip4_spec tcp_ip4_spec; - struct ethtool_usrip4_spec usr_ip4_spec; - __u8 hdata[60]; -}; -struct _kc_ethtool_flow_ext { - __be16 vlan_etype; - __be16 vlan_tci; - __be32 data[2]; -}; -struct _kc_ethtool_rx_flow_spec { - __u32 flow_type; - union _kc_ethtool_flow_union h_u; - struct _kc_ethtool_flow_ext h_ext; - union _kc_ethtool_flow_union m_u; - struct _kc_ethtool_flow_ext m_ext; - __u64 ring_cookie; - __u32 location; -}; -#define ethtool_rx_flow_spec _kc_ethtool_rx_flow_spec -#endif /* FLOW_EXT */ -#endif - -#define pci_disable_link_state_locked pci_disable_link_state - -#ifndef PCI_LTR_VALUE_MASK -#define PCI_LTR_VALUE_MASK 0x000003ff -#endif -#ifndef PCI_LTR_SCALE_MASK -#define PCI_LTR_SCALE_MASK 0x00001c00 -#endif -#ifndef PCI_LTR_SCALE_SHIFT -#define PCI_LTR_SCALE_SHIFT 10 -#endif - -#else /* < 2.6.40 */ -#define HAVE_ETHTOOL_SET_PHYS_ID -#endif /* < 2.6.40 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(3,0,0) ) -#define USE_LEGACY_PM_SUPPORT -#endif /* < 3.0.0 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(3,1,0) ) -#ifndef __netdev_alloc_skb_ip_align -#define __netdev_alloc_skb_ip_align(d,l,_g) netdev_alloc_skb_ip_align(d,l) -#endif /* __netdev_alloc_skb_ip_align */ -#define dcb_ieee_setapp(dev, app) dcb_setapp(dev, app) -#define dcb_ieee_delapp(dev, app) 0 -#define dcb_ieee_getapp_mask(dev, app) (1 << app->priority) - -/* 1000BASE-T Control register */ -#define CTL1000_AS_MASTER 0x0800 -#define CTL1000_ENABLE_MASTER 0x1000 - -#else /* < 3.1.0 */ -#ifndef HAVE_DCBNL_IEEE_DELAPP -#define HAVE_DCBNL_IEEE_DELAPP -#endif -#endif /* < 3.1.0 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(3,2,0) ) -#ifdef ETHTOOL_GRXRINGS -#define HAVE_ETHTOOL_GET_RXNFC_VOID_RULE_LOCS -#endif /* ETHTOOL_GRXRINGS */ - -#ifndef skb_frag_size -#define skb_frag_size(frag) _kc_skb_frag_size(frag) -static inline unsigned int _kc_skb_frag_size(const skb_frag_t *frag) -{ - return frag->size; -} -#endif /* skb_frag_size */ - -#ifndef skb_frag_size_sub -#define skb_frag_size_sub(frag, delta) _kc_skb_frag_size_sub(frag, delta) -static inline void _kc_skb_frag_size_sub(skb_frag_t *frag, int delta) -{ - frag->size -= delta; -} -#endif /* skb_frag_size_sub */ - -#ifndef skb_frag_page -#define skb_frag_page(frag) _kc_skb_frag_page(frag) -static inline struct page *_kc_skb_frag_page(const skb_frag_t *frag) -{ - return frag->page; -} -#endif /* skb_frag_page */ - -#ifndef skb_frag_address -#define skb_frag_address(frag) _kc_skb_frag_address(frag) -static inline void *_kc_skb_frag_address(const skb_frag_t *frag) -{ - return page_address(skb_frag_page(frag)) + frag->page_offset; -} -#endif /* skb_frag_address */ - -#ifndef skb_frag_dma_map -#if ( LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) ) -#include <linux/dma-mapping.h> -#endif -#define skb_frag_dma_map(dev,frag,offset,size,dir) \ - _kc_skb_frag_dma_map(dev,frag,offset,size,dir) -static inline dma_addr_t _kc_skb_frag_dma_map(struct device *dev, - const skb_frag_t *frag, - size_t offset, size_t size, - enum dma_data_direction dir) -{ - return dma_map_page(dev, skb_frag_page(frag), - frag->page_offset + offset, size, dir); -} -#endif /* skb_frag_dma_map */ - -#ifndef __skb_frag_unref -#define __skb_frag_unref(frag) __kc_skb_frag_unref(frag) -static inline void __kc_skb_frag_unref(skb_frag_t *frag) -{ - put_page(skb_frag_page(frag)); -} -#endif /* __skb_frag_unref */ - -#ifndef SPEED_UNKNOWN -#define SPEED_UNKNOWN -1 -#endif -#ifndef DUPLEX_UNKNOWN -#define DUPLEX_UNKNOWN 0xff -#endif -#if (RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(6,3)) -#ifndef HAVE_PCI_DEV_FLAGS_ASSIGNED -#define HAVE_PCI_DEV_FLAGS_ASSIGNED -#endif -#endif -#else /* < 3.2.0 */ -#ifndef HAVE_PCI_DEV_FLAGS_ASSIGNED -#define HAVE_PCI_DEV_FLAGS_ASSIGNED -#define HAVE_VF_SPOOFCHK_CONFIGURE -#endif -#endif /* < 3.2.0 */ - -#if (RHEL_RELEASE_CODE && RHEL_RELEASE_CODE == RHEL_RELEASE_VERSION(6,2)) -#undef ixgbe_get_netdev_tc_txq -#define ixgbe_get_netdev_tc_txq(dev, tc) (&netdev_extended(dev)->qos_data.tc_to_txq[tc]) -#endif -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(3,3,0) ) -typedef u32 kni_netdev_features_t; -#undef PCI_EXP_TYPE_RC_EC -#define PCI_EXP_TYPE_RC_EC 0xa /* Root Complex Event Collector */ -#ifndef CONFIG_BQL -#define netdev_tx_completed_queue(_q, _p, _b) do {} while (0) -#define netdev_completed_queue(_n, _p, _b) do {} while (0) -#define netdev_tx_sent_queue(_q, _b) do {} while (0) -#define netdev_sent_queue(_n, _b) do {} while (0) -#define netdev_tx_reset_queue(_q) do {} while (0) -#define netdev_reset_queue(_n) do {} while (0) -#endif -#else /* ! < 3.3.0 */ -typedef netdev_features_t kni_netdev_features_t; -#define HAVE_INT_NDO_VLAN_RX_ADD_VID -#ifdef ETHTOOL_SRXNTUPLE -#undef ETHTOOL_SRXNTUPLE -#endif -#endif /* < 3.3.0 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(3,4,0) ) -#ifndef NETIF_F_RXFCS -#define NETIF_F_RXFCS 0 -#endif /* NETIF_F_RXFCS */ -#ifndef NETIF_F_RXALL -#define NETIF_F_RXALL 0 -#endif /* NETIF_F_RXALL */ - -#if !(SLE_VERSION_CODE && SLE_VERSION_CODE >= SLE_VERSION(11,3,0)) -#define NUMTCS_RETURNS_U8 - -int _kc_simple_open(struct inode *inode, struct file *file); -#define simple_open _kc_simple_open -#endif /* !(SLE_VERSION_CODE && SLE_VERSION_CODE >= SLE_VERSION(11,3,0)) */ - - -#ifndef skb_add_rx_frag -#define skb_add_rx_frag _kc_skb_add_rx_frag -extern void _kc_skb_add_rx_frag(struct sk_buff *, int, struct page *, - int, int, unsigned int); -#endif -#ifdef NET_ADDR_RANDOM -#define eth_hw_addr_random(N) do { \ - random_ether_addr(N->dev_addr); \ - N->addr_assign_type |= NET_ADDR_RANDOM; \ - } while (0) -#else /* NET_ADDR_RANDOM */ -#define eth_hw_addr_random(N) random_ether_addr(N->dev_addr) -#endif /* NET_ADDR_RANDOM */ -#else /* < 3.4.0 */ -#include <linux/kconfig.h> -#endif /* >= 3.4.0 */ - -/*****************************************************************************/ -#if defined(E1000E_PTP) || defined(IGB_PTP) || defined(IXGBE_PTP) || defined(I40E_PTP) -#if ( LINUX_VERSION_CODE >= KERNEL_VERSION(3,0,0) ) && IS_ENABLED(CONFIG_PTP_1588_CLOCK) -#define HAVE_PTP_1588_CLOCK -#else -#error Cannot enable PTP Hardware Clock support due to a pre-3.0 kernel version or CONFIG_PTP_1588_CLOCK not enabled in the kernel -#endif /* > 3.0.0 && IS_ENABLED(CONFIG_PTP_1588_CLOCK) */ -#endif /* E1000E_PTP || IGB_PTP || IXGBE_PTP || I40E_PTP */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(3,5,0) ) -#define skb_tx_timestamp(skb) do {} while (0) -static inline bool __kc_ether_addr_equal(const u8 *addr1, const u8 *addr2) -{ - return !compare_ether_addr(addr1, addr2); -} -#define ether_addr_equal(_addr1, _addr2) __kc_ether_addr_equal((_addr1),(_addr2)) -#else -#define HAVE_FDB_OPS -#define HAVE_ETHTOOL_GET_TS_INFO -#endif /* < 3.5.0 */ - -/*****************************************************************************/ -#include <linux/mdio.h> -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(3,6,0) ) -#define PCI_EXP_LNKCAP2 44 /* Link Capability 2 */ - -#ifndef MDIO_EEE_100TX -#define MDIO_EEE_100TX 0x0002 /* 100TX EEE cap */ -#endif -#ifndef MDIO_EEE_1000T -#define MDIO_EEE_1000T 0x0004 /* 1000T EEE cap */ -#endif -#ifndef MDIO_EEE_10GT -#define MDIO_EEE_10GT 0x0008 /* 10GT EEE cap */ -#endif -#ifndef MDIO_EEE_1000KX -#define MDIO_EEE_1000KX 0x0010 /* 1000KX EEE cap */ -#endif -#ifndef MDIO_EEE_10GKX4 -#define MDIO_EEE_10GKX4 0x0020 /* 10G KX4 EEE cap */ -#endif -#ifndef MDIO_EEE_10GKR -#define MDIO_EEE_10GKR 0x0040 /* 10G KR EEE cap */ -#endif -#endif /* < 3.6.0 */ - -/******************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(3,7,0) ) -#ifndef ADVERTISED_40000baseKR4_Full -/* these defines were all added in one commit, so should be safe - * to trigger activiation on one define - */ -#define SUPPORTED_40000baseKR4_Full (1 << 23) -#define SUPPORTED_40000baseCR4_Full (1 << 24) -#define SUPPORTED_40000baseSR4_Full (1 << 25) -#define SUPPORTED_40000baseLR4_Full (1 << 26) -#define ADVERTISED_40000baseKR4_Full (1 << 23) -#define ADVERTISED_40000baseCR4_Full (1 << 24) -#define ADVERTISED_40000baseSR4_Full (1 << 25) -#define ADVERTISED_40000baseLR4_Full (1 << 26) -#endif - -/** - * mmd_eee_cap_to_ethtool_sup_t - * @eee_cap: value of the MMD EEE Capability register - * - * A small helper function that translates MMD EEE Capability (3.20) bits - * to ethtool supported settings. - */ -static inline u32 __kc_mmd_eee_cap_to_ethtool_sup_t(u16 eee_cap) -{ - u32 supported = 0; - - if (eee_cap & MDIO_EEE_100TX) - supported |= SUPPORTED_100baseT_Full; - if (eee_cap & MDIO_EEE_1000T) - supported |= SUPPORTED_1000baseT_Full; - if (eee_cap & MDIO_EEE_10GT) - supported |= SUPPORTED_10000baseT_Full; - if (eee_cap & MDIO_EEE_1000KX) - supported |= SUPPORTED_1000baseKX_Full; - if (eee_cap & MDIO_EEE_10GKX4) - supported |= SUPPORTED_10000baseKX4_Full; - if (eee_cap & MDIO_EEE_10GKR) - supported |= SUPPORTED_10000baseKR_Full; - - return supported; -} -#define mmd_eee_cap_to_ethtool_sup_t(eee_cap) \ - __kc_mmd_eee_cap_to_ethtool_sup_t(eee_cap) - -/** - * mmd_eee_adv_to_ethtool_adv_t - * @eee_adv: value of the MMD EEE Advertisement/Link Partner Ability registers - * - * A small helper function that translates the MMD EEE Advertisement (7.60) - * and MMD EEE Link Partner Ability (7.61) bits to ethtool advertisement - * settings. - */ -static inline u32 __kc_mmd_eee_adv_to_ethtool_adv_t(u16 eee_adv) -{ - u32 adv = 0; - - if (eee_adv & MDIO_EEE_100TX) - adv |= ADVERTISED_100baseT_Full; - if (eee_adv & MDIO_EEE_1000T) - adv |= ADVERTISED_1000baseT_Full; - if (eee_adv & MDIO_EEE_10GT) - adv |= ADVERTISED_10000baseT_Full; - if (eee_adv & MDIO_EEE_1000KX) - adv |= ADVERTISED_1000baseKX_Full; - if (eee_adv & MDIO_EEE_10GKX4) - adv |= ADVERTISED_10000baseKX4_Full; - if (eee_adv & MDIO_EEE_10GKR) - adv |= ADVERTISED_10000baseKR_Full; - - return adv; -} -#define mmd_eee_adv_to_ethtool_adv_t(eee_adv) \ - __kc_mmd_eee_adv_to_ethtool_adv_t(eee_adv) - -/** - * ethtool_adv_to_mmd_eee_adv_t - * @adv: the ethtool advertisement settings - * - * A small helper function that translates ethtool advertisement settings - * to EEE advertisements for the MMD EEE Advertisement (7.60) and - * MMD EEE Link Partner Ability (7.61) registers. - */ -static inline u16 __kc_ethtool_adv_to_mmd_eee_adv_t(u32 adv) -{ - u16 reg = 0; - - if (adv & ADVERTISED_100baseT_Full) - reg |= MDIO_EEE_100TX; - if (adv & ADVERTISED_1000baseT_Full) - reg |= MDIO_EEE_1000T; - if (adv & ADVERTISED_10000baseT_Full) - reg |= MDIO_EEE_10GT; - if (adv & ADVERTISED_1000baseKX_Full) - reg |= MDIO_EEE_1000KX; - if (adv & ADVERTISED_10000baseKX4_Full) - reg |= MDIO_EEE_10GKX4; - if (adv & ADVERTISED_10000baseKR_Full) - reg |= MDIO_EEE_10GKR; - - return reg; -} -#define ethtool_adv_to_mmd_eee_adv_t(adv) \ - __kc_ethtool_adv_to_mmd_eee_adv_t(adv) - -#ifndef pci_pcie_type -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,24) ) -static inline u8 pci_pcie_type(struct pci_dev *pdev) -{ - int pos; - u16 reg16; - - pos = pci_find_capability(pdev, PCI_CAP_ID_EXP); - if (!pos) - BUG(); - pci_read_config_word(pdev, pos + PCI_EXP_FLAGS, ®16); - return (reg16 & PCI_EXP_FLAGS_TYPE) >> 4; -} -#else /* < 2.6.24 */ -#define pci_pcie_type(x) (x)->pcie_type -#endif /* < 2.6.24 */ -#endif /* pci_pcie_type */ - -#define ptp_clock_register(caps, args...) ptp_clock_register(caps) - -#ifndef PCI_EXP_LNKSTA2 -int __kc_pcie_capability_read_word(struct pci_dev *dev, int pos, u16 *val); -#define pcie_capability_read_word(d,p,v) __kc_pcie_capability_read_word(d,p,v) -int __kc_pcie_capability_write_word(struct pci_dev *dev, int pos, u16 val); -#define pcie_capability_write_word(d,p,v) __kc_pcie_capability_write_word(d,p,v) -int __kc_pcie_capability_clear_and_set_word(struct pci_dev *dev, int pos, - u16 clear, u16 set); -#define pcie_capability_clear_and_set_word(d,p,c,s) \ - __kc_pcie_capability_clear_and_set_word(d,p,c,s) - -#define PCI_EXP_LNKSTA2 50 /* Link Status 2 */ - -static inline int pcie_capability_clear_word(struct pci_dev *dev, int pos, - u16 clear) -{ - return __kc_pcie_capability_clear_and_set_word(dev, pos, clear, 0); -} -#endif /* !PCI_EXP_LNKSTA2 */ - -#if (SLE_VERSION_CODE && SLE_VERSION_CODE >= SLE_VERSION(11,3,0)) -#define USE_CONST_DEV_UC_CHAR -#endif - -#else /* >= 3.7.0 */ -#define HAVE_CONST_STRUCT_PCI_ERROR_HANDLERS -#define USE_CONST_DEV_UC_CHAR -#endif /* >= 3.7.0 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(3,8,0) ) -#ifndef PCI_EXP_LNKCTL_ASPM_L0S -#define PCI_EXP_LNKCTL_ASPM_L0S 0x01 /* L0s Enable */ -#endif -#ifndef PCI_EXP_LNKCTL_ASPM_L1 -#define PCI_EXP_LNKCTL_ASPM_L1 0x02 /* L1 Enable */ -#endif -#define HAVE_CONFIG_HOTPLUG -/* Reserved Ethernet Addresses per IEEE 802.1Q */ -static const u8 eth_reserved_addr_base[ETH_ALEN] __aligned(2) = { - 0x01, 0x80, 0xc2, 0x00, 0x00, 0x00 }; -#if !(SLE_VERSION_CODE && SLE_VERSION_CODE >= SLE_VERSION(11,3,0)) &&\ - !(RHEL_RELEASE_CODE && RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(6,5)) -static inline bool is_link_local_ether_addr(const u8 *addr) -{ - __be16 *a = (__be16 *)addr; - static const __be16 *b = (const __be16 *)eth_reserved_addr_base; - static const __be16 m = cpu_to_be16(0xfff0); - - return ((a[0] ^ b[0]) | (a[1] ^ b[1]) | ((a[2] ^ b[2]) & m)) == 0; -} -#endif /* !(SLE_VERSION_CODE && SLE_VERSION_CODE >= SLE_VERSION(11,3,0)) */ -#else /* >= 3.8.0 */ -#ifndef __devinit -#define __devinit -#define HAVE_ENCAP_CSUM_OFFLOAD -#endif - -#ifndef __devinitdata -#define __devinitdata -#endif - -#ifndef __devexit -#define __devexit -#endif - -#ifndef __devexit_p -#define __devexit_p -#endif - -#ifndef HAVE_SRIOV_CONFIGURE -#define HAVE_SRIOV_CONFIGURE -#endif - -#define HAVE_BRIDGE_ATTRIBS -#ifndef BRIDGE_MODE_VEB -#define BRIDGE_MODE_VEB 0 /* Default loopback mode */ -#endif /* BRIDGE_MODE_VEB */ -#ifndef BRIDGE_MODE_VEPA -#define BRIDGE_MODE_VEPA 1 /* 802.1Qbg defined VEPA mode */ -#endif /* BRIDGE_MODE_VEPA */ -#endif /* >= 3.8.0 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(3,9,0) ) - -#undef hlist_entry -#define hlist_entry(ptr, type, member) container_of(ptr,type,member) - -#undef hlist_entry_safe -#define hlist_entry_safe(ptr, type, member) \ - (ptr) ? hlist_entry(ptr, type, member) : NULL - -#undef hlist_for_each_entry -#define hlist_for_each_entry(pos, head, member) \ - for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member); \ - pos; \ - pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) - -#undef hlist_for_each_entry_safe -#define hlist_for_each_entry_safe(pos, n, head, member) \ - for (pos = hlist_entry_safe((head)->first, typeof(*pos), member); \ - pos && ({ n = pos->member.next; 1; }); \ - pos = hlist_entry_safe(n, typeof(*pos), member)) - -#ifdef CONFIG_XPS -extern int __kc_netif_set_xps_queue(struct net_device *, struct cpumask *, u16); -#define netif_set_xps_queue(_dev, _mask, _idx) __kc_netif_set_xps_queue((_dev), (_mask), (_idx)) -#else /* CONFIG_XPS */ -#define netif_set_xps_queue(_dev, _mask, _idx) do {} while (0) -#endif /* CONFIG_XPS */ - -#ifdef HAVE_NETDEV_SELECT_QUEUE -#define _kc_hashrnd 0xd631614b /* not so random hash salt */ -extern u16 __kc_netdev_pick_tx(struct net_device *dev, struct sk_buff *skb); -#define __netdev_pick_tx __kc_netdev_pick_tx -#endif /* HAVE_NETDEV_SELECT_QUEUE */ -#else -#define HAVE_BRIDGE_FILTER -#define USE_DEFAULT_FDB_DEL_DUMP -#endif /* < 3.9.0 */ - -/*****************************************************************************/ -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(3,10,0) ) -#ifdef CONFIG_PCI_IOV -extern int __kc_pci_vfs_assigned(struct pci_dev *dev); -#else -static inline int __kc_pci_vfs_assigned(struct pci_dev *dev) -{ - return 0; -} -#endif -#define pci_vfs_assigned(dev) __kc_pci_vfs_assigned(dev) - -#ifndef VLAN_TX_COOKIE_MAGIC -static inline struct sk_buff *__kc__vlan_hwaccel_put_tag(struct sk_buff *skb, - u16 vlan_tci) -{ -#ifdef VLAN_TAG_PRESENT - vlan_tci |= VLAN_TAG_PRESENT; -#endif - skb->vlan_tci = vlan_tci; - return skb; -} -#define __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci) \ - __kc__vlan_hwaccel_put_tag(skb, vlan_tci) -#endif - -#else /* >= 3.10.0 */ -#define HAVE_ENCAP_TSO_OFFLOAD -#endif /* >= 3.10.0 */ - -#if ( LINUX_VERSION_CODE < KERNEL_VERSION(3,14,0) ) -#if (!(RHEL_RELEASE_CODE && RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(6,6))) -#if (!(UBUNTU_KERNEL_CODE >= UBUNTU_KERNEL_VERSION(3,13,0,30,0) \ - && (UBUNTU_RELEASE_CODE == UBUNTU_RELEASE_VERSION(12,4) \ - || UBUNTU_RELEASE_CODE == UBUNTU_RELEASE_VERSION(14,4)))) -#if (!(SLE_VERSION_CODE == SLE_VERSION(12,0,0))) -#ifdef NETIF_F_RXHASH -#define PKT_HASH_TYPE_L3 0 -static inline void -skb_set_hash(struct sk_buff *skb, __u32 hash, __always_unused int type) -{ - skb->rxhash = hash; -} -#endif /* NETIF_F_RXHASH */ -#endif /* < SLES12 */ -#endif /* < 3.13.0-30.54 (Ubuntu 14.04) */ -#endif /* < RHEL7 */ -#endif /* < 3.14.0 */ - -#if (( LINUX_VERSION_CODE >= KERNEL_VERSION(3,16,0) ) \ - || ( RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(7,2) )) -#undef SET_ETHTOOL_OPS -#define SET_ETHTOOL_OPS(netdev, ops) ((netdev)->ethtool_ops = (ops)) -#define HAVE_VF_MIN_MAX_TXRATE 1 -#endif /* >= 3.16.0 */ - -#if (( LINUX_VERSION_CODE >= KERNEL_VERSION(3,19,0) ) \ - || ( RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(7,2) )) -#define HAVE_NDO_DFLT_BRIDGE_ADD_MASK -#if ( RHEL_RELEASE_CODE != RHEL_RELEASE_VERSION(7,2) ) -#define HAVE_NDO_FDB_ADD_VID -#endif /* !RHEL 7.2 */ -#endif /* >= 3.19.0 */ - -#if (( LINUX_VERSION_CODE >= KERNEL_VERSION(4,0,0) ) \ - || ( RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(7,2) )) -/* vlan_tx_xx functions got renamed to skb_vlan */ -#define vlan_tx_tag_get skb_vlan_tag_get -#define vlan_tx_tag_present skb_vlan_tag_present -#if ( RHEL_RELEASE_CODE != RHEL_RELEASE_VERSION(7,2) ) -#define HAVE_NDO_BRIDGE_SET_DEL_LINK_FLAGS -#endif /* !RHEL 7.2 */ -#endif /* 4.0.0 */ - -#if (( LINUX_VERSION_CODE >= KERNEL_VERSION(4,1,0) ) \ - || ( RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(7,3) )) -/* ndo_bridge_getlink adds new nlflags parameter */ -#define HAVE_NDO_BRIDGE_GETLINK_NLFLAGS -#endif /* >= 4.1.0 */ - -#if ( LINUX_VERSION_CODE >= KERNEL_VERSION(4,2,0) ) -/* ndo_bridge_getlink adds new filter_mask and vlan_fill parameters */ -#define HAVE_NDO_BRIDGE_GETLINK_FILTER_MASK_VLAN_FILL -#endif /* >= 4.2.0 */ - -/* - * vlan_tx_tag_* macros renamed to skb_vlan_tag_* (Linux commit: df8a39defad4) - * For older kernels backported this commit, need to use renamed functions. - * This fix is specific to RedHat/CentOS kernels. - */ -#if (defined(RHEL_RELEASE_CODE) && \ - (RHEL_RELEASE_CODE >= RHEL_RELEASE_VERSION(6, 8)) && \ - (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 34))) -#define vlan_tx_tag_get skb_vlan_tag_get -#define vlan_tx_tag_present skb_vlan_tag_present -#endif - -#if ((LINUX_VERSION_CODE >= KERNEL_VERSION(4, 9, 0)) || \ - (SLE_VERSION_CODE && SLE_VERSION_CODE >= SLE_VERSION(12, 3, 0))) -#define HAVE_VF_VLAN_PROTO -#endif /* >= 4.9.0, >= SLES12SP3 */ - -#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 8, 0) -#define HAVE_PCI_ENABLE_MSIX -#endif - -#if defined(timer_setup) && defined(from_timer) -#define HAVE_TIMER_SETUP -#endif - -#endif /* _KCOMPAT_H_ */ |