diff options
Diffstat (limited to 'lib/librte_gro/rte_gro.h')
-rw-r--r-- | lib/librte_gro/rte_gro.h | 222 |
1 files changed, 222 insertions, 0 deletions
diff --git a/lib/librte_gro/rte_gro.h b/lib/librte_gro/rte_gro.h new file mode 100644 index 00000000..d57e0c5f --- /dev/null +++ b/lib/librte_gro/rte_gro.h @@ -0,0 +1,222 @@ +/*- + * BSD LICENSE + * + * Copyright(c) 2017 Intel Corporation. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef _RTE_GRO_H_ +#define _RTE_GRO_H_ + +/** + * @file + * Interface to GRO library + */ + +#include <stdint.h> +#include <rte_mbuf.h> + +#ifdef __cplusplus +extern "C" { +#endif + +#define RTE_GRO_MAX_BURST_ITEM_NUM 128U +/**< the max number of packets that rte_gro_reassemble_burst() + * can process in each invocation. + */ +#define RTE_GRO_TYPE_MAX_NUM 64 +/**< the max number of supported GRO types */ +#define RTE_GRO_TYPE_SUPPORT_NUM 1 +/**< the number of currently supported GRO types */ + +#define RTE_GRO_TCP_IPV4_INDEX 0 +#define RTE_GRO_TCP_IPV4 (1ULL << RTE_GRO_TCP_IPV4_INDEX) +/**< TCP/IPv4 GRO flag */ + +/** + * A structure which is used to create GRO context objects or tell + * rte_gro_reassemble_burst() what reassembly rules are demanded. + */ +struct rte_gro_param { + uint64_t gro_types; + /**< desired GRO types */ + uint16_t max_flow_num; + /**< max flow number */ + uint16_t max_item_per_flow; + /**< max packet number per flow */ + uint16_t socket_id; + /**< socket index for allocating GRO related data structures, + * like reassembly tables. When use rte_gro_reassemble_burst(), + * applications don't need to set this value. + */ +}; + +/** + * @warning + * @b EXPERIMENTAL: this API may change without prior notice + * + * This function create a GRO context object, which is used to merge + * packets in rte_gro_reassemble(). + * + * @param param + * applications use it to pass needed parameters to create a GRO + * context object. + * + * @return + * if create successfully, return a pointer which points to the GRO + * context object. Otherwise, return NULL. + */ +void *rte_gro_ctx_create(const struct rte_gro_param *param); + +/** + * @warning + * @b EXPERIMENTAL: this API may change without prior notice + * + * This function destroys a GRO context object. + * + * @param ctx + * pointer points to a GRO context object. + */ +void rte_gro_ctx_destroy(void *ctx); + +/** + * This is one of the main reassembly APIs, which merges numbers of + * packets at a time. It assumes that all inputted packets are with + * correct checksums. That is, applications should guarantee all + * inputted packets are correct. Besides, it doesn't re-calculate + * checksums for merged packets. If inputted packets are IP fragmented, + * this function assumes them are complete (i.e. with L4 header). After + * finishing processing, it returns all GROed packets to applications + * immediately. + * + * @param pkts + * a pointer array which points to the packets to reassemble. Besides, + * it keeps mbuf addresses for the GROed packets. + * @param nb_pkts + * the number of packets to reassemble. + * @param param + * applications use it to tell rte_gro_reassemble_burst() what rules + * are demanded. + * + * @return + * the number of packets after been GROed. If no packets are merged, + * the returned value is nb_pkts. + */ +uint16_t rte_gro_reassemble_burst(struct rte_mbuf **pkts, + uint16_t nb_pkts, + const struct rte_gro_param *param); + +/** + * @warning + * @b EXPERIMENTAL: this API may change without prior notice + * + * Reassembly function, which tries to merge inputted packets with + * the packets in the reassembly tables of a given GRO context. This + * function assumes all inputted packets are with correct checksums. + * And it won't update checksums if two packets are merged. Besides, + * if inputted packets are IP fragmented, this function assumes they + * are complete packets (i.e. with L4 header). + * + * If the inputted packets don't have data or are with unsupported GRO + * types etc., they won't be processed and are returned to applications. + * Otherwise, the inputted packets are either merged or inserted into + * the table. If applications want get packets in the table, they need + * to call flush API. + * + * @param pkts + * packet to reassemble. Besides, after this function finishes, it + * keeps the unprocessed packets (e.g. without data or unsupported + * GRO types). + * @param nb_pkts + * the number of packets to reassemble. + * @param ctx + * a pointer points to a GRO context object. + * + * @return + * return the number of unprocessed packets (e.g. without data or + * unsupported GRO types). If all packets are processed (merged or + * inserted into the table), return 0. + */ +uint16_t rte_gro_reassemble(struct rte_mbuf **pkts, + uint16_t nb_pkts, + void *ctx); + +/** + * @warning + * @b EXPERIMENTAL: this API may change without prior notice + * + * This function flushes the timeout packets from reassembly tables of + * desired GRO types. The max number of flushed timeout packets is the + * element number of the array which is used to keep the flushed packets. + * + * Besides, this function won't re-calculate checksums for merged + * packets in the tables. That is, the returned packets may be with + * wrong checksums. + * + * @param ctx + * a pointer points to a GRO context object. + * @param timeout_cycles + * max TTL for packets in reassembly tables, measured in nanosecond. + * @param gro_types + * this function only flushes packets which belong to the GRO types + * specified by gro_types. + * @param out + * a pointer array that is used to keep flushed timeout packets. + * @param max_nb_out + * the element number of out. It's also the max number of timeout + * packets that can be flushed finally. + * + * @return + * the number of flushed packets. If no packets are flushed, return 0. + */ +uint16_t rte_gro_timeout_flush(void *ctx, + uint64_t timeout_cycles, + uint64_t gro_types, + struct rte_mbuf **out, + uint16_t max_nb_out); + +/** + * @warning + * @b EXPERIMENTAL: this API may change without prior notice + * + * This function returns the number of packets in all reassembly tables + * of a given GRO context. + * + * @param ctx + * pointer points to a GRO context object. + * + * @return + * the number of packets in all reassembly tables. + */ +uint64_t rte_gro_get_pkt_count(void *ctx); + +#ifdef __cplusplus +} +#endif + +#endif /* _RTE_GRO_H_ */ |