summaryrefslogtreecommitdiffstats
path: root/app/test-crypto-perf/cperf_test_throughput.c
blob: 8766d6e9b0a925a06a75e739cec13d12580f459a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2016-2017 Intel Corporation
 */

#include <rte_malloc.h>
#include <rte_cycles.h>
#include <rte_crypto.h>
#include <rte_cryptodev.h>

#include "cperf_test_throughput.h"
#include "cperf_ops.h"
#include "cperf_test_common.h"

struct cperf_throughput_ctx {
	uint8_t dev_id;
	uint16_t qp_id;
	uint8_t lcore_id;

	struct rte_mempool *pool;

	struct rte_cryptodev_sym_session *sess;

	cperf_populate_ops_t populate_ops;

	uint32_t src_buf_offset;
	uint32_t dst_buf_offset;

	const struct cperf_options *options;
	const struct cperf_test_vector *test_vector;
};

static void
cperf_throughput_test_free(struct cperf_throughput_ctx *ctx)
{
	if (ctx) {
		if (ctx->sess) {
			rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
			rte_cryptodev_sym_session_free(ctx->sess);
		}

		if (ctx->pool)
			rte_mempool_free(ctx->pool);

		rte_free(ctx);
	}
}

void *
cperf_throughput_test_constructor(struct rte_mempool *sess_mp,
		uint8_t dev_id, uint16_t qp_id,
		const struct cperf_options *options,
		const struct cperf_test_vector *test_vector,
		const struct cperf_op_fns *op_fns)
{
	struct cperf_throughput_ctx *ctx = NULL;

	ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0);
	if (ctx == NULL)
		goto err;

	ctx->dev_id = dev_id;
	ctx->qp_id = qp_id;

	ctx->populate_ops = op_fns->populate_ops;
	ctx->options = options;
	ctx->test_vector = test_vector;

	/* IV goes at the end of the crypto operation */
	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
		sizeof(struct rte_crypto_sym_op);

	ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector,
					iv_offset);
	if (ctx->sess == NULL)
		goto err;

	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
			&ctx->src_buf_offset, &ctx->dst_buf_offset,
			&ctx->pool) < 0)
		goto err;

	return ctx;
err:
	cperf_throughput_test_free(ctx);

	return NULL;
}

int
cperf_throughput_test_runner(void *test_ctx)
{
	struct cperf_throughput_ctx *ctx = test_ctx;
	uint16_t test_burst_size;
	uint8_t burst_size_idx = 0;
	uint32_t imix_idx = 0;

	static int only_once;

	struct rte_crypto_op *ops[ctx->options->max_burst_size];
	struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
	uint64_t i;

	uint32_t lcore = rte_lcore_id();

#ifdef CPERF_LINEARIZATION_ENABLE
	struct rte_cryptodev_info dev_info;
	int linearize = 0;

	/* Check if source mbufs require coalescing */
	if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
		rte_cryptodev_info_get(ctx->dev_id, &dev_info);
		if ((dev_info.feature_flags &
				RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
			linearize = 1;
	}
#endif /* CPERF_LINEARIZATION_ENABLE */

	ctx->lcore_id = lcore;

	/* Warm up the host CPU before starting the test */
	for (i = 0; i < ctx->options->total_ops; i++)
		rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);

	/* Get first size from range or list */
	if (ctx->options->inc_burst_size != 0)
		test_burst_size = ctx->options->min_burst_size;
	else
		test_burst_size = ctx->options->burst_size_list[0];

	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
		sizeof(struct rte_crypto_sym_op);

	while (test_burst_size <= ctx->options->max_burst_size) {
		uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
		uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;

		uint64_t tsc_start, tsc_end, tsc_duration;

		uint16_t ops_unused = 0;

		tsc_start = rte_rdtsc_precise();

		while (ops_enqd_total < ctx->options->total_ops) {

			uint16_t burst_size = ((ops_enqd_total + test_burst_size)
					<= ctx->options->total_ops) ?
							test_burst_size :
							ctx->options->total_ops -
							ops_enqd_total;

			uint16_t ops_needed = burst_size - ops_unused;

			/* Allocate objects containing crypto operations and mbufs */
			if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
						ops_needed) != 0) {
				RTE_LOG(ERR, USER1,
					"Failed to allocate more crypto operations "
					"from the crypto operation pool.\n"
					"Consider increasing the pool size "
					"with --pool-sz\n");
				return -1;
			}

			/* Setup crypto op, attach mbuf etc */
			(ctx->populate_ops)(ops, ctx->src_buf_offset,
					ctx->dst_buf_offset,
					ops_needed, ctx->sess,
					ctx->options, ctx->test_vector,
					iv_offset, &imix_idx);

			/**
			 * When ops_needed is smaller than ops_enqd, the
			 * unused ops need to be moved to the front for
			 * next round use.
			 */
			if (unlikely(ops_enqd > ops_needed)) {
				size_t nb_b_to_mov = ops_unused * sizeof(
						struct rte_crypto_op *);

				memmove(&ops[ops_needed], &ops[ops_enqd],
					nb_b_to_mov);
			}

#ifdef CPERF_LINEARIZATION_ENABLE
			if (linearize) {
				/* PMD doesn't support scatter-gather and source buffer
				 * is segmented.
				 * We need to linearize it before enqueuing.
				 */
				for (i = 0; i < burst_size; i++)
					rte_pktmbuf_linearize(ops[i]->sym->m_src);
			}
#endif /* CPERF_LINEARIZATION_ENABLE */

			/* Enqueue burst of ops on crypto device */
			ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
					ops, burst_size);
			if (ops_enqd < burst_size)
				ops_enqd_failed++;

			/**
			 * Calculate number of ops not enqueued (mainly for hw
			 * accelerators whose ingress queue can fill up).
			 */
			ops_unused = burst_size - ops_enqd;
			ops_enqd_total += ops_enqd;


			/* Dequeue processed burst of ops from crypto device */
			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
					ops_processed, test_burst_size);

			if (likely(ops_deqd))  {
				/* Free crypto ops so they can be reused. */
				rte_mempool_put_bulk(ctx->pool,
						(void **)ops_processed, ops_deqd);

				ops_deqd_total += ops_deqd;
			} else {
				/**
				 * Count dequeue polls which didn't return any
				 * processed operations. This statistic is mainly
				 * relevant to hw accelerators.
				 */
				ops_deqd_failed++;
			}

		}

		/* Dequeue any operations still in the crypto device */

		while (ops_deqd_total < ctx->options->total_ops) {
			/* Sending 0 length burst to flush sw crypto device */
			rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);

			/* dequeue burst */
			ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
					ops_processed, test_burst_size);
			if (ops_deqd == 0)
				ops_deqd_failed++;
			else {
				rte_mempool_put_bulk(ctx->pool,
						(void **)ops_processed, ops_deqd);
				ops_deqd_total += ops_deqd;
			}
		}

		tsc_end = rte_rdtsc_precise();
		tsc_duration = (tsc_end - tsc_start);

		/* Calculate average operations processed per second */
		double ops_per_second = ((double)ctx->options->total_ops /
				tsc_duration) * rte_get_tsc_hz();

		/* Calculate average throughput (Gbps) in bits per second */
		double throughput_gbps = ((ops_per_second *
				ctx->options->test_buffer_size * 8) / 1000000000);

		/* Calculate average cycles per packet */
		double cycles_per_packet = ((double)tsc_duration /
				ctx->options->total_ops);

		if (!ctx->options->csv) {
			if (!only_once)
				printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
					"lcore id", "Buf Size", "Burst Size",
					"Enqueued", "Dequeued", "Failed Enq",
					"Failed Deq", "MOps", "Gbps",
					"Cycles/Buf");
			only_once = 1;

			printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
					"%12"PRIu64"%12.4f%12.4f%12.2f\n",
					ctx->lcore_id,
					ctx->options->test_buffer_size,
					test_burst_size,
					ops_enqd_total,
					ops_deqd_total,
					ops_enqd_failed,
					ops_deqd_failed,
					ops_per_second/1000000,
					throughput_gbps,
					cycles_per_packet);
		} else {
			if (!only_once)
				printf("#lcore id,Buffer Size(B),"
					"Burst Size,Enqueued,Dequeued,Failed Enq,"
					"Failed Deq,Ops(Millions),Throughput(Gbps),"
					"Cycles/Buf\n\n");
			only_once = 1;

			printf("%u;%u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
					"%.3f;%.3f;%.3f\n",
					ctx->lcore_id,
					ctx->options->test_buffer_size,
					test_burst_size,
					ops_enqd_total,
					ops_deqd_total,
					ops_enqd_failed,
					ops_deqd_failed,
					ops_per_second/1000000,
					throughput_gbps,
					cycles_per_packet);
		}

		/* Get next size from range or list */
		if (ctx->options->inc_burst_size != 0)
			test_burst_size += ctx->options->inc_burst_size;
		else {
			if (++burst_size_idx == ctx->options->burst_size_count)
				break;
			test_burst_size = ctx->options->burst_size_list[burst_size_idx];
		}

	}

	return 0;
}


void
cperf_throughput_test_destructor(void *arg)
{
	struct cperf_throughput_ctx *ctx = arg;

	if (ctx == NULL)
		return;

	cperf_throughput_test_free(ctx);
}