aboutsummaryrefslogtreecommitdiffstats
path: root/app/test-eventdev/test_perf_common.c
blob: 86187753255a0a8e0c13416bc60d663da5149c17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2017 Cavium, Inc
 */

#include "test_perf_common.h"

int
perf_test_result(struct evt_test *test, struct evt_options *opt)
{
	RTE_SET_USED(opt);
	int i;
	uint64_t total = 0;
	struct test_perf *t = evt_test_priv(test);

	printf("Packet distribution across worker cores :\n");
	for (i = 0; i < t->nb_workers; i++)
		total += t->worker[i].processed_pkts;
	for (i = 0; i < t->nb_workers; i++)
		printf("Worker %d packets: "CLGRN"%"PRIx64" "CLNRM"percentage:"
				CLGRN" %3.2f\n"CLNRM, i,
				t->worker[i].processed_pkts,
				(((double)t->worker[i].processed_pkts)/total)
				* 100);

	return t->result;
}

static inline int
perf_producer(void *arg)
{
	struct prod_data *p  = arg;
	struct test_perf *t = p->t;
	struct evt_options *opt = t->opt;
	const uint8_t dev_id = p->dev_id;
	const uint8_t port = p->port_id;
	struct rte_mempool *pool = t->pool;
	const uint64_t nb_pkts = t->nb_pkts;
	const uint32_t nb_flows = t->nb_flows;
	uint32_t flow_counter = 0;
	uint64_t count = 0;
	struct perf_elt *m;
	struct rte_event ev;

	if (opt->verbose_level > 1)
		printf("%s(): lcore %d dev_id %d port=%d queue %d\n", __func__,
				rte_lcore_id(), dev_id, port, p->queue_id);

	ev.event = 0;
	ev.op = RTE_EVENT_OP_NEW;
	ev.queue_id = p->queue_id;
	ev.sched_type = t->opt->sched_type_list[0];
	ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
	ev.event_type =  RTE_EVENT_TYPE_CPU;
	ev.sub_event_type = 0; /* stage 0 */

	while (count < nb_pkts && t->done == false) {
		if (rte_mempool_get(pool, (void **)&m) < 0)
			continue;

		ev.flow_id = flow_counter++ % nb_flows;
		ev.event_ptr = m;
		m->timestamp = rte_get_timer_cycles();
		while (rte_event_enqueue_burst(dev_id, port, &ev, 1) != 1) {
			if (t->done)
				break;
			rte_pause();
			m->timestamp = rte_get_timer_cycles();
		}
		count++;
	}

	return 0;
}

static inline int
perf_event_timer_producer(void *arg)
{
	struct prod_data *p  = arg;
	struct test_perf *t = p->t;
	struct evt_options *opt = t->opt;
	uint32_t flow_counter = 0;
	uint64_t count = 0;
	uint64_t arm_latency = 0;
	const uint8_t nb_timer_adptrs = opt->nb_timer_adptrs;
	const uint32_t nb_flows = t->nb_flows;
	const uint64_t nb_timers = opt->nb_timers;
	struct rte_mempool *pool = t->pool;
	struct perf_elt *m;
	struct rte_event_timer_adapter **adptr = t->timer_adptr;
	struct rte_event_timer tim;
	uint64_t timeout_ticks = opt->expiry_nsec / opt->timer_tick_nsec;

	memset(&tim, 0, sizeof(struct rte_event_timer));
	timeout_ticks = opt->optm_timer_tick_nsec ?
			(timeout_ticks * opt->timer_tick_nsec)
			/ opt->optm_timer_tick_nsec : timeout_ticks;
	timeout_ticks += timeout_ticks ? 0 : 1;
	tim.ev.event_type =  RTE_EVENT_TYPE_TIMER;
	tim.ev.op = RTE_EVENT_OP_NEW;
	tim.ev.sched_type = t->opt->sched_type_list[0];
	tim.ev.queue_id = p->queue_id;
	tim.ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
	tim.state = RTE_EVENT_TIMER_NOT_ARMED;
	tim.timeout_ticks = timeout_ticks;

	if (opt->verbose_level > 1)
		printf("%s(): lcore %d\n", __func__, rte_lcore_id());

	while (count < nb_timers && t->done == false) {
		if (rte_mempool_get(pool, (void **)&m) < 0)
			continue;

		m->tim = tim;
		m->tim.ev.flow_id = flow_counter++ % nb_flows;
		m->tim.ev.event_ptr = m;
		m->timestamp = rte_get_timer_cycles();
		while (rte_event_timer_arm_burst(
				adptr[flow_counter % nb_timer_adptrs],
				(struct rte_event_timer **)&m, 1) != 1) {
			if (t->done)
				break;
			rte_pause();
			m->timestamp = rte_get_timer_cycles();
		}
		arm_latency += rte_get_timer_cycles() - m->timestamp;
		count++;
	}
	fflush(stdout);
	rte_delay_ms(1000);
	printf("%s(): lcore %d Average event timer arm latency = %.3f us\n",
			__func__, rte_lcore_id(), (float)(arm_latency / count) /
			(rte_get_timer_hz() / 1000000));
	return 0;
}

static inline int
perf_event_timer_producer_burst(void *arg)
{
	int i;
	struct prod_data *p  = arg;
	struct test_perf *t = p->t;
	struct evt_options *opt = t->opt;
	uint32_t flow_counter = 0;
	uint64_t count = 0;
	uint64_t arm_latency = 0;
	const uint8_t nb_timer_adptrs = opt->nb_timer_adptrs;
	const uint32_t nb_flows = t->nb_flows;
	const uint64_t nb_timers = opt->nb_timers;
	struct rte_mempool *pool = t->pool;
	struct perf_elt *m[BURST_SIZE + 1] = {NULL};
	struct rte_event_timer_adapter **adptr = t->timer_adptr;
	struct rte_event_timer tim;
	uint64_t timeout_ticks = opt->expiry_nsec / opt->timer_tick_nsec;

	memset(&tim, 0, sizeof(struct rte_event_timer));
	timeout_ticks = opt->optm_timer_tick_nsec ?
			(timeout_ticks * opt->timer_tick_nsec)
			/ opt->optm_timer_tick_nsec : timeout_ticks;
	timeout_ticks += timeout_ticks ? 0 : 1;
	tim.ev.event_type =  RTE_EVENT_TYPE_TIMER;
	tim.ev.op = RTE_EVENT_OP_NEW;
	tim.ev.sched_type = t->opt->sched_type_list[0];
	tim.ev.queue_id = p->queue_id;
	tim.ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
	tim.state = RTE_EVENT_TIMER_NOT_ARMED;
	tim.timeout_ticks = timeout_ticks;

	if (opt->verbose_level > 1)
		printf("%s(): lcore %d\n", __func__, rte_lcore_id());

	while (count < nb_timers && t->done == false) {
		if (rte_mempool_get_bulk(pool, (void **)m, BURST_SIZE) < 0)
			continue;
		for (i = 0; i < BURST_SIZE; i++) {
			rte_prefetch0(m[i + 1]);
			m[i]->tim = tim;
			m[i]->tim.ev.flow_id = flow_counter++ % nb_flows;
			m[i]->tim.ev.event_ptr = m[i];
			m[i]->timestamp = rte_get_timer_cycles();
		}
		rte_event_timer_arm_tmo_tick_burst(
				adptr[flow_counter % nb_timer_adptrs],
				(struct rte_event_timer **)m,
				tim.timeout_ticks,
				BURST_SIZE);
		arm_latency += rte_get_timer_cycles() - m[i - 1]->timestamp;
		count += BURST_SIZE;
	}
	fflush(stdout);
	rte_delay_ms(1000);
	printf("%s(): lcore %d Average event timer arm latency = %.3f us\n",
			__func__, rte_lcore_id(), (float)(arm_latency / count) /
			(rte_get_timer_hz() / 1000000));
	return 0;
}

static int
perf_producer_wrapper(void *arg)
{
	struct prod_data *p  = arg;
	struct test_perf *t = p->t;
	/* Launch the producer function only in case of synthetic producer. */
	if (t->opt->prod_type == EVT_PROD_TYPE_SYNT)
		return perf_producer(arg);
	else if (t->opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR &&
			!t->opt->timdev_use_burst)
		return perf_event_timer_producer(arg);
	else if (t->opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR &&
			t->opt->timdev_use_burst)
		return perf_event_timer_producer_burst(arg);
	return 0;
}

static inline uint64_t
processed_pkts(struct test_perf *t)
{
	uint8_t i;
	uint64_t total = 0;

	rte_smp_rmb();
	for (i = 0; i < t->nb_workers; i++)
		total += t->worker[i].processed_pkts;

	return total;
}

static inline uint64_t
total_latency(struct test_perf *t)
{
	uint8_t i;
	uint64_t total = 0;

	rte_smp_rmb();
	for (i = 0; i < t->nb_workers; i++)
		total += t->worker[i].latency;

	return total;
}


int
perf_launch_lcores(struct evt_test *test, struct evt_options *opt,
		int (*worker)(void *))
{
	int ret, lcore_id;
	struct test_perf *t = evt_test_priv(test);

	int port_idx = 0;
	/* launch workers */
	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
		if (!(opt->wlcores[lcore_id]))
			continue;

		ret = rte_eal_remote_launch(worker,
				 &t->worker[port_idx], lcore_id);
		if (ret) {
			evt_err("failed to launch worker %d", lcore_id);
			return ret;
		}
		port_idx++;
	}

	/* launch producers */
	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
		if (!(opt->plcores[lcore_id]))
			continue;

		ret = rte_eal_remote_launch(perf_producer_wrapper,
				&t->prod[port_idx], lcore_id);
		if (ret) {
			evt_err("failed to launch perf_producer %d", lcore_id);
			return ret;
		}
		port_idx++;
	}

	const uint64_t total_pkts = t->outstand_pkts;

	uint64_t dead_lock_cycles = rte_get_timer_cycles();
	int64_t dead_lock_remaining  =  total_pkts;
	const uint64_t dead_lock_sample = rte_get_timer_hz() * 5;

	uint64_t perf_cycles = rte_get_timer_cycles();
	int64_t perf_remaining  = total_pkts;
	const uint64_t perf_sample = rte_get_timer_hz();

	static float total_mpps;
	static uint64_t samples;

	const uint64_t freq_mhz = rte_get_timer_hz() / 1000000;
	int64_t remaining = t->outstand_pkts - processed_pkts(t);

	while (t->done == false) {
		const uint64_t new_cycles = rte_get_timer_cycles();

		if ((new_cycles - perf_cycles) > perf_sample) {
			const uint64_t latency = total_latency(t);
			const uint64_t pkts = processed_pkts(t);

			remaining = t->outstand_pkts - pkts;
			float mpps = (float)(perf_remaining-remaining)/1000000;

			perf_remaining = remaining;
			perf_cycles = new_cycles;
			total_mpps += mpps;
			++samples;
			if (opt->fwd_latency && pkts > 0) {
				printf(CLGRN"\r%.3f mpps avg %.3f mpps [avg fwd latency %.3f us] "CLNRM,
					mpps, total_mpps/samples,
					(float)(latency/pkts)/freq_mhz);
			} else {
				printf(CLGRN"\r%.3f mpps avg %.3f mpps"CLNRM,
					mpps, total_mpps/samples);
			}
			fflush(stdout);

			if (remaining <= 0) {
				t->result = EVT_TEST_SUCCESS;
				if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
					opt->prod_type ==
					EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
					t->done = true;
					rte_smp_wmb();
					break;
				}
			}
		}

		if (new_cycles - dead_lock_cycles > dead_lock_sample &&
				opt->prod_type == EVT_PROD_TYPE_SYNT) {
			remaining = t->outstand_pkts - processed_pkts(t);
			if (dead_lock_remaining == remaining) {
				rte_event_dev_dump(opt->dev_id, stdout);
				evt_err("No schedules for seconds, deadlock");
				t->done = true;
				rte_smp_wmb();
				break;
			}
			dead_lock_remaining = remaining;
			dead_lock_cycles = new_cycles;
		}
	}
	printf("\n");
	return 0;
}

static int
perf_event_rx_adapter_setup(struct evt_options *opt, uint8_t stride,
		struct rte_event_port_conf prod_conf)
{
	int ret = 0;
	uint16_t prod;
	struct rte_event_eth_rx_adapter_queue_conf queue_conf;

	memset(&queue_conf, 0,
			sizeof(struct rte_event_eth_rx_adapter_queue_conf));
	queue_conf.ev.sched_type = opt->sched_type_list[0];
	RTE_ETH_FOREACH_DEV(prod) {
		uint32_t cap;

		ret = rte_event_eth_rx_adapter_caps_get(opt->dev_id,
				prod, &cap);
		if (ret) {
			evt_err("failed to get event rx adapter[%d]"
					" capabilities",
					opt->dev_id);
			return ret;
		}
		queue_conf.ev.queue_id = prod * stride;
		ret = rte_event_eth_rx_adapter_create(prod, opt->dev_id,
				&prod_conf);
		if (ret) {
			evt_err("failed to create rx adapter[%d]", prod);
			return ret;
		}
		ret = rte_event_eth_rx_adapter_queue_add(prod, prod, -1,
				&queue_conf);
		if (ret) {
			evt_err("failed to add rx queues to adapter[%d]", prod);
			return ret;
		}

		if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) {
			uint32_t service_id;

			rte_event_eth_rx_adapter_service_id_get(prod,
					&service_id);
			ret = evt_service_setup(service_id);
			if (ret) {
				evt_err("Failed to setup service core"
						" for Rx adapter\n");
				return ret;
			}
		}

		ret = rte_eth_dev_start(prod);
		if (ret) {
			evt_err("Ethernet dev [%d] failed to start."
					" Using synthetic producer", prod);
			return ret;
		}

		ret = rte_event_eth_rx_adapter_start(prod);
		if (ret) {
			evt_err("Rx adapter[%d] start failed", prod);
			return ret;
		}
		printf("%s: Port[%d] using Rx adapter[%d] started\n", __func__,
				prod, prod);
	}

	return ret;
}

static int
perf_event_timer_adapter_setup(struct test_perf *t)
{
	int i;
	int ret;
	struct rte_event_timer_adapter_info adapter_info;
	struct rte_event_timer_adapter *wl;
	uint8_t nb_producers = evt_nr_active_lcores(t->opt->plcores);
	uint8_t flags = RTE_EVENT_TIMER_ADAPTER_F_ADJUST_RES;

	if (nb_producers == 1)
		flags |= RTE_EVENT_TIMER_ADAPTER_F_SP_PUT;

	for (i = 0; i < t->opt->nb_timer_adptrs; i++) {
		struct rte_event_timer_adapter_conf config = {
			.event_dev_id = t->opt->dev_id,
			.timer_adapter_id = i,
			.timer_tick_ns = t->opt->timer_tick_nsec,
			.max_tmo_ns = t->opt->max_tmo_nsec,
			.nb_timers = 2 * 1024 * 1024,
			.flags = flags,
		};

		wl = rte_event_timer_adapter_create(&config);
		if (wl == NULL) {
			evt_err("failed to create event timer ring %d", i);
			return rte_errno;
		}

		memset(&adapter_info, 0,
				sizeof(struct rte_event_timer_adapter_info));
		rte_event_timer_adapter_get_info(wl, &adapter_info);
		t->opt->optm_timer_tick_nsec = adapter_info.min_resolution_ns;

		if (!(adapter_info.caps &
				RTE_EVENT_TIMER_ADAPTER_CAP_INTERNAL_PORT)) {
			uint32_t service_id;

			rte_event_timer_adapter_service_id_get(wl,
					&service_id);
			ret = evt_service_setup(service_id);
			if (ret) {
				evt_err("Failed to setup service core"
						" for timer adapter\n");
				return ret;
			}
			rte_service_runstate_set(service_id, 1);
		}

		ret = rte_event_timer_adapter_start(wl);
		if (ret) {
			evt_err("failed to Start event timer adapter %d", i);
			return ret;
		}
		t->timer_adptr[i] = wl;
	}
	return 0;
}

int
perf_event_dev_port_setup(struct evt_test *test, struct evt_options *opt,
				uint8_t stride, uint8_t nb_queues,
				const struct rte_event_port_conf *port_conf)
{
	struct test_perf *t = evt_test_priv(test);
	uint16_t port, prod;
	int ret = -1;

	/* setup one port per worker, linking to all queues */
	for (port = 0; port < evt_nr_active_lcores(opt->wlcores);
				port++) {
		struct worker_data *w = &t->worker[port];

		w->dev_id = opt->dev_id;
		w->port_id = port;
		w->t = t;
		w->processed_pkts = 0;
		w->latency = 0;

		ret = rte_event_port_setup(opt->dev_id, port, port_conf);
		if (ret) {
			evt_err("failed to setup port %d", port);
			return ret;
		}

		ret = rte_event_port_link(opt->dev_id, port, NULL, NULL, 0);
		if (ret != nb_queues) {
			evt_err("failed to link all queues to port %d", port);
			return -EINVAL;
		}
	}

	/* port for producers, no links */
	if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
		for ( ; port < perf_nb_event_ports(opt); port++) {
			struct prod_data *p = &t->prod[port];
			p->t = t;
		}

		ret = perf_event_rx_adapter_setup(opt, stride, *port_conf);
		if (ret)
			return ret;
	} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
		prod = 0;
		for ( ; port < perf_nb_event_ports(opt); port++) {
			struct prod_data *p = &t->prod[port];
			p->queue_id = prod * stride;
			p->t = t;
			prod++;
		}

		ret = perf_event_timer_adapter_setup(t);
		if (ret)
			return ret;
	} else {
		prod = 0;
		for ( ; port < perf_nb_event_ports(opt); port++) {
			struct prod_data *p = &t->prod[port];

			p->dev_id = opt->dev_id;
			p->port_id = port;
			p->queue_id = prod * stride;
			p->t = t;

			ret = rte_event_port_setup(opt->dev_id, port,
					port_conf);
			if (ret) {
				evt_err("failed to setup port %d", port);
				return ret;
			}
			prod++;
		}
	}

	return ret;
}

int
perf_opt_check(struct evt_options *opt, uint64_t nb_queues)
{
	unsigned int lcores;

	/* N producer + N worker + 1 master when producer cores are used
	 * Else N worker + 1 master when Rx adapter is used
	 */
	lcores = opt->prod_type == EVT_PROD_TYPE_SYNT ? 3 : 2;

	if (rte_lcore_count() < lcores) {
		evt_err("test need minimum %d lcores", lcores);
		return -1;
	}

	/* Validate worker lcores */
	if (evt_lcores_has_overlap(opt->wlcores, rte_get_master_lcore())) {
		evt_err("worker lcores overlaps with master lcore");
		return -1;
	}
	if (evt_lcores_has_overlap_multi(opt->wlcores, opt->plcores)) {
		evt_err("worker lcores overlaps producer lcores");
		return -1;
	}
	if (evt_has_disabled_lcore(opt->wlcores)) {
		evt_err("one or more workers lcores are not enabled");
		return -1;
	}
	if (!evt_has_active_lcore(opt->wlcores)) {
		evt_err("minimum one worker is required");
		return -1;
	}

	if (opt->prod_type == EVT_PROD_TYPE_SYNT) {
		/* Validate producer lcores */
		if (evt_lcores_has_overlap(opt->plcores,
					rte_get_master_lcore())) {
			evt_err("producer lcores overlaps with master lcore");
			return -1;
		}
		if (evt_has_disabled_lcore(opt->plcores)) {
			evt_err("one or more producer lcores are not enabled");
			return -1;
		}
		if (!evt_has_active_lcore(opt->plcores)) {
			evt_err("minimum one producer is required");
			return -1;
		}
	}

	if (evt_has_invalid_stage(opt))
		return -1;

	if (evt_has_invalid_sched_type(opt))
		return -1;

	if (nb_queues > EVT_MAX_QUEUES) {
		evt_err("number of queues exceeds %d", EVT_MAX_QUEUES);
		return -1;
	}
	if (perf_nb_event_ports(opt) > EVT_MAX_PORTS) {
		evt_err("number of ports exceeds %d", EVT_MAX_PORTS);
		return -1;
	}

	/* Fixups */
	if ((opt->nb_stages == 1 &&
			opt->prod_type != EVT_PROD_TYPE_EVENT_TIMER_ADPTR) &&
			opt->fwd_latency) {
		evt_info("fwd_latency is valid when nb_stages > 1, disabling");
		opt->fwd_latency = 0;
	}

	if (opt->fwd_latency && !opt->q_priority) {
		evt_info("enabled queue priority for latency measurement");
		opt->q_priority = 1;
	}
	if (opt->nb_pkts == 0)
		opt->nb_pkts = INT64_MAX/evt_nr_active_lcores(opt->plcores);

	return 0;
}

void
perf_opt_dump(struct evt_options *opt, uint8_t nb_queues)
{
	evt_dump("nb_prod_lcores", "%d", evt_nr_active_lcores(opt->plcores));
	evt_dump_producer_lcores(opt);
	evt_dump("nb_worker_lcores", "%d", evt_nr_active_lcores(opt->wlcores));
	evt_dump_worker_lcores(opt);
	evt_dump_nb_stages(opt);
	evt_dump("nb_evdev_ports", "%d", perf_nb_event_ports(opt));
	evt_dump("nb_evdev_queues", "%d", nb_queues);
	evt_dump_queue_priority(opt);
	evt_dump_sched_type_list(opt);
	evt_dump_producer_type(opt);
}

void
perf_eventdev_destroy(struct evt_test *test, struct evt_options *opt)
{
	int i;
	struct test_perf *t = evt_test_priv(test);

	if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
		for (i = 0; i < opt->nb_timer_adptrs; i++)
			rte_event_timer_adapter_stop(t->timer_adptr[i]);
	}
	rte_event_dev_stop(opt->dev_id);
	rte_event_dev_close(opt->dev_id);
}

static inline void
perf_elt_init(struct rte_mempool *mp, void *arg __rte_unused,
	    void *obj, unsigned i __rte_unused)
{
	memset(obj, 0, mp->elt_size);
}

#define NB_RX_DESC			128
#define NB_TX_DESC			512
int
perf_ethdev_setup(struct evt_test *test, struct evt_options *opt)
{
	uint16_t i;
	struct test_perf *t = evt_test_priv(test);
	struct rte_eth_conf port_conf = {
		.rxmode = {
			.mq_mode = ETH_MQ_RX_RSS,
			.max_rx_pkt_len = ETHER_MAX_LEN,
			.split_hdr_size = 0,
		},
		.rx_adv_conf = {
			.rss_conf = {
				.rss_key = NULL,
				.rss_hf = ETH_RSS_IP,
			},
		},
	};

	if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
			opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR)
		return 0;

	if (!rte_eth_dev_count_avail()) {
		evt_err("No ethernet ports found.");
		return -ENODEV;
	}

	RTE_ETH_FOREACH_DEV(i) {
		struct rte_eth_dev_info dev_info;
		struct rte_eth_conf local_port_conf = port_conf;

		rte_eth_dev_info_get(i, &dev_info);

		local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
			dev_info.flow_type_rss_offloads;
		if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
				port_conf.rx_adv_conf.rss_conf.rss_hf) {
			evt_info("Port %u modified RSS hash function based on hardware support,"
				"requested:%#"PRIx64" configured:%#"PRIx64"\n",
				i,
				port_conf.rx_adv_conf.rss_conf.rss_hf,
				local_port_conf.rx_adv_conf.rss_conf.rss_hf);
		}

		if (rte_eth_dev_configure(i, 1, 1, &local_port_conf) < 0) {
			evt_err("Failed to configure eth port [%d]", i);
			return -EINVAL;
		}

		if (rte_eth_rx_queue_setup(i, 0, NB_RX_DESC,
				rte_socket_id(), NULL, t->pool) < 0) {
			evt_err("Failed to setup eth port [%d] rx_queue: %d.",
					i, 0);
			return -EINVAL;
		}

		if (rte_eth_tx_queue_setup(i, 0, NB_TX_DESC,
					rte_socket_id(), NULL) < 0) {
			evt_err("Failed to setup eth port [%d] tx_queue: %d.",
					i, 0);
			return -EINVAL;
		}

		rte_eth_promiscuous_enable(i);
	}

	return 0;
}

void perf_ethdev_destroy(struct evt_test *test, struct evt_options *opt)
{
	uint16_t i;
	RTE_SET_USED(test);

	if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
		RTE_ETH_FOREACH_DEV(i) {
			rte_event_eth_rx_adapter_stop(i);
			rte_eth_dev_stop(i);
		}
	}
}

int
perf_mempool_setup(struct evt_test *test, struct evt_options *opt)
{
	struct test_perf *t = evt_test_priv(test);

	if (opt->prod_type == EVT_PROD_TYPE_SYNT ||
			opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
		t->pool = rte_mempool_create(test->name, /* mempool name */
				opt->pool_sz, /* number of elements*/
				sizeof(struct perf_elt), /* element size*/
				512, /* cache size*/
				0, NULL, NULL,
				perf_elt_init, /* obj constructor */
				NULL, opt->socket_id, 0); /* flags */
	} else {
		t->pool = rte_pktmbuf_pool_create(test->name, /* mempool name */
				opt->pool_sz, /* number of elements*/
				512, /* cache size*/
				0,
				RTE_MBUF_DEFAULT_BUF_SIZE,
				opt->socket_id); /* flags */

	}

	if (t->pool == NULL) {
		evt_err("failed to create mempool");
		return -ENOMEM;
	}

	return 0;
}

void
perf_mempool_destroy(struct evt_test *test, struct evt_options *opt)
{
	RTE_SET_USED(opt);
	struct test_perf *t = evt_test_priv(test);

	rte_mempool_free(t->pool);
}

int
perf_test_setup(struct evt_test *test, struct evt_options *opt)
{
	void *test_perf;

	test_perf = rte_zmalloc_socket(test->name, sizeof(struct test_perf),
				RTE_CACHE_LINE_SIZE, opt->socket_id);
	if (test_perf  == NULL) {
		evt_err("failed to allocate test_perf memory");
		goto nomem;
	}
	test->test_priv = test_perf;

	struct test_perf *t = evt_test_priv(test);

	if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
		t->outstand_pkts = opt->nb_timers *
			evt_nr_active_lcores(opt->plcores);
		t->nb_pkts = opt->nb_timers;
	} else {
		t->outstand_pkts = opt->nb_pkts *
			evt_nr_active_lcores(opt->plcores);
		t->nb_pkts = opt->nb_pkts;
	}

	t->nb_workers = evt_nr_active_lcores(opt->wlcores);
	t->done = false;
	t->nb_flows = opt->nb_flows;
	t->result = EVT_TEST_FAILED;
	t->opt = opt;
	memcpy(t->sched_type_list, opt->sched_type_list,
			sizeof(opt->sched_type_list));
	return 0;
nomem:
	return -ENOMEM;
}

void
perf_test_destroy(struct evt_test *test, struct evt_options *opt)
{
	RTE_SET_USED(opt);

	rte_free(test->test_priv);
}