1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
|
/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* Copyright 2014 6WIND S.A.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdarg.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <sys/stat.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_cycles.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_ring.h>
#include <rte_memory.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_memcpy.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_sctp.h>
#include <rte_prefetch.h>
#include <rte_string_fns.h>
#include "testpmd.h"
#define IP_DEFTTL 64 /* from RFC 1340. */
#define IP_VERSION 0x40
#define IP_HDRLEN 0x05 /* default IP header length == five 32-bits words. */
#define IP_VHL_DEF (IP_VERSION | IP_HDRLEN)
#define GRE_KEY_PRESENT 0x2000
#define GRE_KEY_LEN 4
#define GRE_SUPPORTED_FIELDS GRE_KEY_PRESENT
/* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
#define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
#else
#define _htons(x) (x)
#endif
/* structure that caches offload info for the current packet */
struct testpmd_offload_info {
uint16_t ethertype;
uint16_t l2_len;
uint16_t l3_len;
uint16_t l4_len;
uint8_t l4_proto;
uint8_t is_tunnel;
uint16_t outer_ethertype;
uint16_t outer_l2_len;
uint16_t outer_l3_len;
uint8_t outer_l4_proto;
uint16_t tso_segsz;
};
/* simplified GRE header */
struct simple_gre_hdr {
uint16_t flags;
uint16_t proto;
} __attribute__((__packed__));
static uint16_t
get_psd_sum(void *l3_hdr, uint16_t ethertype, uint64_t ol_flags)
{
if (ethertype == _htons(ETHER_TYPE_IPv4))
return rte_ipv4_phdr_cksum(l3_hdr, ol_flags);
else /* assume ethertype == ETHER_TYPE_IPv6 */
return rte_ipv6_phdr_cksum(l3_hdr, ol_flags);
}
static uint16_t
get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
{
if (ethertype == _htons(ETHER_TYPE_IPv4))
return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
else /* assume ethertype == ETHER_TYPE_IPv6 */
return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
}
/* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
static void
parse_ipv4(struct ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
{
struct tcp_hdr *tcp_hdr;
info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
info->l4_proto = ipv4_hdr->next_proto_id;
/* only fill l4_len for TCP, it's useful for TSO */
if (info->l4_proto == IPPROTO_TCP) {
tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr + info->l3_len);
info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
} else
info->l4_len = 0;
}
/* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
static void
parse_ipv6(struct ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
{
struct tcp_hdr *tcp_hdr;
info->l3_len = sizeof(struct ipv6_hdr);
info->l4_proto = ipv6_hdr->proto;
/* only fill l4_len for TCP, it's useful for TSO */
if (info->l4_proto == IPPROTO_TCP) {
tcp_hdr = (struct tcp_hdr *)((char *)ipv6_hdr + info->l3_len);
info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
} else
info->l4_len = 0;
}
/*
* Parse an ethernet header to fill the ethertype, l2_len, l3_len and
* ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
* header. The l4_len argument is only set in case of TCP (useful for TSO).
*/
static void
parse_ethernet(struct ether_hdr *eth_hdr, struct testpmd_offload_info *info)
{
struct ipv4_hdr *ipv4_hdr;
struct ipv6_hdr *ipv6_hdr;
info->l2_len = sizeof(struct ether_hdr);
info->ethertype = eth_hdr->ether_type;
if (info->ethertype == _htons(ETHER_TYPE_VLAN)) {
struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
info->l2_len += sizeof(struct vlan_hdr);
info->ethertype = vlan_hdr->eth_proto;
}
switch (info->ethertype) {
case _htons(ETHER_TYPE_IPv4):
ipv4_hdr = (struct ipv4_hdr *) ((char *)eth_hdr + info->l2_len);
parse_ipv4(ipv4_hdr, info);
break;
case _htons(ETHER_TYPE_IPv6):
ipv6_hdr = (struct ipv6_hdr *) ((char *)eth_hdr + info->l2_len);
parse_ipv6(ipv6_hdr, info);
break;
default:
info->l4_len = 0;
info->l3_len = 0;
info->l4_proto = 0;
break;
}
}
/* Parse a vxlan header */
static void
parse_vxlan(struct udp_hdr *udp_hdr,
struct testpmd_offload_info *info,
uint32_t pkt_type)
{
struct ether_hdr *eth_hdr;
/* check udp destination port, 4789 is the default vxlan port
* (rfc7348) or that the rx offload flag is set (i40e only
* currently) */
if (udp_hdr->dst_port != _htons(4789) &&
RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
return;
info->is_tunnel = 1;
info->outer_ethertype = info->ethertype;
info->outer_l2_len = info->l2_len;
info->outer_l3_len = info->l3_len;
info->outer_l4_proto = info->l4_proto;
eth_hdr = (struct ether_hdr *)((char *)udp_hdr +
sizeof(struct udp_hdr) +
sizeof(struct vxlan_hdr));
parse_ethernet(eth_hdr, info);
info->l2_len += ETHER_VXLAN_HLEN; /* add udp + vxlan */
}
/* Parse a gre header */
static void
parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
{
struct ether_hdr *eth_hdr;
struct ipv4_hdr *ipv4_hdr;
struct ipv6_hdr *ipv6_hdr;
uint8_t gre_len = 0;
/* check which fields are supported */
if ((gre_hdr->flags & _htons(~GRE_SUPPORTED_FIELDS)) != 0)
return;
gre_len += sizeof(struct simple_gre_hdr);
if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
gre_len += GRE_KEY_LEN;
if (gre_hdr->proto == _htons(ETHER_TYPE_IPv4)) {
info->is_tunnel = 1;
info->outer_ethertype = info->ethertype;
info->outer_l2_len = info->l2_len;
info->outer_l3_len = info->l3_len;
info->outer_l4_proto = info->l4_proto;
ipv4_hdr = (struct ipv4_hdr *)((char *)gre_hdr + gre_len);
parse_ipv4(ipv4_hdr, info);
info->ethertype = _htons(ETHER_TYPE_IPv4);
info->l2_len = 0;
} else if (gre_hdr->proto == _htons(ETHER_TYPE_IPv6)) {
info->is_tunnel = 1;
info->outer_ethertype = info->ethertype;
info->outer_l2_len = info->l2_len;
info->outer_l3_len = info->l3_len;
info->outer_l4_proto = info->l4_proto;
ipv6_hdr = (struct ipv6_hdr *)((char *)gre_hdr + gre_len);
info->ethertype = _htons(ETHER_TYPE_IPv6);
parse_ipv6(ipv6_hdr, info);
info->l2_len = 0;
} else if (gre_hdr->proto == _htons(ETHER_TYPE_TEB)) {
info->is_tunnel = 1;
info->outer_ethertype = info->ethertype;
info->outer_l2_len = info->l2_len;
info->outer_l3_len = info->l3_len;
info->outer_l4_proto = info->l4_proto;
eth_hdr = (struct ether_hdr *)((char *)gre_hdr + gre_len);
parse_ethernet(eth_hdr, info);
} else
return;
info->l2_len += gre_len;
}
/* Parse an encapsulated ip or ipv6 header */
static void
parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
{
struct ipv4_hdr *ipv4_hdr = encap_ip;
struct ipv6_hdr *ipv6_hdr = encap_ip;
uint8_t ip_version;
ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
if (ip_version != 4 && ip_version != 6)
return;
info->is_tunnel = 1;
info->outer_ethertype = info->ethertype;
info->outer_l2_len = info->l2_len;
info->outer_l3_len = info->l3_len;
if (ip_version == 4) {
parse_ipv4(ipv4_hdr, info);
info->ethertype = _htons(ETHER_TYPE_IPv4);
} else {
parse_ipv6(ipv6_hdr, info);
info->ethertype = _htons(ETHER_TYPE_IPv6);
}
info->l2_len = 0;
}
/* modify the IPv4 or IPv4 source address of a packet */
static void
change_ip_addresses(void *l3_hdr, uint16_t ethertype)
{
struct ipv4_hdr *ipv4_hdr = l3_hdr;
struct ipv6_hdr *ipv6_hdr = l3_hdr;
if (ethertype == _htons(ETHER_TYPE_IPv4)) {
ipv4_hdr->src_addr =
rte_cpu_to_be_32(rte_be_to_cpu_32(ipv4_hdr->src_addr) + 1);
} else if (ethertype == _htons(ETHER_TYPE_IPv6)) {
ipv6_hdr->src_addr[15] = ipv6_hdr->src_addr[15] + 1;
}
}
/* if possible, calculate the checksum of a packet in hw or sw,
* depending on the testpmd command line configuration */
static uint64_t
process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
uint16_t testpmd_ol_flags)
{
struct ipv4_hdr *ipv4_hdr = l3_hdr;
struct udp_hdr *udp_hdr;
struct tcp_hdr *tcp_hdr;
struct sctp_hdr *sctp_hdr;
uint64_t ol_flags = 0;
if (info->ethertype == _htons(ETHER_TYPE_IPv4)) {
ipv4_hdr = l3_hdr;
ipv4_hdr->hdr_checksum = 0;
ol_flags |= PKT_TX_IPV4;
if (info->tso_segsz != 0 && info->l4_proto == IPPROTO_TCP) {
ol_flags |= PKT_TX_IP_CKSUM;
} else {
if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM)
ol_flags |= PKT_TX_IP_CKSUM;
else
ipv4_hdr->hdr_checksum =
rte_ipv4_cksum(ipv4_hdr);
}
} else if (info->ethertype == _htons(ETHER_TYPE_IPv6))
ol_flags |= PKT_TX_IPV6;
else
return 0; /* packet type not supported, nothing to do */
if (info->l4_proto == IPPROTO_UDP) {
udp_hdr = (struct udp_hdr *)((char *)l3_hdr + info->l3_len);
/* do not recalculate udp cksum if it was 0 */
if (udp_hdr->dgram_cksum != 0) {
udp_hdr->dgram_cksum = 0;
if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM) {
ol_flags |= PKT_TX_UDP_CKSUM;
udp_hdr->dgram_cksum = get_psd_sum(l3_hdr,
info->ethertype, ol_flags);
} else {
udp_hdr->dgram_cksum =
get_udptcp_checksum(l3_hdr, udp_hdr,
info->ethertype);
}
}
} else if (info->l4_proto == IPPROTO_TCP) {
tcp_hdr = (struct tcp_hdr *)((char *)l3_hdr + info->l3_len);
tcp_hdr->cksum = 0;
if (info->tso_segsz != 0) {
ol_flags |= PKT_TX_TCP_SEG;
tcp_hdr->cksum = get_psd_sum(l3_hdr, info->ethertype,
ol_flags);
} else if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM) {
ol_flags |= PKT_TX_TCP_CKSUM;
tcp_hdr->cksum = get_psd_sum(l3_hdr, info->ethertype,
ol_flags);
} else {
tcp_hdr->cksum =
get_udptcp_checksum(l3_hdr, tcp_hdr,
info->ethertype);
}
} else if (info->l4_proto == IPPROTO_SCTP) {
sctp_hdr = (struct sctp_hdr *)((char *)l3_hdr + info->l3_len);
sctp_hdr->cksum = 0;
/* sctp payload must be a multiple of 4 to be
* offloaded */
if ((testpmd_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM) &&
((ipv4_hdr->total_length & 0x3) == 0)) {
ol_flags |= PKT_TX_SCTP_CKSUM;
} else {
/* XXX implement CRC32c, example available in
* RFC3309 */
}
}
return ol_flags;
}
/* Calculate the checksum of outer header (only vxlan is supported,
* meaning IP + UDP). The caller already checked that it's a vxlan
* packet */
static uint64_t
process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
uint16_t testpmd_ol_flags)
{
struct ipv4_hdr *ipv4_hdr = outer_l3_hdr;
struct ipv6_hdr *ipv6_hdr = outer_l3_hdr;
struct udp_hdr *udp_hdr;
uint64_t ol_flags = 0;
if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) {
ipv4_hdr->hdr_checksum = 0;
ol_flags |= PKT_TX_OUTER_IPV4;
if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM)
ol_flags |= PKT_TX_OUTER_IP_CKSUM;
else
ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
} else if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM)
ol_flags |= PKT_TX_OUTER_IPV6;
if (info->outer_l4_proto != IPPROTO_UDP)
return ol_flags;
/* outer UDP checksum is always done in software as we have no
* hardware supporting it today, and no API for it. */
udp_hdr = (struct udp_hdr *)((char *)outer_l3_hdr + info->outer_l3_len);
/* do not recalculate udp cksum if it was 0 */
if (udp_hdr->dgram_cksum != 0) {
udp_hdr->dgram_cksum = 0;
if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4))
udp_hdr->dgram_cksum =
rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
else
udp_hdr->dgram_cksum =
rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
}
return ol_flags;
}
/*
* Helper function.
* Performs actual copying.
* Returns number of segments in the destination mbuf on success,
* or negative error code on failure.
*/
static int
mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
uint16_t seglen[], uint8_t nb_seg)
{
uint32_t dlen, slen, tlen;
uint32_t i, len;
const struct rte_mbuf *m;
const uint8_t *src;
uint8_t *dst;
dlen = 0;
slen = 0;
tlen = 0;
dst = NULL;
src = NULL;
m = ms;
i = 0;
while (ms != NULL && i != nb_seg) {
if (slen == 0) {
slen = rte_pktmbuf_data_len(ms);
src = rte_pktmbuf_mtod(ms, const uint8_t *);
}
if (dlen == 0) {
dlen = RTE_MIN(seglen[i], slen);
md[i]->data_len = dlen;
md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
dst = rte_pktmbuf_mtod(md[i], uint8_t *);
}
len = RTE_MIN(slen, dlen);
memcpy(dst, src, len);
tlen += len;
slen -= len;
dlen -= len;
src += len;
dst += len;
if (slen == 0)
ms = ms->next;
if (dlen == 0)
i++;
}
if (ms != NULL)
return -ENOBUFS;
else if (tlen != m->pkt_len)
return -EINVAL;
md[0]->nb_segs = nb_seg;
md[0]->pkt_len = tlen;
md[0]->vlan_tci = m->vlan_tci;
md[0]->vlan_tci_outer = m->vlan_tci_outer;
md[0]->ol_flags = m->ol_flags;
md[0]->tx_offload = m->tx_offload;
return nb_seg;
}
/*
* Allocate a new mbuf with up to tx_pkt_nb_segs segments.
* Copy packet contents and offload information into then new segmented mbuf.
*/
static struct rte_mbuf *
pkt_copy_split(const struct rte_mbuf *pkt)
{
int32_t n, rc;
uint32_t i, len, nb_seg;
struct rte_mempool *mp;
uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
mp = current_fwd_lcore()->mbp;
if (tx_pkt_split == TX_PKT_SPLIT_RND)
nb_seg = random() % tx_pkt_nb_segs + 1;
else
nb_seg = tx_pkt_nb_segs;
memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
/* calculate number of segments to use and their length. */
len = 0;
for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
len += seglen[i];
md[i] = NULL;
}
n = pkt->pkt_len - len;
/* update size of the last segment to fit rest of the packet */
if (n >= 0) {
seglen[i - 1] += n;
len += n;
}
nb_seg = i;
while (i != 0) {
p = rte_pktmbuf_alloc(mp);
if (p == NULL) {
RTE_LOG(ERR, USER1,
"failed to allocate %u-th of %u mbuf "
"from mempool: %s\n",
nb_seg - i, nb_seg, mp->name);
break;
}
md[--i] = p;
if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
RTE_LOG(ERR, USER1, "mempool %s, %u-th segment: "
"expected seglen: %u, "
"actual mbuf tailroom: %u\n",
mp->name, i, seglen[i],
rte_pktmbuf_tailroom(md[i]));
break;
}
}
/* all mbufs successfully allocated, do copy */
if (i == 0) {
rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
if (rc < 0)
RTE_LOG(ERR, USER1,
"mbuf_copy_split for %p(len=%u, nb_seg=%hhu) "
"into %u segments failed with error code: %d\n",
pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
/* figure out how many mbufs to free. */
i = RTE_MAX(rc, 0);
}
/* free unused mbufs */
for (; i != nb_seg; i++) {
rte_pktmbuf_free_seg(md[i]);
md[i] = NULL;
}
return md[0];
}
/*
* Receive a burst of packets, and for each packet:
* - parse packet, and try to recognize a supported packet type (1)
* - if it's not a supported packet type, don't touch the packet, else:
* - modify the IPs in inner headers and in outer headers if any
* - reprocess the checksum of all supported layers. This is done in SW
* or HW, depending on testpmd command line configuration
* - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
* segmentation offload (this implies HW TCP checksum)
* Then transmit packets on the output port.
*
* (1) Supported packets are:
* Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
* Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
* UDP|TCP|SCTP
* Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
* Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
* Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
*
* The testpmd command line for this forward engine sets the flags
* TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
* wether a checksum must be calculated in software or in hardware. The
* IP, UDP, TCP and SCTP flags always concern the inner layer. The
* OUTER_IP is only useful for tunnel packets.
*/
static void
pkt_burst_checksum_forward(struct fwd_stream *fs)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
struct rte_port *txp;
struct rte_mbuf *m, *p;
struct ether_hdr *eth_hdr;
void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
uint16_t nb_rx;
uint16_t nb_tx;
uint16_t i;
uint64_t ol_flags;
uint16_t testpmd_ol_flags;
uint32_t retry;
uint32_t rx_bad_ip_csum;
uint32_t rx_bad_l4_csum;
struct testpmd_offload_info info;
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
uint64_t start_tsc;
uint64_t end_tsc;
uint64_t core_cycles;
#endif
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
start_tsc = rte_rdtsc();
#endif
/* receive a burst of packet */
nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
nb_pkt_per_burst);
if (unlikely(nb_rx == 0))
return;
#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
#endif
fs->rx_packets += nb_rx;
rx_bad_ip_csum = 0;
rx_bad_l4_csum = 0;
txp = &ports[fs->tx_port];
testpmd_ol_flags = txp->tx_ol_flags;
memset(&info, 0, sizeof(info));
info.tso_segsz = txp->tso_segsz;
for (i = 0; i < nb_rx; i++) {
if (likely(i < nb_rx - 1))
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
void *));
ol_flags = 0;
info.is_tunnel = 0;
m = pkts_burst[i];
/* Update the L3/L4 checksum error packet statistics */
rx_bad_ip_csum += ((m->ol_flags & PKT_RX_IP_CKSUM_BAD) != 0);
rx_bad_l4_csum += ((m->ol_flags & PKT_RX_L4_CKSUM_BAD) != 0);
/* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
* and inner headers */
eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
ð_hdr->d_addr);
ether_addr_copy(&ports[fs->tx_port].eth_addr,
ð_hdr->s_addr);
parse_ethernet(eth_hdr, &info);
l3_hdr = (char *)eth_hdr + info.l2_len;
/* check if it's a supported tunnel */
if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_PARSE_TUNNEL) {
if (info.l4_proto == IPPROTO_UDP) {
struct udp_hdr *udp_hdr;
udp_hdr = (struct udp_hdr *)((char *)l3_hdr +
info.l3_len);
parse_vxlan(udp_hdr, &info, m->packet_type);
} else if (info.l4_proto == IPPROTO_GRE) {
struct simple_gre_hdr *gre_hdr;
gre_hdr = (struct simple_gre_hdr *)
((char *)l3_hdr + info.l3_len);
parse_gre(gre_hdr, &info);
} else if (info.l4_proto == IPPROTO_IPIP) {
void *encap_ip_hdr;
encap_ip_hdr = (char *)l3_hdr + info.l3_len;
parse_encap_ip(encap_ip_hdr, &info);
}
}
/* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
if (info.is_tunnel) {
outer_l3_hdr = l3_hdr;
l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
}
/* step 2: change all source IPs (v4 or v6) so we need
* to recompute the chksums even if they were correct */
change_ip_addresses(l3_hdr, info.ethertype);
if (info.is_tunnel == 1)
change_ip_addresses(outer_l3_hdr, info.outer_ethertype);
/* step 3: depending on user command line configuration,
* recompute checksum either in software or flag the
* mbuf to offload the calculation to the NIC. If TSO
* is configured, prepare the mbuf for TCP segmentation. */
/* process checksums of inner headers first */
ol_flags |= process_inner_cksums(l3_hdr, &info, testpmd_ol_flags);
/* Then process outer headers if any. Note that the software
* checksum will be wrong if one of the inner checksums is
* processed in hardware. */
if (info.is_tunnel == 1) {
ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
testpmd_ol_flags);
}
/* step 4: fill the mbuf meta data (flags and header lengths) */
if (info.is_tunnel == 1) {
if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) {
m->outer_l2_len = info.outer_l2_len;
m->outer_l3_len = info.outer_l3_len;
m->l2_len = info.l2_len;
m->l3_len = info.l3_len;
m->l4_len = info.l4_len;
}
else {
/* if there is a outer UDP cksum
processed in sw and the inner in hw,
the outer checksum will be wrong as
the payload will be modified by the
hardware */
m->l2_len = info.outer_l2_len +
info.outer_l3_len + info.l2_len;
m->l3_len = info.l3_len;
m->l4_len = info.l4_len;
}
} else {
/* this is only useful if an offload flag is
* set, but it does not hurt to fill it in any
* case */
m->l2_len = info.l2_len;
m->l3_len = info.l3_len;
m->l4_len = info.l4_len;
}
m->tso_segsz = info.tso_segsz;
m->ol_flags = ol_flags;
/* Do split & copy for the packet. */
if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
p = pkt_copy_split(m);
if (p != NULL) {
rte_pktmbuf_free(m);
m = p;
pkts_burst[i] = m;
}
}
/* if verbose mode is enabled, dump debug info */
if (verbose_level > 0) {
struct {
uint64_t flag;
uint64_t mask;
} tx_flags[] = {
{ PKT_TX_IP_CKSUM, PKT_TX_IP_CKSUM },
{ PKT_TX_UDP_CKSUM, PKT_TX_L4_MASK },
{ PKT_TX_TCP_CKSUM, PKT_TX_L4_MASK },
{ PKT_TX_SCTP_CKSUM, PKT_TX_L4_MASK },
{ PKT_TX_IPV4, PKT_TX_IPV4 },
{ PKT_TX_IPV6, PKT_TX_IPV6 },
{ PKT_TX_OUTER_IP_CKSUM, PKT_TX_OUTER_IP_CKSUM },
{ PKT_TX_OUTER_IPV4, PKT_TX_OUTER_IPV4 },
{ PKT_TX_OUTER_IPV6, PKT_TX_OUTER_IPV6 },
{ PKT_TX_TCP_SEG, PKT_TX_TCP_SEG },
};
unsigned j;
const char *name;
printf("-----------------\n");
printf("mbuf=%p, pkt_len=%u, nb_segs=%hhu:\n",
m, m->pkt_len, m->nb_segs);
/* dump rx parsed packet info */
printf("rx: l2_len=%d ethertype=%x l3_len=%d "
"l4_proto=%d l4_len=%d\n",
info.l2_len, rte_be_to_cpu_16(info.ethertype),
info.l3_len, info.l4_proto, info.l4_len);
if (info.is_tunnel == 1)
printf("rx: outer_l2_len=%d outer_ethertype=%x "
"outer_l3_len=%d\n", info.outer_l2_len,
rte_be_to_cpu_16(info.outer_ethertype),
info.outer_l3_len);
/* dump tx packet info */
if ((testpmd_ol_flags & (TESTPMD_TX_OFFLOAD_IP_CKSUM |
TESTPMD_TX_OFFLOAD_UDP_CKSUM |
TESTPMD_TX_OFFLOAD_TCP_CKSUM |
TESTPMD_TX_OFFLOAD_SCTP_CKSUM)) ||
info.tso_segsz != 0)
printf("tx: m->l2_len=%d m->l3_len=%d "
"m->l4_len=%d\n",
m->l2_len, m->l3_len, m->l4_len);
if ((info.is_tunnel == 1) &&
(testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM))
printf("tx: m->outer_l2_len=%d m->outer_l3_len=%d\n",
m->outer_l2_len, m->outer_l3_len);
if (info.tso_segsz != 0)
printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
printf("tx: flags=");
for (j = 0; j < sizeof(tx_flags)/sizeof(*tx_flags); j++) {
name = rte_get_tx_ol_flag_name(tx_flags[j].flag);
if ((m->ol_flags & tx_flags[j].mask) ==
tx_flags[j].flag)
printf("%s ", name);
}
printf("\n");
}
}
nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_rx);
/*
* Retry if necessary
*/
if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
retry = 0;
while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
rte_delay_us(burst_tx_delay_time);
nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
&pkts_burst[nb_tx], nb_rx - nb_tx);
}
}
fs->tx_packets += nb_tx;
fs->rx_bad_ip_csum += rx_bad_ip_csum;
fs->rx_bad_l4_csum += rx_bad_l4_csum;
#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
#endif
if (unlikely(nb_tx < nb_rx)) {
fs->fwd_dropped += (nb_rx - nb_tx);
do {
rte_pktmbuf_free(pkts_burst[nb_tx]);
} while (++nb_tx < nb_rx);
}
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
end_tsc = rte_rdtsc();
core_cycles = (end_tsc - start_tsc);
fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
#endif
}
struct fwd_engine csum_fwd_engine = {
.fwd_mode_name = "csum",
.port_fwd_begin = NULL,
.port_fwd_end = NULL,
.packet_fwd = pkt_burst_checksum_forward,
};
|