1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
|
/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdint.h>
#include <unistd.h>
#include <sys/queue.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_per_lcore.h>
#include <rte_launch.h>
#include <rte_atomic.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include "test.h"
/*
* Atomic Variables
* ================
*
* - The main test function performs three subtests. The first test
* checks that the usual inc/dec/add/sub functions are working
* correctly:
*
* - Initialize 16-bit, 32-bit and 64-bit atomic variables to specific
* values.
*
* - These variables are incremented and decremented on each core at
* the same time in ``test_atomic_usual()``.
*
* - The function checks that once all lcores finish their function,
* the value of the atomic variables are still the same.
*
* - The second test verifies the behavior of "test and set" functions.
*
* - Initialize 16-bit, 32-bit and 64-bit atomic variables to zero.
*
* - Invoke ``test_atomic_tas()`` on each lcore: before doing anything
* else. The cores are waiting a synchro using ``while
* (rte_atomic32_read(&val) == 0)`` which is triggered by the main test
* function. Then all cores do a
* ``rte_atomicXX_test_and_set()`` at the same time. If it is successful,
* it increments another atomic counter.
*
* - The main function checks that the atomic counter was incremented
* twice only (one for 16-bit, one for 32-bit and one for 64-bit values).
*
* - Test "add/sub and return"
*
* - Initialize 16-bit, 32-bit and 64-bit atomic variables to zero.
*
* - Invoke ``test_atomic_addsub_return()`` on each lcore. Before doing
* anything else, the cores are waiting a synchro. Each lcore does
* this operation several times::
*
* tmp = rte_atomicXX_add_return(&a, 1);
* atomic_add(&count, tmp);
* tmp = rte_atomicXX_sub_return(&a, 1);
* atomic_sub(&count, tmp+1);
*
* - At the end of the test, the *count* value must be 0.
*/
#define NUM_ATOMIC_TYPES 3
#define N 10000
static rte_atomic16_t a16;
static rte_atomic32_t a32;
static rte_atomic64_t a64;
static rte_atomic64_t count;
static rte_atomic32_t synchro;
static int
test_atomic_usual(__attribute__((unused)) void *arg)
{
unsigned i;
while (rte_atomic32_read(&synchro) == 0)
;
for (i = 0; i < N; i++)
rte_atomic16_inc(&a16);
for (i = 0; i < N; i++)
rte_atomic16_dec(&a16);
for (i = 0; i < (N / 5); i++)
rte_atomic16_add(&a16, 5);
for (i = 0; i < (N / 5); i++)
rte_atomic16_sub(&a16, 5);
for (i = 0; i < N; i++)
rte_atomic32_inc(&a32);
for (i = 0; i < N; i++)
rte_atomic32_dec(&a32);
for (i = 0; i < (N / 5); i++)
rte_atomic32_add(&a32, 5);
for (i = 0; i < (N / 5); i++)
rte_atomic32_sub(&a32, 5);
for (i = 0; i < N; i++)
rte_atomic64_inc(&a64);
for (i = 0; i < N; i++)
rte_atomic64_dec(&a64);
for (i = 0; i < (N / 5); i++)
rte_atomic64_add(&a64, 5);
for (i = 0; i < (N / 5); i++)
rte_atomic64_sub(&a64, 5);
return 0;
}
static int
test_atomic_tas(__attribute__((unused)) void *arg)
{
while (rte_atomic32_read(&synchro) == 0)
;
if (rte_atomic16_test_and_set(&a16))
rte_atomic64_inc(&count);
if (rte_atomic32_test_and_set(&a32))
rte_atomic64_inc(&count);
if (rte_atomic64_test_and_set(&a64))
rte_atomic64_inc(&count);
return 0;
}
static int
test_atomic_addsub_and_return(__attribute__((unused)) void *arg)
{
uint32_t tmp16;
uint32_t tmp32;
uint64_t tmp64;
unsigned i;
while (rte_atomic32_read(&synchro) == 0)
;
for (i = 0; i < N; i++) {
tmp16 = rte_atomic16_add_return(&a16, 1);
rte_atomic64_add(&count, tmp16);
tmp16 = rte_atomic16_sub_return(&a16, 1);
rte_atomic64_sub(&count, tmp16+1);
tmp32 = rte_atomic32_add_return(&a32, 1);
rte_atomic64_add(&count, tmp32);
tmp32 = rte_atomic32_sub_return(&a32, 1);
rte_atomic64_sub(&count, tmp32+1);
tmp64 = rte_atomic64_add_return(&a64, 1);
rte_atomic64_add(&count, tmp64);
tmp64 = rte_atomic64_sub_return(&a64, 1);
rte_atomic64_sub(&count, tmp64+1);
}
return 0;
}
/*
* rte_atomic32_inc_and_test() would increase a 32 bits counter by one and then
* test if that counter is equal to 0. It would return true if the counter is 0
* and false if the counter is not 0. rte_atomic64_inc_and_test() could do the
* same thing but for a 64 bits counter.
* Here checks that if the 32/64 bits counter is equal to 0 after being atomically
* increased by one. If it is, increase the variable of "count" by one which would
* be checked as the result later.
*
*/
static int
test_atomic_inc_and_test(__attribute__((unused)) void *arg)
{
while (rte_atomic32_read(&synchro) == 0)
;
if (rte_atomic16_inc_and_test(&a16)) {
rte_atomic64_inc(&count);
}
if (rte_atomic32_inc_and_test(&a32)) {
rte_atomic64_inc(&count);
}
if (rte_atomic64_inc_and_test(&a64)) {
rte_atomic64_inc(&count);
}
return 0;
}
/*
* rte_atomicXX_dec_and_test() should decrease a 32 bits counter by one and then
* test if that counter is equal to 0. It should return true if the counter is 0
* and false if the counter is not 0.
* This test checks if the counter is equal to 0 after being atomically
* decreased by one. If it is, increase the value of "count" by one which is to
* be checked as the result later.
*/
static int
test_atomic_dec_and_test(__attribute__((unused)) void *arg)
{
while (rte_atomic32_read(&synchro) == 0)
;
if (rte_atomic16_dec_and_test(&a16))
rte_atomic64_inc(&count);
if (rte_atomic32_dec_and_test(&a32))
rte_atomic64_inc(&count);
if (rte_atomic64_dec_and_test(&a64))
rte_atomic64_inc(&count);
return 0;
}
static int
test_atomic(void)
{
rte_atomic16_init(&a16);
rte_atomic32_init(&a32);
rte_atomic64_init(&a64);
rte_atomic64_init(&count);
rte_atomic32_init(&synchro);
rte_atomic16_set(&a16, 1UL << 10);
rte_atomic32_set(&a32, 1UL << 10);
rte_atomic64_set(&a64, 1ULL << 33);
printf("usual inc/dec/add/sub functions\n");
rte_eal_mp_remote_launch(test_atomic_usual, NULL, SKIP_MASTER);
rte_atomic32_set(&synchro, 1);
rte_eal_mp_wait_lcore();
rte_atomic32_set(&synchro, 0);
if (rte_atomic16_read(&a16) != 1UL << 10) {
printf("Atomic16 usual functions failed\n");
return -1;
}
if (rte_atomic32_read(&a32) != 1UL << 10) {
printf("Atomic32 usual functions failed\n");
return -1;
}
if (rte_atomic64_read(&a64) != 1ULL << 33) {
printf("Atomic64 usual functions failed\n");
return -1;
}
printf("test and set\n");
rte_atomic64_set(&a64, 0);
rte_atomic32_set(&a32, 0);
rte_atomic16_set(&a16, 0);
rte_atomic64_set(&count, 0);
rte_eal_mp_remote_launch(test_atomic_tas, NULL, SKIP_MASTER);
rte_atomic32_set(&synchro, 1);
rte_eal_mp_wait_lcore();
rte_atomic32_set(&synchro, 0);
if (rte_atomic64_read(&count) != NUM_ATOMIC_TYPES) {
printf("Atomic test and set failed\n");
return -1;
}
printf("add/sub and return\n");
rte_atomic64_set(&a64, 0);
rte_atomic32_set(&a32, 0);
rte_atomic16_set(&a16, 0);
rte_atomic64_set(&count, 0);
rte_eal_mp_remote_launch(test_atomic_addsub_and_return, NULL,
SKIP_MASTER);
rte_atomic32_set(&synchro, 1);
rte_eal_mp_wait_lcore();
rte_atomic32_set(&synchro, 0);
if (rte_atomic64_read(&count) != 0) {
printf("Atomic add/sub+return failed\n");
return -1;
}
/*
* Set a64, a32 and a16 with the same value of minus "number of slave
* lcores", launch all slave lcores to atomically increase by one and
* test them respectively.
* Each lcore should have only one chance to increase a64 by one and
* then check if it is equal to 0, but there should be only one lcore
* that finds that it is 0. It is similar for a32 and a16.
* Then a variable of "count", initialized to zero, is increased by
* one if a64, a32 or a16 is 0 after being increased and tested
* atomically.
* We can check if "count" is finally equal to 3 to see if all slave
* lcores performed "atomic inc and test" right.
*/
printf("inc and test\n");
rte_atomic64_clear(&a64);
rte_atomic32_clear(&a32);
rte_atomic16_clear(&a16);
rte_atomic32_clear(&synchro);
rte_atomic64_clear(&count);
rte_atomic64_set(&a64, (int64_t)(1 - (int64_t)rte_lcore_count()));
rte_atomic32_set(&a32, (int32_t)(1 - (int32_t)rte_lcore_count()));
rte_atomic16_set(&a16, (int16_t)(1 - (int16_t)rte_lcore_count()));
rte_eal_mp_remote_launch(test_atomic_inc_and_test, NULL, SKIP_MASTER);
rte_atomic32_set(&synchro, 1);
rte_eal_mp_wait_lcore();
rte_atomic32_clear(&synchro);
if (rte_atomic64_read(&count) != NUM_ATOMIC_TYPES) {
printf("Atomic inc and test failed %d\n", (int)count.cnt);
return -1;
}
/*
* Same as above, but this time we set the values to "number of slave
* lcores", and decrement instead of increment.
*/
printf("dec and test\n");
rte_atomic32_clear(&synchro);
rte_atomic64_clear(&count);
rte_atomic64_set(&a64, (int64_t)(rte_lcore_count() - 1));
rte_atomic32_set(&a32, (int32_t)(rte_lcore_count() - 1));
rte_atomic16_set(&a16, (int16_t)(rte_lcore_count() - 1));
rte_eal_mp_remote_launch(test_atomic_dec_and_test, NULL, SKIP_MASTER);
rte_atomic32_set(&synchro, 1);
rte_eal_mp_wait_lcore();
rte_atomic32_clear(&synchro);
if (rte_atomic64_read(&count) != NUM_ATOMIC_TYPES) {
printf("Atomic dec and test failed\n");
return -1;
}
return 0;
}
static struct test_command atomic_cmd = {
.command = "atomic_autotest",
.callback = test_atomic,
};
REGISTER_TEST_COMMAND(atomic_cmd);
|