aboutsummaryrefslogtreecommitdiffstats
path: root/app/test/test_hash_perf.c
blob: c0051b20fbe2c70d21642ef89c5a237e5ac096e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdio.h>
#include <inttypes.h>

#include <rte_lcore.h>
#include <rte_cycles.h>
#include <rte_malloc.h>
#include <rte_hash.h>
#include <rte_hash_crc.h>
#include <rte_jhash.h>
#include <rte_fbk_hash.h>
#include <rte_random.h>
#include <rte_string_fns.h>

#include "test.h"

#define MAX_ENTRIES (1 << 19)
#define KEYS_TO_ADD (MAX_ENTRIES * 3 / 4) /* 75% table utilization */
#define NUM_LOOKUPS (KEYS_TO_ADD * 5) /* Loop among keys added, several times */
#define BUCKET_SIZE 4
#define NUM_BUCKETS (MAX_ENTRIES / BUCKET_SIZE)
#define MAX_KEYSIZE 64
#define NUM_KEYSIZES 10
#define NUM_SHUFFLES 10
#define BURST_SIZE 16

enum operations {
	ADD = 0,
	LOOKUP,
	LOOKUP_MULTI,
	DELETE,
	NUM_OPERATIONS
};

static uint32_t hashtest_key_lens[] = {
	/* standard key sizes */
	4, 8, 16, 32, 48, 64,
	/* IPv4 SRC + DST + protocol, unpadded */
	9,
	/* IPv4 5-tuple, unpadded */
	13,
	/* IPv6 5-tuple, unpadded */
	37,
	/* IPv6 5-tuple, padded to 8-byte boundary */
	40
};

struct rte_hash *h[NUM_KEYSIZES];

/* Array that stores if a slot is full */
uint8_t slot_taken[MAX_ENTRIES];

/* Array to store number of cycles per operation */
uint64_t cycles[NUM_KEYSIZES][NUM_OPERATIONS][2][2];

/* Array to store all input keys */
uint8_t keys[KEYS_TO_ADD][MAX_KEYSIZE];

/* Array to store the precomputed hash for 'keys' */
hash_sig_t signatures[KEYS_TO_ADD];

/* Array to store how many busy entries have each bucket */
uint8_t buckets[NUM_BUCKETS];

/* Array to store the positions where keys are added */
int32_t positions[KEYS_TO_ADD];

/* Parameters used for hash table in unit test functions. */
static struct rte_hash_parameters ut_params = {
	.entries = MAX_ENTRIES,
	.hash_func = rte_jhash,
	.hash_func_init_val = 0,
};

static int
create_table(unsigned with_data, unsigned table_index)
{
	char name[RTE_HASH_NAMESIZE];

	if (with_data)
		/* Table will store 8-byte data */
		sprintf(name, "test_hash%d_data", hashtest_key_lens[table_index]);
	else
		sprintf(name, "test_hash%d", hashtest_key_lens[table_index]);

	ut_params.name = name;
	ut_params.key_len = hashtest_key_lens[table_index];
	ut_params.socket_id = rte_socket_id();
	h[table_index] = rte_hash_find_existing(name);
	if (h[table_index] != NULL)
		/*
		 * If table was already created, free it to create it again,
		 * so we force it is empty
		 */
		rte_hash_free(h[table_index]);
	h[table_index] = rte_hash_create(&ut_params);
	if (h[table_index] == NULL) {
		printf("Error creating table\n");
		return -1;
	}
	return 0;

}

/* Shuffle the keys that have been added, so lookups will be totally random */
static void
shuffle_input_keys(unsigned table_index)
{
	unsigned i;
	uint32_t swap_idx;
	uint8_t temp_key[MAX_KEYSIZE];
	hash_sig_t temp_signature;
	int32_t temp_position;

	for (i = KEYS_TO_ADD - 1; i > 0; i--) {
		swap_idx = rte_rand() % i;

		memcpy(temp_key, keys[i], hashtest_key_lens[table_index]);
		temp_signature = signatures[i];
		temp_position = positions[i];

		memcpy(keys[i], keys[swap_idx], hashtest_key_lens[table_index]);
		signatures[i] = signatures[swap_idx];
		positions[i] = positions[swap_idx];

		memcpy(keys[swap_idx], temp_key, hashtest_key_lens[table_index]);
		signatures[swap_idx] = temp_signature;
		positions[swap_idx] = temp_position;
	}
}

/*
 * Looks for random keys which
 * ALL can fit in hash table (no errors)
 */
static int
get_input_keys(unsigned with_pushes, unsigned table_index)
{
	unsigned i, j;
	unsigned bucket_idx, incr, success = 1;
	uint8_t k = 0;
	int32_t ret;
	const uint32_t bucket_bitmask = NUM_BUCKETS - 1;

	/* Reset all arrays */
	for (i = 0; i < MAX_ENTRIES; i++)
		slot_taken[i] = 0;

	for (i = 0; i < NUM_BUCKETS; i++)
		buckets[i] = 0;

	for (j = 0; j < hashtest_key_lens[table_index]; j++)
		keys[0][j] = 0;

	/*
	 * Add only entries that are not duplicated and that fits in the table
	 * (cannot store more than BUCKET_SIZE entries in a bucket).
	 * Regardless a key has been added correctly or not (success),
	 * the next one to try will be increased by 1.
	 */
	for (i = 0; i < KEYS_TO_ADD;) {
		incr = 0;
		if (i != 0) {
			keys[i][0] = ++k;
			/* Overflow, need to increment the next byte */
			if (keys[i][0] == 0)
				incr = 1;
			for (j = 1; j < hashtest_key_lens[table_index]; j++) {
				/* Do not increase next byte */
				if (incr == 0)
					if (success == 1)
						keys[i][j] = keys[i - 1][j];
					else
						keys[i][j] = keys[i][j];
				/* Increase next byte by one */
				else {
					if (success == 1)
						keys[i][j] = keys[i-1][j] + 1;
					else
						keys[i][j] = keys[i][j] + 1;
					if (keys[i][j] == 0)
						incr = 1;
					else
						incr = 0;
				}
			}
		}
		success = 0;
		signatures[i] = rte_hash_hash(h[table_index], keys[i]);
		bucket_idx = signatures[i] & bucket_bitmask;
		/*
		 * If we are not inserting keys in secondary location,
		 * when bucket is full, do not try to insert the key
		 */
		if (with_pushes == 0)
			if (buckets[bucket_idx] == BUCKET_SIZE)
				continue;

		/* If key can be added, leave in successful key arrays "keys" */
		ret = rte_hash_add_key_with_hash(h[table_index], keys[i],
						signatures[i]);
		if (ret >= 0) {
			/* If key is already added, ignore the entry and do not store */
			if (slot_taken[ret])
				continue;
			else {
				/* Store the returned position and mark slot as taken */
				slot_taken[ret] = 1;
				positions[i] = ret;
				buckets[bucket_idx]++;
				success = 1;
				i++;
			}
		}
	}

	/* Reset the table, so we can measure the time to add all the entries */
	rte_hash_free(h[table_index]);
	h[table_index] = rte_hash_create(&ut_params);

	return 0;
}

static int
timed_adds(unsigned with_hash, unsigned with_data, unsigned table_index)
{
	unsigned i;
	const uint64_t start_tsc = rte_rdtsc();
	void *data;
	int32_t ret;

	for (i = 0; i < KEYS_TO_ADD; i++) {
		data = (void *) ((uintptr_t) signatures[i]);
		if (with_hash && with_data) {
			ret = rte_hash_add_key_with_hash_data(h[table_index],
						(const void *) keys[i],
						signatures[i], data);
			if (ret < 0) {
				printf("Failed to add key number %u\n", ret);
				return -1;
			}
		} else if (with_hash && !with_data) {
			ret = rte_hash_add_key_with_hash(h[table_index],
						(const void *) keys[i],
						signatures[i]);
			if (ret >= 0)
				positions[i] = ret;
			else {
				printf("Failed to add key number %u\n", ret);
				return -1;
			}
		} else if (!with_hash && with_data) {
			ret = rte_hash_add_key_data(h[table_index],
						(const void *) keys[i],
						data);
			if (ret < 0) {
				printf("Failed to add key number %u\n", ret);
				return -1;
			}
		} else {
			ret = rte_hash_add_key(h[table_index], keys[i]);
			if (ret >= 0)
				positions[i] = ret;
			else {
				printf("Failed to add key number %u\n", ret);
				return -1;
			}
		}
	}

	const uint64_t end_tsc = rte_rdtsc();
	const uint64_t time_taken = end_tsc - start_tsc;

	cycles[table_index][ADD][with_hash][with_data] = time_taken/KEYS_TO_ADD;

	return 0;
}

static int
timed_lookups(unsigned with_hash, unsigned with_data, unsigned table_index)
{
	unsigned i, j;
	const uint64_t start_tsc = rte_rdtsc();
	void *ret_data;
	void *expected_data;
	int32_t ret;

	for (i = 0; i < NUM_LOOKUPS/KEYS_TO_ADD; i++) {
		for (j = 0; j < KEYS_TO_ADD; j++) {
			if (with_hash && with_data) {
				ret = rte_hash_lookup_with_hash_data(h[table_index],
							(const void *) keys[j],
							signatures[j], &ret_data);
				if (ret < 0) {
					printf("Key number %u was not found\n", j);
					return -1;
				}
				expected_data = (void *) ((uintptr_t) signatures[j]);
				if (ret_data != expected_data) {
					printf("Data returned for key number %u is %p,"
					       " but should be %p\n", j, ret_data,
						expected_data);
					return -1;
				}
			} else if (with_hash && !with_data) {
				ret = rte_hash_lookup_with_hash(h[table_index],
							(const void *) keys[j],
							signatures[j]);
				if (ret < 0 || ret != positions[j]) {
					printf("Key looked up in %d, should be in %d\n",
						ret, positions[j]);
					return -1;
				}
			} else if (!with_hash && with_data) {
				ret = rte_hash_lookup_data(h[table_index],
							(const void *) keys[j], &ret_data);
				if (ret < 0) {
					printf("Key number %u was not found\n", j);
					return -1;
				}
				expected_data = (void *) ((uintptr_t) signatures[j]);
				if (ret_data != expected_data) {
					printf("Data returned for key number %u is %p,"
					       " but should be %p\n", j, ret_data,
						expected_data);
					return -1;
				}
			} else {
				ret = rte_hash_lookup(h[table_index], keys[j]);
				if (ret < 0 || ret != positions[j]) {
					printf("Key looked up in %d, should be in %d\n",
						ret, positions[j]);
					return -1;
				}
			}
		}
	}

	const uint64_t end_tsc = rte_rdtsc();
	const uint64_t time_taken = end_tsc - start_tsc;

	cycles[table_index][LOOKUP][with_hash][with_data] = time_taken/NUM_LOOKUPS;

	return 0;
}

static int
timed_lookups_multi(unsigned with_data, unsigned table_index)
{
	unsigned i, j, k;
	int32_t positions_burst[BURST_SIZE];
	const void *keys_burst[BURST_SIZE];
	void *expected_data[BURST_SIZE];
	void *ret_data[BURST_SIZE];
	uint64_t hit_mask;
	int ret;

	const uint64_t start_tsc = rte_rdtsc();

	for (i = 0; i < NUM_LOOKUPS/KEYS_TO_ADD; i++) {
		for (j = 0; j < KEYS_TO_ADD/BURST_SIZE; j++) {
			for (k = 0; k < BURST_SIZE; k++)
				keys_burst[k] = keys[j * BURST_SIZE + k];
			if (with_data) {
				ret = rte_hash_lookup_bulk_data(h[table_index],
					(const void **) keys_burst,
					BURST_SIZE,
					&hit_mask,
					ret_data);
				if (ret != BURST_SIZE) {
					printf("Expect to find %u keys,"
					       " but found %d\n", BURST_SIZE, ret);
					return -1;
				}
				for (k = 0; k < BURST_SIZE; k++) {
					if ((hit_mask & (1ULL << k))  == 0) {
						printf("Key number %u not found\n",
							j * BURST_SIZE + k);
						return -1;
					}
					expected_data[k] = (void *) ((uintptr_t) signatures[j * BURST_SIZE + k]);
					if (ret_data[k] != expected_data[k]) {
						printf("Data returned for key number %u is %p,"
						       " but should be %p\n", j * BURST_SIZE + k,
							ret_data[k], expected_data[k]);
						return -1;
					}
				}
			} else {
				rte_hash_lookup_bulk(h[table_index],
						(const void **) keys_burst,
						BURST_SIZE,
						positions_burst);
				for (k = 0; k < BURST_SIZE; k++) {
					if (positions_burst[k] != positions[j * BURST_SIZE + k]) {
						printf("Key looked up in %d, should be in %d\n",
							positions_burst[k],
							positions[j * BURST_SIZE + k]);
						return -1;
					}
				}
			}
		}
	}

	const uint64_t end_tsc = rte_rdtsc();
	const uint64_t time_taken = end_tsc - start_tsc;

	cycles[table_index][LOOKUP_MULTI][0][with_data] = time_taken/NUM_LOOKUPS;

	return 0;
}

static int
timed_deletes(unsigned with_hash, unsigned with_data, unsigned table_index)
{
	unsigned i;
	const uint64_t start_tsc = rte_rdtsc();
	int32_t ret;

	for (i = 0; i < KEYS_TO_ADD; i++) {
		/* There are no delete functions with data, so just call two functions */
		if (with_hash)
			ret = rte_hash_del_key_with_hash(h[table_index],
							(const void *) keys[i],
							signatures[i]);
		else
			ret = rte_hash_del_key(h[table_index],
							(const void *) keys[i]);
		if (ret >= 0)
			positions[i] = ret;
		else {
			printf("Failed to add key number %u\n", ret);
			return -1;
		}
	}

	const uint64_t end_tsc = rte_rdtsc();
	const uint64_t time_taken = end_tsc - start_tsc;

	cycles[table_index][DELETE][with_hash][with_data] = time_taken/KEYS_TO_ADD;

	return 0;
}

static void
free_table(unsigned table_index)
{
	rte_hash_free(h[table_index]);
}

static void
reset_table(unsigned table_index)
{
	rte_hash_reset(h[table_index]);
}

static int
run_all_tbl_perf_tests(unsigned with_pushes)
{
	unsigned i, j, with_data, with_hash;

	printf("Measuring performance, please wait");
	fflush(stdout);

	for (with_data = 0; with_data <= 1; with_data++) {
		for (i = 0; i < NUM_KEYSIZES; i++) {
			if (create_table(with_data, i) < 0)
				return -1;

			if (get_input_keys(with_pushes, i) < 0)
				return -1;
			for (with_hash = 0; with_hash <= 1; with_hash++) {
				if (timed_adds(with_hash, with_data, i) < 0)
					return -1;

				for (j = 0; j < NUM_SHUFFLES; j++)
					shuffle_input_keys(i);

				if (timed_lookups(with_hash, with_data, i) < 0)
					return -1;

				if (timed_lookups_multi(with_data, i) < 0)
					return -1;

				if (timed_deletes(with_hash, with_data, i) < 0)
					return -1;

				/* Print a dot to show progress on operations */
				printf(".");
				fflush(stdout);

				reset_table(i);
			}
			free_table(i);
		}
	}

	printf("\nResults (in CPU cycles/operation)\n");
	printf("-----------------------------------\n");
	for (with_data = 0; with_data <= 1; with_data++) {
		if (with_data)
			printf("\n Operations with 8-byte data\n");
		else
			printf("\n Operations without data\n");
		for (with_hash = 0; with_hash <= 1; with_hash++) {
			if (with_hash)
				printf("\nWith pre-computed hash values\n");
			else
				printf("\nWithout pre-computed hash values\n");

			printf("\n%-18s%-18s%-18s%-18s%-18s\n",
			"Keysize", "Add", "Lookup", "Lookup_bulk", "Delete");
			for (i = 0; i < NUM_KEYSIZES; i++) {
				printf("%-18d", hashtest_key_lens[i]);
				for (j = 0; j < NUM_OPERATIONS; j++)
					printf("%-18"PRIu64, cycles[i][j][with_hash][with_data]);
				printf("\n");
			}
		}
	}
	return 0;
}

/* Control operation of performance testing of fbk hash. */
#define LOAD_FACTOR 0.667	/* How full to make the hash table. */
#define TEST_SIZE 1000000	/* How many operations to time. */
#define TEST_ITERATIONS 30	/* How many measurements to take. */
#define ENTRIES (1 << 15)	/* How many entries. */

static int
fbk_hash_perf_test(void)
{
	struct rte_fbk_hash_params params = {
		.name = "fbk_hash_test",
		.entries = ENTRIES,
		.entries_per_bucket = 4,
		.socket_id = rte_socket_id(),
	};
	struct rte_fbk_hash_table *handle = NULL;
	uint32_t *keys = NULL;
	unsigned indexes[TEST_SIZE];
	uint64_t lookup_time = 0;
	unsigned added = 0;
	unsigned value = 0;
	uint32_t key;
	uint16_t val;
	unsigned i, j;

	handle = rte_fbk_hash_create(&params);
	if (handle == NULL) {
		printf("Error creating table\n");
		return -1;
	}

	keys = rte_zmalloc(NULL, ENTRIES * sizeof(*keys), 0);
	if (keys == NULL) {
		printf("fbk hash: memory allocation for key store failed\n");
		return -1;
	}

	/* Generate random keys and values. */
	for (i = 0; i < ENTRIES; i++) {
		key = (uint32_t)rte_rand();
		key = ((uint64_t)key << 32) | (uint64_t)rte_rand();
		val = (uint16_t)rte_rand();

		if (rte_fbk_hash_add_key(handle, key, val) == 0) {
			keys[added] = key;
			added++;
		}
		if (added > (LOAD_FACTOR * ENTRIES))
			break;
	}

	for (i = 0; i < TEST_ITERATIONS; i++) {
		uint64_t begin;
		uint64_t end;

		/* Generate random indexes into keys[] array. */
		for (j = 0; j < TEST_SIZE; j++)
			indexes[j] = rte_rand() % added;

		begin = rte_rdtsc();
		/* Do lookups */
		for (j = 0; j < TEST_SIZE; j++)
			value += rte_fbk_hash_lookup(handle, keys[indexes[j]]);

		end = rte_rdtsc();
		lookup_time += (double)(end - begin);
	}

	printf("\n\n *** FBK Hash function performance test results ***\n");
	/*
	 * The use of the 'value' variable ensures that the hash lookup is not
	 * being optimised out by the compiler.
	 */
	if (value != 0)
		printf("Number of ticks per lookup = %g\n",
			(double)lookup_time /
			((double)TEST_ITERATIONS * (double)TEST_SIZE));

	rte_fbk_hash_free(handle);

	return 0;
}

static int
test_hash_perf(void)
{
	unsigned with_pushes;

	for (with_pushes = 0; with_pushes <= 1; with_pushes++) {
		if (with_pushes == 0)
			printf("\nALL ELEMENTS IN PRIMARY LOCATION\n");
		else
			printf("\nELEMENTS IN PRIMARY OR SECONDARY LOCATION\n");
		if (run_all_tbl_perf_tests(with_pushes) < 0)
			return -1;
	}
	if (fbk_hash_perf_test() < 0)
		return -1;

	return 0;
}

REGISTER_TEST_COMMAND(hash_perf_autotest, test_hash_perf);