1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
|
.. BSD LICENSE
Copyright(c) 2016 Intel Corporation. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
KASUMI Crypto Poll Mode Driver
===============================
The KASUMI PMD (**librte_pmd_kasumi**) provides poll mode crypto driver
support for utilizing Intel Libsso library, which implements F8 and F9 functions
for KASUMI UEA1 cipher and UIA1 hash algorithms.
Features
--------
KASUMI PMD has support for:
Cipher algorithm:
* RTE_CRYPTO_CIPHER_KASUMI_F8
Authentication algorithm:
* RTE_CRYPTO_AUTH_KASUMI_F9
Limitations
-----------
* Chained mbufs are not supported.
* KASUMI(F9) supported only if hash offset and length field is byte-aligned.
* In-place bit-level operations for KASUMI(F8) are not supported
(if length and/or offset of data to be ciphered is not byte-aligned).
Installation
------------
To build DPDK with the KASUMI_PMD the user is required to download
the export controlled ``libsso_kasumi`` library, by requesting it from
`<https://networkbuilders.intel.com/network-technologies/dpdk>`_.
Once approval has been granted, the user needs to log in
`<https://networkbuilders.intel.com/dpdklogin>`_
and click on "Kasumi Bit Stream crypto library" link, to download the library.
After downloading the library, the user needs to unpack and compile it
on their system before building DPDK::
make
**Note**: When encrypting with KASUMI F8, by default the library
encrypts full blocks of 8 bytes, regardless the number of bytes to
be encrypted provided (which leads to a possible buffer overflow).
To avoid this situation, it is necessary not to pass
3GPP_SAFE_BUFFERS as a compilation flag.
Also, this is required when using chained operations
(cipher-then-auth/auth-then-cipher).
For this, in the Makefile of the library, make sure that this flag
is commented out::
#EXTRA_CFLAGS += -D_3GPP_SAFE_BUFFERS
**Note**: To build the PMD as a shared library, the libsso_kasumi
library must be built as follows::
make KASUMI_CFLAGS=-DKASUMI_C
Initialization
--------------
In order to enable this virtual crypto PMD, user must:
* Export the environmental variable LIBSSO_KASUMI_PATH with the path where
the library was extracted (kasumi folder).
* Build the LIBSSO library (explained in Installation section).
* Set CONFIG_RTE_LIBRTE_PMD_KASUMI=y in config/common_base.
To use the PMD in an application, user must:
* Call rte_vdev_init("crypto_kasumi") within the application.
* Use --vdev="crypto_kasumi" in the EAL options, which will call rte_vdev_init() internally.
The following parameters (all optional) can be provided in the previous two calls:
* socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running on).
* max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by default).
* max_nb_sessions: Specify the maximum number of sessions that can be created (2048 by default).
Example:
.. code-block:: console
./l2fwd-crypto -l 1 -n 4 --vdev="crypto_kasumi,socket_id=0,max_nb_sessions=128" \
-- -p 1 --cdev SW --chain CIPHER_ONLY --cipher_algo "kasumi-f8"
Extra notes on KASUMI F9
------------------------
When using KASUMI F9 authentication algorithm, the input buffer must be
constructed according to the 3GPP KASUMI specifications (section 4.4, page 13):
`<http://cryptome.org/3gpp/35201-900.pdf>`_.
Input buffer has to have COUNT (4 bytes), FRESH (4 bytes), MESSAGE and DIRECTION (1 bit)
concatenated. After the DIRECTION bit, a single '1' bit is appended, followed by
between 0 and 7 '0' bits, so that the total length of the buffer is multiple of 8 bits.
Note that the actual message can be any length, specified in bits.
Once this buffer is passed this way, when creating the crypto operation,
length of data to authenticate (op.sym.auth.data.length) must be the length
of all the items described above, including the padding at the end.
Also, offset of data to authenticate (op.sym.auth.data.offset)
must be such that points at the start of the COUNT bytes.
|