1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
|
.. BSD LICENSE
Copyright(c) 2015-2016 Intel Corporation. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Intel(R) QuickAssist (QAT) Crypto Poll Mode Driver
==================================================
The QAT PMD provides poll mode crypto driver support for the following
hardware accelerator devices:
* ``Intel QuickAssist Technology DH895xCC``
* ``Intel QuickAssist Technology C62x``
* ``Intel QuickAssist Technology C3xxx``
* ``Intel QuickAssist Technology D15xx``
Features
--------
The QAT PMD has support for:
Cipher algorithms:
* ``RTE_CRYPTO_CIPHER_3DES_CBC``
* ``RTE_CRYPTO_CIPHER_3DES_CTR``
* ``RTE_CRYPTO_CIPHER_AES128_CBC``
* ``RTE_CRYPTO_CIPHER_AES192_CBC``
* ``RTE_CRYPTO_CIPHER_AES256_CBC``
* ``RTE_CRYPTO_CIPHER_AES128_CTR``
* ``RTE_CRYPTO_CIPHER_AES192_CTR``
* ``RTE_CRYPTO_CIPHER_AES256_CTR``
* ``RTE_CRYPTO_CIPHER_SNOW3G_UEA2``
* ``RTE_CRYPTO_CIPHER_NULL``
* ``RTE_CRYPTO_CIPHER_KASUMI_F8``
* ``RTE_CRYPTO_CIPHER_DES_CBC``
* ``RTE_CRYPTO_CIPHER_AES_DOCSISBPI``
* ``RTE_CRYPTO_CIPHER_DES_DOCSISBPI``
* ``RTE_CRYPTO_CIPHER_ZUC_EEA3``
Hash algorithms:
* ``RTE_CRYPTO_AUTH_SHA1_HMAC``
* ``RTE_CRYPTO_AUTH_SHA224_HMAC``
* ``RTE_CRYPTO_AUTH_SHA256_HMAC``
* ``RTE_CRYPTO_AUTH_SHA384_HMAC``
* ``RTE_CRYPTO_AUTH_SHA512_HMAC``
* ``RTE_CRYPTO_AUTH_AES_XCBC_MAC``
* ``RTE_CRYPTO_AUTH_SNOW3G_UIA2``
* ``RTE_CRYPTO_AUTH_MD5_HMAC``
* ``RTE_CRYPTO_AUTH_NULL``
* ``RTE_CRYPTO_AUTH_KASUMI_F9``
* ``RTE_CRYPTO_AUTH_AES_GMAC``
* ``RTE_CRYPTO_AUTH_ZUC_EIA3``
Supported AEAD algorithms:
* ``RTE_CRYPTO_AEAD_AES_GCM``
Limitations
-----------
* Only supports the session-oriented API implementation (session-less APIs are not supported).
* SNOW 3G (UEA2), KASUMI (F8) and ZUC (EEA3) supported only if cipher length and offset fields are byte-multiple.
* SNOW 3G (UIA2) and ZUC (EIA3) supported only if hash length and offset fields are byte-multiple.
* No BSD support as BSD QAT kernel driver not available.
* ZUC EEA3/EIA3 is not supported by dh895xcc devices
* Maximum additional authenticated data (AAD) for GCM is 240 bytes long.
* Queue pairs are not thread-safe (that is, within a single queue pair, RX and TX from different lcores is not supported).
Installation
------------
To enable QAT in DPDK, follow the instructions for modifying the compile-time
configuration file as described `here <http://dpdk.org/doc/guides/linux_gsg/build_dpdk.html>`_.
Quick instructions are as follows:
.. code-block:: console
cd to the top-level DPDK directory
make config T=x86_64-native-linuxapp-gcc
sed -i 's,\(CONFIG_RTE_LIBRTE_PMD_QAT\)=n,\1=y,' build/.config
make
To use the DPDK QAT PMD an SRIOV-enabled QAT kernel driver is required. The VF
devices exposed by this driver will be used by the QAT PMD. The devices and
available kernel drivers and device ids are :
.. _table_qat_pmds_drivers:
.. table:: QAT device generations, devices and drivers
+-----+----------+--------+---------------+------------+--------+------+--------+--------+
| Gen | Device | Driver | Kernel Module | Pci Driver | PF Did | #PFs | Vf Did | VFs/PF |
+=====+==========+========+===============+============+========+======+========+========+
| 1 | DH895xCC | 01.org | icp_qa_al | n/a | 435 | 1 | 443 | 32 |
+-----+----------+--------+---------------+------------+--------+------+--------+--------+
| 1 | DH895xCC | 4.4+ | qat_dh895xcc | dh895xcc | 435 | 1 | 443 | 32 |
+-----+----------+--------+---------------+------------+--------+------+--------+--------+
| 2 | C62x | 4.5+ | qat_c62x | c6xx | 37c8 | 3 | 37c9 | 16 |
+-----+----------+--------+---------------+------------+--------+------+--------+--------+
| 2 | C3xxx | 4.5+ | qat_c3xxx | c3xxx | 19e2 | 1 | 19e3 | 16 |
+-----+----------+--------+---------------+------------+--------+------+--------+--------+
| 2 | D15xx | p | qat_d15xx | d15xx | 6f54 | 1 | 6f55 | 16 |
+-----+----------+--------+---------------+------------+--------+------+--------+--------+
The ``Driver`` column indicates either the Linux kernel version in which
support for this device was introduced or a driver available on Intel's 01.org
website. There are both linux and 01.org kernel drivers available for some
devices. p = release pending.
If you are running on a kernel which includes a driver for your device, see
`Installation using kernel.org driver`_ below. Otherwise see
`Installation using 01.org QAT driver`_.
Installation using kernel.org driver
------------------------------------
The examples below are based on the C62x device, if you have a different device
use the corresponding values in the above table.
In BIOS ensure that SRIOV is enabled and either:
* Disable VT-d or
* Enable VT-d and set ``"intel_iommu=on iommu=pt"`` in the grub file.
Check that the QAT driver is loaded on your system, by executing::
lsmod | grep qa
You should see the kernel module for your device listed, e.g.::
qat_c62x 5626 0
intel_qat 82336 1 qat_c62x
Next, you need to expose the Virtual Functions (VFs) using the sysfs file system.
First find the BDFs (Bus-Device-Function) of the physical functions (PFs) of
your device, e.g.::
lspci -d : 37c8
You should see output similar to::
1a:00.0 Co-processor: Intel Corporation Device 37c8
3d:00.0 Co-processor: Intel Corporation Device 37c8
3f:00.0 Co-processor: Intel Corporation Device 37c8
Enable the VFs for each PF by echoing the number of VFs per PF to the pci driver::
echo 16 > /sys/bus/pci/drivers/c6xx/0000:1a:00.0/sriov_numvfs
echo 16 > /sys/bus/pci/drivers/c6xx/0000:3d:00.0/sriov_numvfs
echo 16 > /sys/bus/pci/drivers/c6xx/0000:3f:00.0/sriov_numvfs
Check that the VFs are available for use. For example ``lspci -d:37c9`` should
list 48 VF devices available for a ``C62x`` device.
To complete the installation follow the instructions in
`Binding the available VFs to the DPDK UIO driver`_.
.. Note::
If the QAT kernel modules are not loaded and you see an error like ``Failed
to load MMP firmware qat_895xcc_mmp.bin`` in kernel logs, this may be as a
result of not using a distribution, but just updating the kernel directly.
Download firmware from the `kernel firmware repo
<http://git.kernel.org/cgit/linux/kernel/git/firmware/linux-firmware.git/tree/>`_.
Copy qat binaries to ``/lib/firmware``::
cp qat_895xcc.bin /lib/firmware
cp qat_895xcc_mmp.bin /lib/firmware
Change to your linux source root directory and start the qat kernel modules::
insmod ./drivers/crypto/qat/qat_common/intel_qat.ko
insmod ./drivers/crypto/qat/qat_dh895xcc/qat_dh895xcc.ko
.. Note::
If you see the following warning in ``/var/log/messages`` it can be ignored:
``IOMMU should be enabled for SR-IOV to work correctly``.
Installation using 01.org QAT driver
------------------------------------
Download the latest QuickAssist Technology Driver from `01.org
<https://01.org/packet-processing/intel%C2%AE-quickassist-technology-drivers-and-patches>`_.
Consult the *Getting Started Guide* at the same URL for further information.
The steps below assume you are:
* Building on a platform with one ``DH895xCC`` device.
* Using package ``qatmux.l.2.3.0-34.tgz``.
* On Fedora21 kernel ``3.17.4-301.fc21.x86_64``.
In the BIOS ensure that SRIOV is enabled and VT-d is disabled.
Uninstall any existing QAT driver, for example by running:
* ``./installer.sh uninstall`` in the directory where originally installed.
* or ``rmmod qat_dh895xcc; rmmod intel_qat``.
Build and install the SRIOV-enabled QAT driver::
mkdir /QAT
cd /QAT
# Copy qatmux.l.2.3.0-34.tgz to this location
tar zxof qatmux.l.2.3.0-34.tgz
export ICP_WITHOUT_IOMMU=1
./installer.sh install QAT1.6 host
You can use ``cat /proc/icp_dh895xcc_dev0/version`` to confirm the driver is correctly installed.
You can use ``lspci -d:443`` to confirm the of the 32 VF devices available per ``DH895xCC`` device.
To complete the installation - follow instructions in `Binding the available VFs to the DPDK UIO driver`_.
.. Note::
If using a later kernel and the build fails with an error relating to
``strict_stroul`` not being available apply the following patch:
.. code-block:: diff
/QAT/QAT1.6/quickassist/utilities/downloader/Target_CoreLibs/uclo/include/linux/uclo_platform.h
+ #if LINUX_VERSION_CODE >= KERNEL_VERSION(3,18,5)
+ #define STR_TO_64(str, base, num, endPtr) {endPtr=NULL; if (kstrtoul((str), (base), (num))) printk("Error strtoull convert %s\n", str); }
+ #else
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,38)
#define STR_TO_64(str, base, num, endPtr) {endPtr=NULL; if (strict_strtoull((str), (base), (num))) printk("Error strtoull convert %s\n", str); }
#else
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,25)
#define STR_TO_64(str, base, num, endPtr) {endPtr=NULL; strict_strtoll((str), (base), (num));}
#else
#define STR_TO_64(str, base, num, endPtr) \
do { \
if (str[0] == '-') \
{ \
*(num) = -(simple_strtoull((str+1), &(endPtr), (base))); \
}else { \
*(num) = simple_strtoull((str), &(endPtr), (base)); \
} \
} while(0)
+ #endif
#endif
#endif
.. Note::
If the build fails due to missing header files you may need to do following::
sudo yum install zlib-devel
sudo yum install openssl-devel
.. Note::
If the build or install fails due to mismatching kernel sources you may need to do the following::
sudo yum install kernel-headers-`uname -r`
sudo yum install kernel-src-`uname -r`
sudo yum install kernel-devel-`uname -r`
Binding the available VFs to the DPDK UIO driver
------------------------------------------------
Unbind the VFs from the stock driver so they can be bound to the uio driver.
For an Intel(R) QuickAssist Technology DH895xCC device
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The unbind command below assumes ``BDFs`` of ``03:01.00-03:04.07``, if your
VFs are different adjust the unbind command below::
for device in $(seq 1 4); do \
for fn in $(seq 0 7); do \
echo -n 0000:03:0${device}.${fn} > \
/sys/bus/pci/devices/0000\:03\:0${device}.${fn}/driver/unbind; \
done; \
done
For an Intel(R) QuickAssist Technology C62x device
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The unbind command below assumes ``BDFs`` of ``1a:01.00-1a:02.07``,
``3d:01.00-3d:02.07`` and ``3f:01.00-3f:02.07``, if your VFs are different
adjust the unbind command below::
for device in $(seq 1 2); do \
for fn in $(seq 0 7); do \
echo -n 0000:1a:0${device}.${fn} > \
/sys/bus/pci/devices/0000\:1a\:0${device}.${fn}/driver/unbind; \
echo -n 0000:3d:0${device}.${fn} > \
/sys/bus/pci/devices/0000\:3d\:0${device}.${fn}/driver/unbind; \
echo -n 0000:3f:0${device}.${fn} > \
/sys/bus/pci/devices/0000\:3f\:0${device}.${fn}/driver/unbind; \
done; \
done
For Intel(R) QuickAssist Technology C3xxx or D15xx device
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The unbind command below assumes ``BDFs`` of ``01:01.00-01:02.07``, if your
VFs are different adjust the unbind command below::
for device in $(seq 1 2); do \
for fn in $(seq 0 7); do \
echo -n 0000:01:0${device}.${fn} > \
/sys/bus/pci/devices/0000\:01\:0${device}.${fn}/driver/unbind; \
done; \
done
Bind to the DPDK uio driver
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Install the DPDK igb_uio driver, bind the VF PCI Device id to it and use lspci
to confirm the VF devices are now in use by igb_uio kernel driver,
e.g. for the C62x device::
cd to the top-level DPDK directory
modprobe uio
insmod ./build/kmod/igb_uio.ko
echo "8086 37c9" > /sys/bus/pci/drivers/igb_uio/new_id
lspci -vvd:37c9
Another way to bind the VFs to the DPDK UIO driver is by using the
``dpdk-devbind.py`` script::
cd to the top-level DPDK directory
./usertools/dpdk-devbind.py -b igb_uio 0000:03:01.1
Extra notes on KASUMI F9
------------------------
When using KASUMI F9 authentication algorithm, the input buffer must be
constructed according to the 3GPP KASUMI specifications (section 4.4, page 13):
`<http://cryptome.org/3gpp/35201-900.pdf>`_.
Input buffer has to have COUNT (4 bytes), FRESH (4 bytes), MESSAGE and DIRECTION (1 bit)
concatenated. After the DIRECTION bit, a single '1' bit is appended, followed by
between 0 and 7 '0' bits, so that the total length of the buffer is multiple of 8 bits.
Note that the actual message can be any length, specified in bits.
Once this buffer is passed this way, when creating the crypto operation,
length of data to authenticate (op.sym.auth.data.length) must be the length
of all the items described above, including the padding at the end.
Also, offset of data to authenticate (op.sym.auth.data.offset)
must be such that points at the start of the COUNT bytes.
|