blob: 5b8da95d7d27e9a6256cce76e8466649f76d9376 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
|
.. SPDX-License-Identifier: BSD-3-Clause
Copyright 2017 NXP
NXP DPAA2 Eventdev Driver
=========================
The dpaa2 eventdev is an implementation of the eventdev API, that provides a
wide range of the eventdev features. The eventdev relies on a dpaa2 hw to
perform event scheduling.
More information can be found at `NXP Official Website
<http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-arm-processors:QORIQ-ARM>`_.
Features
--------
The DPAA2 EVENTDEV implements many features in the eventdev API;
- Hardware based event scheduler
- 8 event ports
- 8 event queues
- Parallel flows
- Atomic flows
Supported DPAA2 SoCs
--------------------
- LS2080A/LS2040A
- LS2084A/LS2044A
- LS2088A/LS2048A
- LS1088A/LS1048A
Prerequisites
-------------
There are three main pre-requisities for executing DPAA2 EVENTDEV on a DPAA2
compatible board:
1. **ARM 64 Tool Chain**
For example, the `*aarch64* Linaro Toolchain <https://releases.linaro.org/components/toolchain/binaries/4.9-2017.01/aarch64-linux-gnu>`_.
2. **Linux Kernel**
It can be obtained from `NXP's Github hosting <https://github.com/qoriq-open-source/linux>`_.
3. **Rootfile system**
Any *aarch64* supporting filesystem can be used. For example,
Ubuntu 15.10 (Wily) or 16.04 LTS (Xenial) userland which can be obtained
from `here <http://cdimage.ubuntu.com/ubuntu-base/releases/16.04/release/ubuntu-base-16.04.1-base-arm64.tar.gz>`_.
As an alternative method, DPAA2 EVENTDEV can also be executed using images provided
as part of SDK from NXP. The SDK includes all the above prerequisites necessary
to bring up a DPAA2 board.
The following dependencies are not part of DPDK and must be installed
separately:
- **NXP Linux SDK**
NXP Linux software development kit (SDK) includes support for family
of QorIQ® ARM-Architecture-based system on chip (SoC) processors
and corresponding boards.
It includes the Linux board support packages (BSPs) for NXP SoCs,
a fully operational tool chain, kernel and board specific modules.
SDK and related information can be obtained from: `NXP QorIQ SDK <http://www.nxp.com/products/software-and-tools/run-time-software/linux-sdk/linux-sdk-for-qoriq-processors:SDKLINUX>`_.
- **DPDK Extra Scripts**
DPAA2 based resources can be configured easily with the help of ready scripts
as provided in the DPDK Extra repository.
`DPDK Extras Scripts <https://github.com/qoriq-open-source/dpdk-extras>`_.
Currently supported by DPDK:
- NXP SDK **2.0+**.
- MC Firmware version **10.0.0** and higher.
- Supported architectures: **arm64 LE**.
- Follow the DPDK :ref:`Getting Started Guide for Linux <linux_gsg>` to setup the basic DPDK environment.
.. note::
Some part of fslmc bus code (mc flib - object library) routines are
dual licensed (BSD & GPLv2).
Pre-Installation Configuration
------------------------------
Config File Options
~~~~~~~~~~~~~~~~~~~
The following options can be modified in the ``config`` file.
Please note that enabling debugging options may affect system performance.
- ``CONFIG_RTE_LIBRTE_PMD_DPAA2_EVENTDEV`` (default ``y``)
Toggle compilation of the ``lrte_pmd_dpaa2_event`` driver.
Driver Compilation
~~~~~~~~~~~~~~~~~~
To compile the DPAA2 EVENTDEV PMD for Linux arm64 gcc target, run the
following ``make`` command:
.. code-block:: console
cd <DPDK-source-directory>
make config T=arm64-dpaa2-linuxapp-gcc install
Initialization
--------------
The dpaa2 eventdev is exposed as a vdev device which consists of a set of dpcon
devices and dpci devices. On EAL initialization, dpcon and dpci devices will be
probed and then vdev device can be created from the application code by
* Invoking ``rte_vdev_init("event_dpaa2")`` from the application
* Using ``--vdev="event_dpaa2"`` in the EAL options, which will call
rte_vdev_init() internally
Example:
.. code-block:: console
./your_eventdev_application --vdev="event_dpaa2"
Limitations
-----------
Platform Requirement
~~~~~~~~~~~~~~~~~~~~
DPAA2 drivers for DPDK can only work on NXP SoCs as listed in the
``Supported DPAA2 SoCs``.
Port-core binding
~~~~~~~~~~~~~~~~~
DPAA2 EVENTDEV driver requires event port 'x' to be used on core 'x'.
|