1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
.. SPDX-License-Identifier: BSD-3-Clause
Copyright(c) 2010-2014 Intel Corporation.
.. _Enabling_Additional_Functionality:
Enabling Additional Functionality
=================================
.. _High_Precision_Event_Timer:
High Precision Event Timer (HPET) Functionality
-----------------------------------------------
BIOS Support
~~~~~~~~~~~~
The High Precision Timer (HPET) must be enabled in the platform BIOS if the HPET is to be used.
Otherwise, the Time Stamp Counter (TSC) is used by default.
The BIOS is typically accessed by pressing F2 while the platform is starting up.
The user can then navigate to the HPET option. On the Crystal Forest platform BIOS, the path is:
**Advanced -> PCH-IO Configuration -> High Precision Timer ->** (Change from Disabled to Enabled if necessary).
On a system that has already booted, the following command can be issued to check if HPET is enabled::
grep hpet /proc/timer_list
If no entries are returned, HPET must be enabled in the BIOS (as per the instructions above) and the system rebooted.
Linux Kernel Support
~~~~~~~~~~~~~~~~~~~~
The DPDK makes use of the platform HPET timer by mapping the timer counter into the process address space, and as such,
requires that the ``HPET_MMAP`` kernel configuration option be enabled.
.. warning::
On Fedora, and other common distributions such as Ubuntu, the ``HPET_MMAP`` kernel option is not enabled by default.
To recompile the Linux kernel with this option enabled, please consult the distributions documentation for the relevant instructions.
Enabling HPET in the DPDK
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
By default, HPET support is disabled in the DPDK build configuration files.
To use HPET, the ``CONFIG_RTE_LIBEAL_USE_HPET`` setting should be changed to ``y``, which will enable the HPET settings at compile time.
For an application to use the ``rte_get_hpet_cycles()`` and ``rte_get_hpet_hz()`` API calls,
and optionally to make the HPET the default time source for the rte_timer library,
the new ``rte_eal_hpet_init()`` API call should be called at application initialization.
This API call will ensure that the HPET is accessible, returning an error to the application if it is not,
for example, if ``HPET_MMAP`` is not enabled in the kernel.
The application can then determine what action to take, if any, if the HPET is not available at run-time.
.. note::
For applications that require timing APIs, but not the HPET timer specifically,
it is recommended that the ``rte_get_timer_cycles()`` and ``rte_get_timer_hz()`` API calls be used instead of the HPET-specific APIs.
These generic APIs can work with either TSC or HPET time sources, depending on what is requested by an application call to ``rte_eal_hpet_init()``,
if any, and on what is available on the system at runtime.
Running DPDK Applications Without Root Privileges
--------------------------------------------------------
.. note::
The instructions below will allow running DPDK as non-root with older
Linux kernel versions. However, since version 4.0, the kernel does not allow
unprivileged processes to read the physical address information from
the pagemaps file, making it impossible for those processes to use HW
devices which require physical addresses
Although applications using the DPDK use network ports and other hardware resources directly,
with a number of small permission adjustments it is possible to run these applications as a user other than "root".
To do so, the ownership, or permissions, on the following Linux file system objects should be adjusted to ensure that
the Linux user account being used to run the DPDK application has access to them:
* All directories which serve as hugepage mount points, for example, ``/mnt/huge``
* The userspace-io device files in ``/dev``, for example, ``/dev/uio0``, ``/dev/uio1``, and so on
* The userspace-io sysfs config and resource files, for example for ``uio0``::
/sys/class/uio/uio0/device/config
/sys/class/uio/uio0/device/resource*
* If the HPET is to be used, ``/dev/hpet``
.. note::
On some Linux installations, ``/dev/hugepages`` is also a hugepage mount point created by default.
Power Management and Power Saving Functionality
-----------------------------------------------
Enhanced Intel SpeedStep® Technology must be enabled in the platform BIOS if the power management feature of DPDK is to be used.
Otherwise, the sys file folder ``/sys/devices/system/cpu/cpu0/cpufreq`` will not exist, and the CPU frequency- based power management cannot be used.
Consult the relevant BIOS documentation to determine how these settings can be accessed.
For example, on some Intel reference platform BIOS variants, the path to Enhanced Intel SpeedStep® Technology is::
Advanced
-> Processor Configuration
-> Enhanced Intel SpeedStep® Tech
In addition, C3 and C6 should be enabled as well for power management. The path of C3 and C6 on the same platform BIOS is::
Advanced
-> Processor Configuration
-> Processor C3 Advanced
-> Processor Configuration
-> Processor C6
Using Linux Core Isolation to Reduce Context Switches
-----------------------------------------------------
While the threads used by an DPDK application are pinned to logical cores on the system,
it is possible for the Linux scheduler to run other tasks on those cores also.
To help prevent additional workloads from running on those cores,
it is possible to use the ``isolcpus`` Linux kernel parameter to isolate them from the general Linux scheduler.
For example, if DPDK applications are to run on logical cores 2, 4 and 6,
the following should be added to the kernel parameter list:
.. code-block:: console
isolcpus=2,4,6
Loading the DPDK KNI Kernel Module
----------------------------------
To run the DPDK Kernel NIC Interface (KNI) sample application, an extra kernel module (the kni module) must be loaded into the running kernel.
The module is found in the kmod sub-directory of the DPDK target directory.
Similar to the loading of the ``igb_uio`` module, this module should be loaded using the insmod command as shown below
(assuming that the current directory is the DPDK target directory):
.. code-block:: console
insmod kmod/rte_kni.ko
.. note::
See the "Kernel NIC Interface Sample Application" chapter in the *DPDK Sample Applications User Guide* for more details.
Using Linux IOMMU Pass-Through to Run DPDK with Intel® VT-d
-----------------------------------------------------------
To enable Intel® VT-d in a Linux kernel, a number of kernel configuration options must be set. These include:
* ``IOMMU_SUPPORT``
* ``IOMMU_API``
* ``INTEL_IOMMU``
In addition, to run the DPDK with Intel® VT-d, the ``iommu=pt`` kernel parameter must be used when using ``igb_uio`` driver.
This results in pass-through of the DMAR (DMA Remapping) lookup in the host.
Also, if ``INTEL_IOMMU_DEFAULT_ON`` is not set in the kernel, the ``intel_iommu=on`` kernel parameter must be used too.
This ensures that the Intel IOMMU is being initialized as expected.
Please note that while using ``iommu=pt`` is compulsory for ``igb_uio driver``, the ``vfio-pci`` driver can actually work with both ``iommu=pt`` and ``iommu=on``.
|