summaryrefslogtreecommitdiffstats
path: root/doc/guides/nics/mlx5.rst
blob: f9558da89b6126f98296ee6a0667b938d8df1927 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
..  BSD LICENSE
    Copyright 2015 6WIND S.A.
    Copyright 2015 Mellanox

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions
    are met:

    * Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in
    the documentation and/or other materials provided with the
    distribution.
    * Neither the name of 6WIND S.A. nor the names of its
    contributors may be used to endorse or promote products derived
    from this software without specific prior written permission.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

MLX5 poll mode driver
=====================

The MLX5 poll mode driver library (**librte_pmd_mlx5**) provides support
for **Mellanox ConnectX-4**, **Mellanox ConnectX-4 Lx** and **Mellanox
ConnectX-5** families of 10/25/40/50/100 Gb/s adapters as well as their
virtual functions (VF) in SR-IOV context.

Information and documentation about these adapters can be found on the
`Mellanox website <http://www.mellanox.com>`__. Help is also provided by the
`Mellanox community <http://community.mellanox.com/welcome>`__.

There is also a `section dedicated to this poll mode driver
<http://www.mellanox.com/page/products_dyn?product_family=209&mtag=pmd_for_dpdk>`__.

.. note::

   Due to external dependencies, this driver is disabled by default. It must
   be enabled manually by setting ``CONFIG_RTE_LIBRTE_MLX5_PMD=y`` and
   recompiling DPDK.

Implementation details
----------------------

Besides its dependency on libibverbs (that implies libmlx5 and associated
kernel support), librte_pmd_mlx5 relies heavily on system calls for control
operations such as querying/updating the MTU and flow control parameters.

For security reasons and robustness, this driver only deals with virtual
memory addresses. The way resources allocations are handled by the kernel
combined with hardware specifications that allow it to handle virtual memory
addresses directly ensure that DPDK applications cannot access random
physical memory (or memory that does not belong to the current process).

This capability allows the PMD to coexist with kernel network interfaces
which remain functional, although they stop receiving unicast packets as
long as they share the same MAC address.
This means legacy linux control tools (for example: ethtool, ifconfig and
more) can operate on the same network interfaces that owned by the DPDK
application.

Enabling librte_pmd_mlx5 causes DPDK applications to be linked against
libibverbs.

Features
--------

- Multi arch support: x86_64, POWER8, ARMv8.
- Multiple TX and RX queues.
- Support for scattered TX and RX frames.
- IPv4, IPv6, TCPv4, TCPv6, UDPv4 and UDPv6 RSS on any number of queues.
- Several RSS hash keys, one for each flow type.
- Configurable RETA table.
- Support for multiple MAC addresses.
- VLAN filtering.
- RX VLAN stripping.
- TX VLAN insertion.
- RX CRC stripping configuration.
- Promiscuous mode.
- Multicast promiscuous mode.
- Hardware checksum offloads.
- Flow director (RTE_FDIR_MODE_PERFECT, RTE_FDIR_MODE_PERFECT_MAC_VLAN and
  RTE_ETH_FDIR_REJECT).
- Flow API.
- Multiple process.
- KVM and VMware ESX SR-IOV modes are supported.
- RSS hash result is supported.
- Hardware TSO.
- Hardware checksum TX offload for VXLAN and GRE.
- RX interrupts.
- Statistics query including Basic, Extended and per queue.
- Rx HW timestamp.

Limitations
-----------

- Inner RSS for VXLAN frames is not supported yet.
- Port statistics through software counters only. Flow statistics are
  supported by hardware counters.
- Hardware checksum RX offloads for VXLAN inner header are not supported yet.
- Forked secondary process not supported.
- Flow pattern without any specific vlan will match for vlan packets as well:

  When VLAN spec is not specified in the pattern, the matching rule will be created with VLAN as a wild card.
  Meaning, the flow rule::

        flow create 0 ingress pattern eth / vlan vid is 3 / ipv4 / end ...

  Will only match vlan packets with vid=3. and the flow rules::

        flow create 0 ingress pattern eth / ipv4 / end ...

  Or::

        flow create 0 ingress pattern eth / vlan / ipv4 / end ...

  Will match any ipv4 packet (VLAN included).

- A multi segment packet must have less than 6 segments in case the Tx burst function
  is set to multi-packet send or Enhanced multi-packet send. Otherwise it must have
  less than 50 segments.
- Count action for RTE flow is only supported in Mellanox OFED 4.2.
- Flows with a VXLAN Network Identifier equal (or ends to be equal)
  to 0 are not supported.
- VXLAN TSO and checksum offloads are not supported on VM.

Configuration
-------------

Compilation options
~~~~~~~~~~~~~~~~~~~

These options can be modified in the ``.config`` file.

- ``CONFIG_RTE_LIBRTE_MLX5_PMD`` (default **n**)

  Toggle compilation of librte_pmd_mlx5 itself.

- ``CONFIG_RTE_LIBRTE_MLX5_DEBUG`` (default **n**)

  Toggle debugging code and stricter compilation flags. Enabling this option
  adds additional run-time checks and debugging messages at the cost of
  lower performance.

- ``CONFIG_RTE_LIBRTE_MLX5_TX_MP_CACHE`` (default **8**)

  Maximum number of cached memory pools (MPs) per TX queue. Each MP from
  which buffers are to be transmitted must be associated to memory regions
  (MRs). This is a slow operation that must be cached.

  This value is always 1 for RX queues since they use a single MP.

Environment variables
~~~~~~~~~~~~~~~~~~~~~

- ``MLX5_PMD_ENABLE_PADDING``

  Enables HW packet padding in PCI bus transactions.

  When packet size is cache aligned and CRC stripping is enabled, 4 fewer
  bytes are written to the PCI bus. Enabling padding makes such packets
  aligned again.

  In cases where PCI bandwidth is the bottleneck, padding can improve
  performance by 10%.

  This is disabled by default since this can also decrease performance for
  unaligned packet sizes.

- ``MLX5_SHUT_UP_BF``

  Configures HW Tx doorbell register as IO-mapped.

  By default, the HW Tx doorbell is configured as a write-combining register.
  The register would be flushed to HW usually when the write-combining buffer
  becomes full, but it depends on CPU design.

  Except for vectorized Tx burst routines, a write memory barrier is enforced
  after updating the register so that the update can be immediately visible to
  HW.

  When vectorized Tx burst is called, the barrier is set only if the burst size
  is not aligned to MLX5_VPMD_TX_MAX_BURST. However, setting this environmental
  variable will bring better latency even though the maximum throughput can
  slightly decline.

Run-time configuration
~~~~~~~~~~~~~~~~~~~~~~

- librte_pmd_mlx5 brings kernel network interfaces up during initialization
  because it is affected by their state. Forcing them down prevents packets
  reception.

- **ethtool** operations on related kernel interfaces also affect the PMD.

- ``rxq_cqe_comp_en`` parameter [int]

  A nonzero value enables the compression of CQE on RX side. This feature
  allows to save PCI bandwidth and improve performance. Enabled by default.

  Supported on:

  - x86_64 with ConnectX-4, ConnectX-4 LX and ConnectX-5.
  - POWER8 and ARMv8 with ConnectX-4 LX and ConnectX-5.

- ``txq_inline`` parameter [int]

  Amount of data to be inlined during TX operations. Improves latency.
  Can improve PPS performance when PCI back pressure is detected and may be
  useful for scenarios involving heavy traffic on many queues.

  Because additional software logic is necessary to handle this mode, this
  option should be used with care, as it can lower performance when back
  pressure is not expected.

- ``txqs_min_inline`` parameter [int]

  Enable inline send only when the number of TX queues is greater or equal
  to this value.

  This option should be used in combination with ``txq_inline`` above.

  On ConnectX-4, ConnectX-4 LX and ConnectX-5 without Enhanced MPW:

        - Disabled by default.
        - In case ``txq_inline`` is set recommendation is 4.

  On ConnectX-5 with Enhanced MPW:

        - Set to 8 by default.

- ``txq_mpw_en`` parameter [int]

  A nonzero value enables multi-packet send (MPS) for ConnectX-4 Lx and
  enhanced multi-packet send (Enhanced MPS) for ConnectX-5. MPS allows the
  TX burst function to pack up multiple packets in a single descriptor
  session in order to save PCI bandwidth and improve performance at the
  cost of a slightly higher CPU usage. When ``txq_inline`` is set along
  with ``txq_mpw_en``, TX burst function tries to copy entire packet data
  on to TX descriptor instead of including pointer of packet only if there
  is enough room remained in the descriptor. ``txq_inline`` sets
  per-descriptor space for either pointers or inlined packets. In addition,
  Enhanced MPS supports hybrid mode - mixing inlined packets and pointers
  in the same descriptor.

  This option cannot be used in conjunction with ``tso`` below. When ``tso``
  is set, ``txq_mpw_en`` is disabled.

  It is currently only supported on the ConnectX-4 Lx and ConnectX-5
  families of adapters. Enabled by default.

- ``txq_mpw_hdr_dseg_en`` parameter [int]

  A nonzero value enables including two pointers in the first block of TX
  descriptor. This can be used to lessen CPU load for memory copy.

  Effective only when Enhanced MPS is supported. Disabled by default.

- ``txq_max_inline_len`` parameter [int]

  Maximum size of packet to be inlined. This limits the size of packet to
  be inlined. If the size of a packet is larger than configured value, the
  packet isn't inlined even though there's enough space remained in the
  descriptor. Instead, the packet is included with pointer.

  Effective only when Enhanced MPS is supported. The default value is 256.

- ``tso`` parameter [int]

  A nonzero value enables hardware TSO.
  When hardware TSO is enabled, packets marked with TCP segmentation
  offload will be divided into segments by the hardware. Disabled by default.

- ``tx_vec_en`` parameter [int]

  A nonzero value enables Tx vector on ConnectX-5 only NIC if the number of
  global Tx queues on the port is lesser than MLX5_VPMD_MIN_TXQS.

  Enabled by default on ConnectX-5.

- ``rx_vec_en`` parameter [int]

  A nonzero value enables Rx vector if the port is not configured in
  multi-segment otherwise this parameter is ignored.

  Enabled by default.

Prerequisites
-------------

This driver relies on external libraries and kernel drivers for resources
allocations and initialization. The following dependencies are not part of
DPDK and must be installed separately:

- **libibverbs**

  User space Verbs framework used by librte_pmd_mlx5. This library provides
  a generic interface between the kernel and low-level user space drivers
  such as libmlx5.

  It allows slow and privileged operations (context initialization, hardware
  resources allocations) to be managed by the kernel and fast operations to
  never leave user space.

- **libmlx5**

  Low-level user space driver library for Mellanox ConnectX-4/ConnectX-5
  devices, it is automatically loaded by libibverbs.

  This library basically implements send/receive calls to the hardware
  queues.

- **Kernel modules**

  They provide the kernel-side Verbs API and low level device drivers that
  manage actual hardware initialization and resources sharing with user
  space processes.

  Unlike most other PMDs, these modules must remain loaded and bound to
  their devices:

  - mlx5_core: hardware driver managing Mellanox ConnectX-4/ConnectX-5
    devices and related Ethernet kernel network devices.
  - mlx5_ib: InifiniBand device driver.
  - ib_uverbs: user space driver for Verbs (entry point for libibverbs).

- **Firmware update**

  Mellanox OFED releases include firmware updates for ConnectX-4/ConnectX-5
  adapters.

  Because each release provides new features, these updates must be applied to
  match the kernel modules and libraries they come with.

.. note::

   Both libraries are BSD and GPL licensed. Linux kernel modules are GPL
   licensed.

Installation
~~~~~~~~~~~~

Either RDMA Core library with a recent enough Linux kernel release
(recommended) or Mellanox OFED, which provides compatibility with older
releases.

RMDA Core with Linux Kernel
^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Minimal kernel version : v4.14 or the most recent 4.14-rc (see `Linux installation documentation`_)
- Minimal rdma-core version: v15+ commit 0c5f5765213a ("Merge pull request #227 from yishaih/tm")
  (see `RDMA Core installation documentation`_)

.. _`Linux installation documentation`: https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git/plain/Documentation/admin-guide/README.rst
.. _`RDMA Core installation documentation`: https://raw.githubusercontent.com/linux-rdma/rdma-core/master/README.md

Mellanox OFED
^^^^^^^^^^^^^

- Mellanox OFED version: **4.2**.
- firmware version:

  - ConnectX-4: **12.21.1000** and above.
  - ConnectX-4 Lx: **14.21.1000** and above.
  - ConnectX-5: **16.21.1000** and above.
  - ConnectX-5 Ex: **16.21.1000** and above.

While these libraries and kernel modules are available on OpenFabrics
Alliance's `website <https://www.openfabrics.org/>`__ and provided by package
managers on most distributions, this PMD requires Ethernet extensions that
may not be supported at the moment (this is a work in progress).

`Mellanox OFED
<http://www.mellanox.com/page/products_dyn?product_family=26&mtag=linux>`__
includes the necessary support and should be used in the meantime. For DPDK,
only libibverbs, libmlx5, mlnx-ofed-kernel packages and firmware updates are
required from that distribution.

.. note::

   Several versions of Mellanox OFED are available. Installing the version
   this DPDK release was developed and tested against is strongly
   recommended. Please check the `prerequisites`_.

Supported NICs
--------------

* Mellanox(R) ConnectX(R)-4 10G MCX4111A-XCAT (1x10G)
* Mellanox(R) ConnectX(R)-4 10G MCX4121A-XCAT (2x10G)
* Mellanox(R) ConnectX(R)-4 25G MCX4111A-ACAT (1x25G)
* Mellanox(R) ConnectX(R)-4 25G MCX4121A-ACAT (2x25G)
* Mellanox(R) ConnectX(R)-4 40G MCX4131A-BCAT (1x40G)
* Mellanox(R) ConnectX(R)-4 40G MCX413A-BCAT (1x40G)
* Mellanox(R) ConnectX(R)-4 40G MCX415A-BCAT (1x40G)
* Mellanox(R) ConnectX(R)-4 50G MCX4131A-GCAT (1x50G)
* Mellanox(R) ConnectX(R)-4 50G MCX413A-GCAT (1x50G)
* Mellanox(R) ConnectX(R)-4 50G MCX414A-BCAT (2x50G)
* Mellanox(R) ConnectX(R)-4 50G MCX415A-GCAT (2x50G)
* Mellanox(R) ConnectX(R)-4 50G MCX416A-BCAT (2x50G)
* Mellanox(R) ConnectX(R)-4 50G MCX416A-GCAT (2x50G)
* Mellanox(R) ConnectX(R)-4 50G MCX415A-CCAT (1x100G)
* Mellanox(R) ConnectX(R)-4 100G MCX416A-CCAT (2x100G)
* Mellanox(R) ConnectX(R)-4 Lx 10G MCX4121A-XCAT (2x10G)
* Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)
* Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)
* Mellanox(R) ConnectX(R)-5 Ex EN 100G MCX516A-CDAT (2x100G)

Quick Start Guide on OFED
-------------------------

1. Download latest Mellanox OFED. For more info check the  `prerequisites`_.


2. Install the required libraries and kernel modules either by installing
   only the required set, or by installing the entire Mellanox OFED:

   .. code-block:: console

        ./mlnxofedinstall --upstream-libs --dpdk

3. Verify the firmware is the correct one:

   .. code-block:: console

        ibv_devinfo

4. Verify all ports links are set to Ethernet:

   .. code-block:: console

        mlxconfig -d <mst device> query | grep LINK_TYPE
        LINK_TYPE_P1                        ETH(2)
        LINK_TYPE_P2                        ETH(2)

   Link types may have to be configured to Ethernet:

   .. code-block:: console

        mlxconfig -d <mst device> set LINK_TYPE_P1/2=1/2/3

        * LINK_TYPE_P1=<1|2|3> , 1=Infiniband 2=Ethernet 3=VPI(auto-sense)

   For hypervisors verify SR-IOV is enabled on the NIC:

   .. code-block:: console

        mlxconfig -d <mst device> query | grep SRIOV_EN
        SRIOV_EN                            True(1)

   If needed, set enable the set the relevant fields:

   .. code-block:: console

        mlxconfig -d <mst device> set SRIOV_EN=1 NUM_OF_VFS=16
        mlxfwreset -d <mst device> reset

5. Restart the driver:

   .. code-block:: console

        /etc/init.d/openibd restart

   or:

   .. code-block:: console

        service openibd restart

   If link type was changed, firmware must be reset as well:

   .. code-block:: console

        mlxfwreset -d <mst device> reset

   For hypervisors, after reset write the sysfs number of virtual functions
   needed for the PF.

   To dynamically instantiate a given number of virtual functions (VFs):

   .. code-block:: console

        echo [num_vfs] > /sys/class/infiniband/mlx5_0/device/sriov_numvfs

6. Compile DPDK and you are ready to go. See instructions on
   :ref:`Development Kit Build System <Development_Kit_Build_System>`

Performance tuning
------------------

1. Configure aggressive CQE Zipping for maximum performance:

  .. code-block:: console

        mlxconfig -d <mst device> s CQE_COMPRESSION=1

  To set it back to the default CQE Zipping mode use:

  .. code-block:: console

        mlxconfig -d <mst device> s CQE_COMPRESSION=0

2. In case of virtualization:

   - Make sure that hypervisor kernel is 3.16 or newer.
   - Configure boot with ``iommu=pt``.
   - Use 1G huge pages.
   - Make sure to allocate a VM on huge pages.
   - Make sure to set CPU pinning.

3. Use the CPU near local NUMA node to which the PCIe adapter is connected,
   for better performance. For VMs, verify that the right CPU
   and NUMA node are pinned according to the above. Run:

   .. code-block:: console

        lstopo-no-graphics

   to identify the NUMA node to which the PCIe adapter is connected.

4. If more than one adapter is used, and root complex capabilities allow
   to put both adapters on the same NUMA node without PCI bandwidth degradation,
   it is recommended to locate both adapters on the same NUMA node.
   This in order to forward packets from one to the other without
   NUMA performance penalty.

5. Disable pause frames:

   .. code-block:: console

        ethtool -A <netdev> rx off tx off

6. Verify IO non-posted prefetch is disabled by default. This can be checked
   via the BIOS configuration. Please contact you server provider for more
   information about the settings.

.. note::

        On some machines, depends on the machine integrator, it is beneficial
        to set the PCI max read request parameter to 1K. This can be
        done in the following way:

        To query the read request size use:

        .. code-block:: console

                setpci -s <NIC PCI address> 68.w

        If the output is different than 3XXX, set it by:

        .. code-block:: console

                setpci -s <NIC PCI address> 68.w=3XXX

        The XXX can be different on different systems. Make sure to configure
        according to the setpci output.

Notes for testpmd
-----------------

Compared to librte_pmd_mlx4 that implements a single RSS configuration per
port, librte_pmd_mlx5 supports per-protocol RSS configuration.

Since ``testpmd`` defaults to IP RSS mode and there is currently no
command-line parameter to enable additional protocols (UDP and TCP as well
as IP), the following commands must be entered from its CLI to get the same
behavior as librte_pmd_mlx4:

.. code-block:: console

   > port stop all
   > port config all rss all
   > port start all

Usage example
-------------

This section demonstrates how to launch **testpmd** with Mellanox
ConnectX-4/ConnectX-5 devices managed by librte_pmd_mlx5.

#. Load the kernel modules:

   .. code-block:: console

      modprobe -a ib_uverbs mlx5_core mlx5_ib

   Alternatively if MLNX_OFED is fully installed, the following script can
   be run:

   .. code-block:: console

      /etc/init.d/openibd restart

   .. note::

      User space I/O kernel modules (uio and igb_uio) are not used and do
      not have to be loaded.

#. Make sure Ethernet interfaces are in working order and linked to kernel
   verbs. Related sysfs entries should be present:

   .. code-block:: console

      ls -d /sys/class/net/*/device/infiniband_verbs/uverbs* | cut -d / -f 5

   Example output:

   .. code-block:: console

      eth30
      eth31
      eth32
      eth33

#. Optionally, retrieve their PCI bus addresses for whitelisting:

   .. code-block:: console

      {
          for intf in eth2 eth3 eth4 eth5;
          do
              (cd "/sys/class/net/${intf}/device/" && pwd -P);
          done;
      } |
      sed -n 's,.*/\(.*\),-w \1,p'

   Example output:

   .. code-block:: console

      -w 0000:05:00.1
      -w 0000:06:00.0
      -w 0000:06:00.1
      -w 0000:05:00.0

#. Request huge pages:

   .. code-block:: console

      echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages/nr_hugepages

#. Start testpmd with basic parameters:

   .. code-block:: console

      testpmd -l 8-15 -n 4 -w 05:00.0 -w 05:00.1 -w 06:00.0 -w 06:00.1 -- --rxq=2 --txq=2 -i

   Example output:

   .. code-block:: console

      [...]
      EAL: PCI device 0000:05:00.0 on NUMA socket 0
      EAL:   probe driver: 15b3:1013 librte_pmd_mlx5
      PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_0" (VF: false)
      PMD: librte_pmd_mlx5: 1 port(s) detected
      PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fe
      EAL: PCI device 0000:05:00.1 on NUMA socket 0
      EAL:   probe driver: 15b3:1013 librte_pmd_mlx5
      PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_1" (VF: false)
      PMD: librte_pmd_mlx5: 1 port(s) detected
      PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:ff
      EAL: PCI device 0000:06:00.0 on NUMA socket 0
      EAL:   probe driver: 15b3:1013 librte_pmd_mlx5
      PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_2" (VF: false)
      PMD: librte_pmd_mlx5: 1 port(s) detected
      PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fa
      EAL: PCI device 0000:06:00.1 on NUMA socket 0
      EAL:   probe driver: 15b3:1013 librte_pmd_mlx5
      PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_3" (VF: false)
      PMD: librte_pmd_mlx5: 1 port(s) detected
      PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fb
      Interactive-mode selected
      Configuring Port 0 (socket 0)
      PMD: librte_pmd_mlx5: 0x8cba80: TX queues number update: 0 -> 2
      PMD: librte_pmd_mlx5: 0x8cba80: RX queues number update: 0 -> 2
      Port 0: E4:1D:2D:E7:0C:FE
      Configuring Port 1 (socket 0)
      PMD: librte_pmd_mlx5: 0x8ccac8: TX queues number update: 0 -> 2
      PMD: librte_pmd_mlx5: 0x8ccac8: RX queues number update: 0 -> 2
      Port 1: E4:1D:2D:E7:0C:FF
      Configuring Port 2 (socket 0)
      PMD: librte_pmd_mlx5: 0x8cdb10: TX queues number update: 0 -> 2
      PMD: librte_pmd_mlx5: 0x8cdb10: RX queues number update: 0 -> 2
      Port 2: E4:1D:2D:E7:0C:FA
      Configuring Port 3 (socket 0)
      PMD: librte_pmd_mlx5: 0x8ceb58: TX queues number update: 0 -> 2
      PMD: librte_pmd_mlx5: 0x8ceb58: RX queues number update: 0 -> 2
      Port 3: E4:1D:2D:E7:0C:FB
      Checking link statuses...
      Port 0 Link Up - speed 40000 Mbps - full-duplex
      Port 1 Link Up - speed 40000 Mbps - full-duplex
      Port 2 Link Up - speed 10000 Mbps - full-duplex
      Port 3 Link Up - speed 10000 Mbps - full-duplex
      Done
      testpmd>