1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
.. BSD LICENSE
Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Vhost Library
=============
The vhost library implements a user space virtio net server allowing the user
to manipulate the virtio ring directly. In another words, it allows the user
to fetch/put packets from/to the VM virtio net device. To achieve this, a
vhost library should be able to:
* Access the guest memory:
For QEMU, this is done by using the ``-object memory-backend-file,share=on,...``
option. Which means QEMU will create a file to serve as the guest RAM.
The ``share=on`` option allows another process to map that file, which
means it can access the guest RAM.
* Know all the necessary information about the vring:
Information such as where the available ring is stored. Vhost defines some
messages (passed through a Unix domain socket file) to tell the backend all
the information it needs to know how to manipulate the vring.
Vhost API Overview
------------------
The following is an overview of the Vhost API functions:
* ``rte_vhost_driver_register(path, flags)``
This function registers a vhost driver into the system. ``path`` specifies
the Unix domain socket file path.
Currently supported flags are:
- ``RTE_VHOST_USER_CLIENT``
DPDK vhost-user will act as the client when this flag is given. See below
for an explanation.
- ``RTE_VHOST_USER_NO_RECONNECT``
When DPDK vhost-user acts as the client it will keep trying to reconnect
to the server (QEMU) until it succeeds. This is useful in two cases:
* When QEMU is not started yet.
* When QEMU restarts (for example due to a guest OS reboot).
This reconnect option is enabled by default. However, it can be turned off
by setting this flag.
- ``RTE_VHOST_USER_DEQUEUE_ZERO_COPY``
Dequeue zero copy will be enabled when this flag is set. It is disabled by
default.
There are some truths (including limitations) you might want to know while
setting this flag:
* zero copy is not good for small packets (typically for packet size below
512).
* zero copy is really good for VM2VM case. For iperf between two VMs, the
boost could be above 70% (when TSO is enableld).
* for VM2NIC case, the ``nb_tx_desc`` has to be small enough: <= 64 if virtio
indirect feature is not enabled and <= 128 if it is enabled.
The is because when dequeue zero copy is enabled, guest Tx used vring will
be updated only when corresponding mbuf is freed. Thus, the nb_tx_desc
has to be small enough so that the PMD driver will run out of available
Tx descriptors and free mbufs timely. Otherwise, guest Tx vring would be
starved.
* Guest memory should be backended with huge pages to achieve better
performance. Using 1G page size is the best.
When dequeue zero copy is enabled, the guest phys address and host phys
address mapping has to be established. Using non-huge pages means far
more page segments. To make it simple, DPDK vhost does a linear search
of those segments, thus the fewer the segments, the quicker we will get
the mapping. NOTE: we may speed it by using tree searching in future.
* ``rte_vhost_driver_session_start()``
This function starts the vhost session loop to handle vhost messages. It
starts an infinite loop, therefore it should be called in a dedicated
thread.
* ``rte_vhost_driver_callback_register(virtio_net_device_ops)``
This function registers a set of callbacks, to let DPDK applications take
the appropriate action when some events happen. The following events are
currently supported:
* ``new_device(int vid)``
This callback is invoked when a virtio net device becomes ready. ``vid``
is the virtio net device ID.
* ``destroy_device(int vid)``
This callback is invoked when a virtio net device shuts down (or when the
vhost connection is broken).
* ``vring_state_changed(int vid, uint16_t queue_id, int enable)``
This callback is invoked when a specific queue's state is changed, for
example to enabled or disabled.
* ``rte_vhost_enqueue_burst(vid, queue_id, pkts, count)``
Transmits (enqueues) ``count`` packets from host to guest.
* ``rte_vhost_dequeue_burst(vid, queue_id, mbuf_pool, pkts, count)``
Receives (dequeues) ``count`` packets from guest, and stored them at ``pkts``.
* ``rte_vhost_feature_disable/rte_vhost_feature_enable(feature_mask)``
This function disables/enables some features. For example, it can be used to
disable mergeable buffers and TSO features, which both are enabled by
default.
Vhost-user Implementations
--------------------------
Vhost-user uses Unix domain sockets for passing messages. This means the DPDK
vhost-user implementation has two options:
* DPDK vhost-user acts as the server.
DPDK will create a Unix domain socket server file and listen for
connections from the frontend.
Note, this is the default mode, and the only mode before DPDK v16.07.
* DPDK vhost-user acts as the client.
Unlike the server mode, this mode doesn't create the socket file;
it just tries to connect to the server (which responses to create the
file instead).
When the DPDK vhost-user application restarts, DPDK vhost-user will try to
connect to the server again. This is how the "reconnect" feature works.
.. Note::
* The "reconnect" feature requires **QEMU v2.7** (or above).
* The vhost supported features must be exactly the same before and
after the restart. For example, if TSO is disabled and then enabled,
nothing will work and issues undefined might happen.
No matter which mode is used, once a connection is established, DPDK
vhost-user will start receiving and processing vhost messages from QEMU.
For messages with a file descriptor, the file descriptor can be used directly
in the vhost process as it is already installed by the Unix domain socket.
The supported vhost messages are:
* ``VHOST_SET_MEM_TABLE``
* ``VHOST_SET_VRING_KICK``
* ``VHOST_SET_VRING_CALL``
* ``VHOST_SET_LOG_FD``
* ``VHOST_SET_VRING_ERR``
For ``VHOST_SET_MEM_TABLE`` message, QEMU will send information for each
memory region and its file descriptor in the ancillary data of the message.
The file descriptor is used to map that region.
``VHOST_SET_VRING_KICK`` is used as the signal to put the vhost device into
the data plane, and ``VHOST_GET_VRING_BASE`` is used as the signal to remove
the vhost device from the data plane.
When the socket connection is closed, vhost will destroy the device.
Vhost supported vSwitch reference
---------------------------------
For more vhost details and how to support vhost in vSwitch, please refer to
the vhost example in the DPDK Sample Applications Guide.
|