aboutsummaryrefslogtreecommitdiffstats
path: root/doc/guides/sample_app_ug/flow_classify.rst
blob: 524747741b9a9bea546238b1c2df61adc2cbb6e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
..  SPDX-License-Identifier: BSD-3-Clause
    Copyright(c) 2017 Intel Corporation.

Flow Classify Sample Application
================================

The Flow Classify sample application is based on the simple *skeleton* example
of a forwarding application.

It is intended as a demonstration of the basic components of a DPDK forwarding
application which uses the Flow Classify library API's.

Please refer to the
:doc:`../prog_guide/flow_classify_lib`
for more information.

Compiling the Application
-------------------------

To compile the sample application see :doc:`compiling`.

The application is located in the ``flow_classify`` sub-directory.

Running the Application
-----------------------

To run the example in a ``linuxapp`` environment:

.. code-block:: console

    cd ~/dpdk/examples/flow_classify
    ./build/flow_classify -c 4 -n 4 -- --rule_ipv4="../ipv4_rules_file.txt"

Please refer to the *DPDK Getting Started Guide*, section
:doc:`../linux_gsg/build_sample_apps`
for general information on running applications and the Environment Abstraction
Layer (EAL) options.


Sample ipv4_rules_file.txt
--------------------------

.. code-block:: console

    #file format:
    #src_ip/masklen dst_ip/masklen src_port : mask dst_port : mask proto/mask priority
    #
    2.2.2.3/24 2.2.2.7/24 32 : 0xffff 33 : 0xffff 17/0xff 0
    9.9.9.3/24 9.9.9.7/24 32 : 0xffff 33 : 0xffff 17/0xff 1
    9.9.9.3/24 9.9.9.7/24 32 : 0xffff 33 : 0xffff 6/0xff 2
    9.9.8.3/24 9.9.8.7/24 32 : 0xffff 33 : 0xffff 6/0xff 3
    6.7.8.9/24 2.3.4.5/24 32 : 0x0000 33 : 0x0000 132/0xff 4

Explanation
-----------

The following sections provide an explanation of the main components of the
code.

All DPDK library functions used in the sample code are prefixed with ``rte_``
and are explained in detail in the *DPDK API Documentation*.

ACL field definitions for the IPv4 5 tuple rule
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The following field definitions are used when creating the ACL table during
initialisation of the ``Flow Classify`` application..

.. code-block:: c

     enum {
         PROTO_FIELD_IPV4,
         SRC_FIELD_IPV4,
         DST_FIELD_IPV4,
         SRCP_FIELD_IPV4,
         DSTP_FIELD_IPV4,
         NUM_FIELDS_IPV4
    };

    enum {
        PROTO_INPUT_IPV4,
        SRC_INPUT_IPV4,
        DST_INPUT_IPV4,
        SRCP_DESTP_INPUT_IPV4
    };

    static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
        /* first input field - always one byte long. */
        {
            .type = RTE_ACL_FIELD_TYPE_BITMASK,
            .size = sizeof(uint8_t),
            .field_index = PROTO_FIELD_IPV4,
            .input_index = PROTO_INPUT_IPV4,
            .offset = sizeof(struct ether_hdr) +
                offsetof(struct ipv4_hdr, next_proto_id),
        },
        /* next input field (IPv4 source address) - 4 consecutive bytes. */
        {
            /* rte_flow uses a bit mask for IPv4 addresses */
            .type = RTE_ACL_FIELD_TYPE_BITMASK,
            .size = sizeof(uint32_t),
            .field_index = SRC_FIELD_IPV4,
            .input_index = SRC_INPUT_IPV4,
            .offset = sizeof(struct ether_hdr) +
                offsetof(struct ipv4_hdr, src_addr),
        },
        /* next input field (IPv4 destination address) - 4 consecutive bytes. */
        {
            /* rte_flow uses a bit mask for IPv4 addresses */
            .type = RTE_ACL_FIELD_TYPE_BITMASK,
            .size = sizeof(uint32_t),
            .field_index = DST_FIELD_IPV4,
            .input_index = DST_INPUT_IPV4,
            .offset = sizeof(struct ether_hdr) +
                offsetof(struct ipv4_hdr, dst_addr),
        },
        /*
         * Next 2 fields (src & dst ports) form 4 consecutive bytes.
         * They share the same input index.
         */
	{
            /* rte_flow uses a bit mask for protocol ports */
            .type = RTE_ACL_FIELD_TYPE_BITMASK,
            .size = sizeof(uint16_t),
            .field_index = SRCP_FIELD_IPV4,
            .input_index = SRCP_DESTP_INPUT_IPV4,
            .offset = sizeof(struct ether_hdr) +
                sizeof(struct ipv4_hdr) +
                offsetof(struct tcp_hdr, src_port),
        },
        {
             /* rte_flow uses a bit mask for protocol ports */
             .type = RTE_ACL_FIELD_TYPE_BITMASK,
             .size = sizeof(uint16_t),
             .field_index = DSTP_FIELD_IPV4,
             .input_index = SRCP_DESTP_INPUT_IPV4,
             .offset = sizeof(struct ether_hdr) +
                 sizeof(struct ipv4_hdr) +
                 offsetof(struct tcp_hdr, dst_port),
        },
    };

The Main Function
~~~~~~~~~~~~~~~~~

The ``main()`` function performs the initialization and calls the execution
threads for each lcore.

The first task is to initialize the Environment Abstraction Layer (EAL).
The ``argc`` and ``argv`` arguments are provided to the ``rte_eal_init()``
function. The value returned is the number of parsed arguments:

.. code-block:: c

    int ret = rte_eal_init(argc, argv);
    if (ret < 0)
        rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");

It then parses the flow_classify application arguments

.. code-block:: c

    ret = parse_args(argc, argv);
    if (ret < 0)
        rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n");

The ``main()`` function also allocates a mempool to hold the mbufs
(Message Buffers) used by the application:

.. code-block:: c

    mbuf_pool = rte_mempool_create("MBUF_POOL",
                                   NUM_MBUFS * nb_ports,
                                   MBUF_SIZE,
                                   MBUF_CACHE_SIZE,
                                   sizeof(struct rte_pktmbuf_pool_private),
                                   rte_pktmbuf_pool_init, NULL,
                                   rte_pktmbuf_init, NULL,
                                   rte_socket_id(),
                                   0);

mbufs are the packet buffer structure used by DPDK. They are explained in
detail in the "Mbuf Library" section of the *DPDK Programmer's Guide*.

The ``main()`` function also initializes all the ports using the user defined
``port_init()`` function which is explained in the next section:

.. code-block:: c

    for (portid = 0; portid < nb_ports; portid++) {
        if (port_init(portid, mbuf_pool) != 0) {
            rte_exit(EXIT_FAILURE,
                     "Cannot init port %" PRIu8 "\n", portid);
        }
    }

The ``main()`` function creates the ``flow classifier object`` and adds an ``ACL
table`` to the flow classifier.

.. code-block:: c

    struct flow_classifier {
        struct rte_flow_classifier *cls;
    };

    struct flow_classifier_acl {
        struct flow_classifier cls;
    } __rte_cache_aligned;

    /* Memory allocation */
    size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl));
    cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE);
    if (cls_app == NULL)
        rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n");

    cls_params.name = "flow_classifier";
    cls_params.socket_id = socket_id;

    cls_app->cls = rte_flow_classifier_create(&cls_params);
    if (cls_app->cls == NULL) {
        rte_free(cls_app);
        rte_exit(EXIT_FAILURE, "Cannot create classifier\n");
    }

    /* initialise ACL table params */
    table_acl_params.name = "table_acl_ipv4_5tuple";
    table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs);
    table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM;
    memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs));

    /* initialise table create params */
    cls_table_params.ops = &rte_table_acl_ops,
    cls_table_params.arg_create = &table_acl_params,
    cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE;

    ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params);
    if (ret) {
        rte_flow_classifier_free(cls_app->cls);
        rte_free(cls);
        rte_exit(EXIT_FAILURE, "Failed to create classifier table\n");
    }

It then reads the ipv4_rules_file.txt file and initialises the parameters for
the ``rte_flow_classify_table_entry_add`` API.
This API adds a rule to the ACL table.

.. code-block:: c

    if (add_rules(parm_config.rule_ipv4_name)) {
        rte_flow_classifier_free(cls_app->cls);
        rte_free(cls_app);
        rte_exit(EXIT_FAILURE, "Failed to add rules\n");
    }

Once the initialization is complete, the application is ready to launch a
function on an lcore. In this example ``lcore_main()`` is called on a single
lcore.

.. code-block:: c

    lcore_main(cls_app);

The ``lcore_main()`` function is explained below.

The Port Initialization  Function
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The main functional part of the port initialization used in the Basic
Forwarding application is shown below:

.. code-block:: c

    static inline int
    port_init(uint8_t port, struct rte_mempool *mbuf_pool)
    {
        struct rte_eth_conf port_conf = port_conf_default;
        const uint16_t rx_rings = 1, tx_rings = 1;
        struct ether_addr addr;
        int retval;
        uint16_t q;

        if (port >= rte_eth_dev_count())
            return -1;

        /* Configure the Ethernet device. */
        retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
        if (retval != 0)
            return retval;

        /* Allocate and set up 1 RX queue per Ethernet port. */
        for (q = 0; q < rx_rings; q++) {
            retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
                    rte_eth_dev_socket_id(port), NULL, mbuf_pool);
            if (retval < 0)
                return retval;
        }

        /* Allocate and set up 1 TX queue per Ethernet port. */
        for (q = 0; q < tx_rings; q++) {
            retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
                    rte_eth_dev_socket_id(port), NULL);
            if (retval < 0)
                return retval;
        }

        /* Start the Ethernet port. */
        retval = rte_eth_dev_start(port);
        if (retval < 0)
            return retval;

        /* Display the port MAC address. */
        rte_eth_macaddr_get(port, &addr);
        printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
               " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
               port,
               addr.addr_bytes[0], addr.addr_bytes[1],
               addr.addr_bytes[2], addr.addr_bytes[3],
               addr.addr_bytes[4], addr.addr_bytes[5]);

        /* Enable RX in promiscuous mode for the Ethernet device. */
        rte_eth_promiscuous_enable(port);

        return 0;
    }

The Ethernet ports are configured with default settings using the
``rte_eth_dev_configure()`` function and the ``port_conf_default`` struct.

.. code-block:: c

    static const struct rte_eth_conf port_conf_default = {
        .rxmode = { .max_rx_pkt_len = ETHER_MAX_LEN }
    };

For this example the ports are set up with 1 RX and 1 TX queue using the
``rte_eth_rx_queue_setup()`` and ``rte_eth_tx_queue_setup()`` functions.

The Ethernet port is then started:

.. code-block:: c

    retval  = rte_eth_dev_start(port);


Finally the RX port is set in promiscuous mode:

.. code-block:: c

    rte_eth_promiscuous_enable(port);

The Add Rules function
~~~~~~~~~~~~~~~~~~~~~~

The ``add_rules`` function reads the ``ipv4_rules_file.txt`` file and calls the
``add_classify_rule`` function which calls the
``rte_flow_classify_table_entry_add`` API.

.. code-block:: c

    static int
    add_rules(const char *rule_path)
    {
        FILE *fh;
        char buff[LINE_MAX];
        unsigned int i = 0;
        unsigned int total_num = 0;
        struct rte_eth_ntuple_filter ntuple_filter;

        fh = fopen(rule_path, "rb");
        if (fh == NULL)
            rte_exit(EXIT_FAILURE, "%s: Open %s failed\n", __func__,
                     rule_path);

        fseek(fh, 0, SEEK_SET);

        i = 0;
        while (fgets(buff, LINE_MAX, fh) != NULL) {
            i++;

            if (is_bypass_line(buff))
                continue;

            if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) {
                printf("\nINFO: classify rule capacity %d reached\n",
                       total_num);
                break;
            }

            if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0)
                rte_exit(EXIT_FAILURE,
                         "%s Line %u: parse rules error\n",
                         rule_path, i);

            if (add_classify_rule(&ntuple_filter) != 0)
                rte_exit(EXIT_FAILURE, "add rule error\n");

            total_num++;
	}

	fclose(fh);
	return 0;
    }


The Lcore Main function
~~~~~~~~~~~~~~~~~~~~~~~

As we saw above the ``main()`` function calls an application function on the
available lcores.
The ``lcore_main`` function calls the ``rte_flow_classifier_query`` API.
For the Basic Forwarding application the ``lcore_main`` function looks like the
following:

.. code-block:: c

    /* flow classify data */
    static int num_classify_rules;
    static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY];
    static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats;
    static struct rte_flow_classify_stats classify_stats = {
            .stats = (void *)&ntuple_stats
    };

    static __attribute__((noreturn)) void
    lcore_main(cls_app)
    {
        const uint8_t nb_ports = rte_eth_dev_count();
        uint8_t port;

        /*
         * Check that the port is on the same NUMA node as the polling thread
         * for best performance.
         */
        for (port = 0; port < nb_ports; port++)
            if (rte_eth_dev_socket_id(port) > 0 &&
                rte_eth_dev_socket_id(port) != (int)rte_socket_id()) {
                printf("\n\n");
                printf("WARNING: port %u is on remote NUMA node\n",
                       port);
                printf("to polling thread.\n");
                printf("Performance will not be optimal.\n");

                printf("\nCore %u forwarding packets. \n",
                       rte_lcore_id());
                printf("[Ctrl+C to quit]\n
            }

        /* Run until the application is quit or killed. */
        for (;;) {
            /*
             * Receive packets on a port and forward them on the paired
             * port. The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
             */
            for (port = 0; port < nb_ports; port++) {

                /* Get burst of RX packets, from first port of pair. */
                struct rte_mbuf *bufs[BURST_SIZE];
                const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
                        bufs, BURST_SIZE);

                if (unlikely(nb_rx == 0))
                    continue;

                for (i = 0; i < MAX_NUM_CLASSIFY; i++) {
                    if (rules[i]) {
                        ret = rte_flow_classifier_query(
                            cls_app->cls,
                            bufs, nb_rx, rules[i],
                            &classify_stats);
                        if (ret)
                            printf(
                                "rule [%d] query failed ret [%d]\n\n",
                                i, ret);
                        else {
                            printf(
                                "rule[%d] count=%"PRIu64"\n",
                                i, ntuple_stats.counter1);

                            printf("proto = %d\n",
                                ntuple_stats.ipv4_5tuple.proto);
                        }
                     }
                 }

                /* Send burst of TX packets, to second port of pair. */
                const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
                        bufs, nb_rx);

                /* Free any unsent packets. */
                if (unlikely(nb_tx < nb_rx)) {
                    uint16_t buf;
                    for (buf = nb_tx; buf < nb_rx; buf++)
                        rte_pktmbuf_free(bufs[buf]);
                }
            }
        }
    }

The main work of the application is done within the loop:

.. code-block:: c

        for (;;) {
            for (port = 0; port < nb_ports; port++) {

                /* Get burst of RX packets, from first port of pair. */
                struct rte_mbuf *bufs[BURST_SIZE];
                const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
                        bufs, BURST_SIZE);

                if (unlikely(nb_rx == 0))
                    continue;

                /* Send burst of TX packets, to second port of pair. */
                const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
                        bufs, nb_rx);

                /* Free any unsent packets. */
                if (unlikely(nb_tx < nb_rx)) {
                    uint16_t buf;
                    for (buf = nb_tx; buf < nb_rx; buf++)
                        rte_pktmbuf_free(bufs[buf]);
                }
            }
        }

Packets are received in bursts on the RX ports and transmitted in bursts on
the TX ports. The ports are grouped in pairs with a simple mapping scheme
using the an XOR on the port number::

    0 -> 1
    1 -> 0

    2 -> 3
    3 -> 2

    etc.

The ``rte_eth_tx_burst()`` function frees the memory buffers of packets that
are transmitted. If packets fail to transmit, ``(nb_tx < nb_rx)``, then they
must be freed explicitly using ``rte_pktmbuf_free()``.

The forwarding loop can be interrupted and the application closed using
``Ctrl-C``.