aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/bbdev/turbo_sw/bbdev_turbo_software.c
blob: 302abf5c8776978736badb3018507d3a63c3f34c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2017 Intel Corporation
 */

#include <string.h>

#include <rte_common.h>
#include <rte_bus_vdev.h>
#include <rte_malloc.h>
#include <rte_ring.h>
#include <rte_kvargs.h>

#include <rte_bbdev.h>
#include <rte_bbdev_pmd.h>

#include <phy_turbo.h>
#include <phy_crc.h>
#include <phy_rate_match.h>
#include <divide.h>

#define DRIVER_NAME turbo_sw

/* Turbo SW PMD logging ID */
static int bbdev_turbo_sw_logtype;

/* Helper macro for logging */
#define rte_bbdev_log(level, fmt, ...) \
	rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \
		##__VA_ARGS__)

#define rte_bbdev_log_debug(fmt, ...) \
	rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
		##__VA_ARGS__)

/* Number of columns in sub-block interleaver (36.212, section 5.1.4.1.1) */
#define C_SUBBLOCK (32)
#define MAX_TB_SIZE (391656)
#define MAX_CB_SIZE (6144)
#define MAX_KW (18528)

/* private data structure */
struct bbdev_private {
	unsigned int max_nb_queues;  /**< Max number of queues */
};

/*  Initialisation params structure that can be used by Turbo SW driver */
struct turbo_sw_params {
	int socket_id;  /*< Turbo SW device socket */
	uint16_t queues_num;  /*< Turbo SW device queues number */
};

/* Accecptable params for Turbo SW devices */
#define TURBO_SW_MAX_NB_QUEUES_ARG  "max_nb_queues"
#define TURBO_SW_SOCKET_ID_ARG      "socket_id"

static const char * const turbo_sw_valid_params[] = {
	TURBO_SW_MAX_NB_QUEUES_ARG,
	TURBO_SW_SOCKET_ID_ARG
};

/* queue */
struct turbo_sw_queue {
	/* Ring for processed (encoded/decoded) operations which are ready to
	 * be dequeued.
	 */
	struct rte_ring *processed_pkts;
	/* Stores input for turbo encoder (used when CRC attachment is
	 * performed
	 */
	uint8_t *enc_in;
	/* Stores output from turbo encoder */
	uint8_t *enc_out;
	/* Alpha gamma buf for bblib_turbo_decoder() function */
	int8_t *ag;
	/* Temp buf for bblib_turbo_decoder() function */
	uint16_t *code_block;
	/* Input buf for bblib_rate_dematching_lte() function */
	uint8_t *deint_input;
	/* Output buf for bblib_rate_dematching_lte() function */
	uint8_t *deint_output;
	/* Output buf for bblib_turbodec_adapter_lte() function */
	uint8_t *adapter_output;
	/* Operation type of this queue */
	enum rte_bbdev_op_type type;
} __rte_cache_aligned;

/* Calculate index based on Table 5.1.3-3 from TS34.212 */
static inline int32_t
compute_idx(uint16_t k)
{
	int32_t result = 0;

	if (k < 40 || k > MAX_CB_SIZE)
		return -1;

	if (k > 2048) {
		if ((k - 2048) % 64 != 0)
			result = -1;

		result = 124 + (k - 2048) / 64;
	} else if (k <= 512) {
		if ((k - 40) % 8 != 0)
			result = -1;

		result = (k - 40) / 8 + 1;
	} else if (k <= 1024) {
		if ((k - 512) % 16 != 0)
			result = -1;

		result = 60 + (k - 512) / 16;
	} else { /* 1024 < k <= 2048 */
		if ((k - 1024) % 32 != 0)
			result = -1;

		result = 92 + (k - 1024) / 32;
	}

	return result;
}

/* Read flag value 0/1 from bitmap */
static inline bool
check_bit(uint32_t bitmap, uint32_t bitmask)
{
	return bitmap & bitmask;
}

/* Get device info */
static void
info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
{
	struct bbdev_private *internals = dev->data->dev_private;

	static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
		{
			.type = RTE_BBDEV_OP_TURBO_DEC,
			.cap.turbo_dec = {
				.capability_flags =
					RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
					RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
					RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
					RTE_BBDEV_TURBO_CRC_TYPE_24B |
					RTE_BBDEV_TURBO_EARLY_TERMINATION,
				.num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
				.num_buffers_hard_out =
						RTE_BBDEV_MAX_CODE_BLOCKS,
				.num_buffers_soft_out = 0,
			}
		},
		{
			.type   = RTE_BBDEV_OP_TURBO_ENC,
			.cap.turbo_enc = {
				.capability_flags =
						RTE_BBDEV_TURBO_CRC_24B_ATTACH |
						RTE_BBDEV_TURBO_CRC_24A_ATTACH |
						RTE_BBDEV_TURBO_RATE_MATCH |
						RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
				.num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
				.num_buffers_dst = RTE_BBDEV_MAX_CODE_BLOCKS,
			}
		},
		RTE_BBDEV_END_OF_CAPABILITIES_LIST()
	};

	static struct rte_bbdev_queue_conf default_queue_conf = {
		.queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
	};

	static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;

	default_queue_conf.socket = dev->data->socket_id;

	dev_info->driver_name = RTE_STR(DRIVER_NAME);
	dev_info->max_num_queues = internals->max_nb_queues;
	dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
	dev_info->hardware_accelerated = false;
	dev_info->max_queue_priority = 0;
	dev_info->default_queue_conf = default_queue_conf;
	dev_info->capabilities = bbdev_capabilities;
	dev_info->cpu_flag_reqs = &cpu_flag;
	dev_info->min_alignment = 64;

	rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
}

/* Release queue */
static int
q_release(struct rte_bbdev *dev, uint16_t q_id)
{
	struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private;

	if (q != NULL) {
		rte_ring_free(q->processed_pkts);
		rte_free(q->enc_out);
		rte_free(q->enc_in);
		rte_free(q->ag);
		rte_free(q->code_block);
		rte_free(q->deint_input);
		rte_free(q->deint_output);
		rte_free(q->adapter_output);
		rte_free(q);
		dev->data->queues[q_id].queue_private = NULL;
	}

	rte_bbdev_log_debug("released device queue %u:%u",
			dev->data->dev_id, q_id);
	return 0;
}

/* Setup a queue */
static int
q_setup(struct rte_bbdev *dev, uint16_t q_id,
		const struct rte_bbdev_queue_conf *queue_conf)
{
	int ret;
	struct turbo_sw_queue *q;
	char name[RTE_RING_NAMESIZE];

	/* Allocate the queue data structure. */
	q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
			RTE_CACHE_LINE_SIZE, queue_conf->socket);
	if (q == NULL) {
		rte_bbdev_log(ERR, "Failed to allocate queue memory");
		return -ENOMEM;
	}

	/* Allocate memory for encoder output. */
	ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_out%u:%u",
			dev->data->dev_id, q_id);
	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
		rte_bbdev_log(ERR,
				"Creating queue name for device %u queue %u failed",
				dev->data->dev_id, q_id);
		return -ENAMETOOLONG;
	}
	q->enc_out = rte_zmalloc_socket(name,
			((MAX_TB_SIZE >> 3) + 3) * sizeof(*q->enc_out) * 3,
			RTE_CACHE_LINE_SIZE, queue_conf->socket);
	if (q->enc_out == NULL) {
		rte_bbdev_log(ERR,
			"Failed to allocate queue memory for %s", name);
		goto free_q;
	}

	/* Allocate memory for rate matching output. */
	ret = snprintf(name, RTE_RING_NAMESIZE,
			RTE_STR(DRIVER_NAME)"_enc_in%u:%u", dev->data->dev_id,
			q_id);
	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
		rte_bbdev_log(ERR,
				"Creating queue name for device %u queue %u failed",
				dev->data->dev_id, q_id);
		return -ENAMETOOLONG;
	}
	q->enc_in = rte_zmalloc_socket(name,
			(MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
			RTE_CACHE_LINE_SIZE, queue_conf->socket);
	if (q->enc_in == NULL) {
		rte_bbdev_log(ERR,
			"Failed to allocate queue memory for %s", name);
		goto free_q;
	}

	/* Allocate memory for Aplha Gamma temp buffer. */
	ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u",
			dev->data->dev_id, q_id);
	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
		rte_bbdev_log(ERR,
				"Creating queue name for device %u queue %u failed",
				dev->data->dev_id, q_id);
		return -ENAMETOOLONG;
	}
	q->ag = rte_zmalloc_socket(name,
			MAX_CB_SIZE * 10 * sizeof(*q->ag),
			RTE_CACHE_LINE_SIZE, queue_conf->socket);
	if (q->ag == NULL) {
		rte_bbdev_log(ERR,
			"Failed to allocate queue memory for %s", name);
		goto free_q;
	}

	/* Allocate memory for code block temp buffer. */
	ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u",
			dev->data->dev_id, q_id);
	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
		rte_bbdev_log(ERR,
				"Creating queue name for device %u queue %u failed",
				dev->data->dev_id, q_id);
		return -ENAMETOOLONG;
	}
	q->code_block = rte_zmalloc_socket(name,
			(6144 >> 3) * sizeof(*q->code_block),
			RTE_CACHE_LINE_SIZE, queue_conf->socket);
	if (q->code_block == NULL) {
		rte_bbdev_log(ERR,
			"Failed to allocate queue memory for %s", name);
		goto free_q;
	}

	/* Allocate memory for Deinterleaver input. */
	ret = snprintf(name, RTE_RING_NAMESIZE,
			RTE_STR(DRIVER_NAME)"_deint_input%u:%u",
			dev->data->dev_id, q_id);
	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
		rte_bbdev_log(ERR,
				"Creating queue name for device %u queue %u failed",
				dev->data->dev_id, q_id);
		return -ENAMETOOLONG;
	}
	q->deint_input = rte_zmalloc_socket(name,
			MAX_KW * sizeof(*q->deint_input),
			RTE_CACHE_LINE_SIZE, queue_conf->socket);
	if (q->deint_input == NULL) {
		rte_bbdev_log(ERR,
			"Failed to allocate queue memory for %s", name);
		goto free_q;
	}

	/* Allocate memory for Deinterleaver output. */
	ret = snprintf(name, RTE_RING_NAMESIZE,
			RTE_STR(DRIVER_NAME)"_deint_output%u:%u",
			dev->data->dev_id, q_id);
	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
		rte_bbdev_log(ERR,
				"Creating queue name for device %u queue %u failed",
				dev->data->dev_id, q_id);
		return -ENAMETOOLONG;
	}
	q->deint_output = rte_zmalloc_socket(NULL,
			MAX_KW * sizeof(*q->deint_output),
			RTE_CACHE_LINE_SIZE, queue_conf->socket);
	if (q->deint_output == NULL) {
		rte_bbdev_log(ERR,
			"Failed to allocate queue memory for %s", name);
		goto free_q;
	}

	/* Allocate memory for Adapter output. */
	ret = snprintf(name, RTE_RING_NAMESIZE,
			RTE_STR(DRIVER_NAME)"_adapter_output%u:%u",
			dev->data->dev_id, q_id);
	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
		rte_bbdev_log(ERR,
				"Creating queue name for device %u queue %u failed",
				dev->data->dev_id, q_id);
		return -ENAMETOOLONG;
	}
	q->adapter_output = rte_zmalloc_socket(NULL,
			MAX_CB_SIZE * 6 * sizeof(*q->adapter_output),
			RTE_CACHE_LINE_SIZE, queue_conf->socket);
	if (q->adapter_output == NULL) {
		rte_bbdev_log(ERR,
			"Failed to allocate queue memory for %s", name);
		goto free_q;
	}

	/* Create ring for packets awaiting to be dequeued. */
	ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u",
			dev->data->dev_id, q_id);
	if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
		rte_bbdev_log(ERR,
				"Creating queue name for device %u queue %u failed",
				dev->data->dev_id, q_id);
		return -ENAMETOOLONG;
	}
	q->processed_pkts = rte_ring_create(name, queue_conf->queue_size,
			queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
	if (q->processed_pkts == NULL) {
		rte_bbdev_log(ERR, "Failed to create ring for %s", name);
		goto free_q;
	}

	q->type = queue_conf->op_type;

	dev->data->queues[q_id].queue_private = q;
	rte_bbdev_log_debug("setup device queue %s", name);
	return 0;

free_q:
	rte_ring_free(q->processed_pkts);
	rte_free(q->enc_out);
	rte_free(q->enc_in);
	rte_free(q->ag);
	rte_free(q->code_block);
	rte_free(q->deint_input);
	rte_free(q->deint_output);
	rte_free(q->adapter_output);
	rte_free(q);
	return -EFAULT;
}

static const struct rte_bbdev_ops pmd_ops = {
	.info_get = info_get,
	.queue_setup = q_setup,
	.queue_release = q_release
};

/* Checks if the encoder input buffer is correct.
 * Returns 0 if it's valid, -1 otherwise.
 */
static inline int
is_enc_input_valid(const uint16_t k, const int32_t k_idx,
		const uint16_t in_length)
{
	if (k_idx < 0) {
		rte_bbdev_log(ERR, "K Index is invalid");
		return -1;
	}

	if (in_length - (k >> 3) < 0) {
		rte_bbdev_log(ERR,
				"Mismatch between input length (%u bytes) and K (%u bits)",
				in_length, k);
		return -1;
	}

	if (k > MAX_CB_SIZE) {
		rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
				k, MAX_CB_SIZE);
		return -1;
	}

	return 0;
}

/* Checks if the decoder input buffer is correct.
 * Returns 0 if it's valid, -1 otherwise.
 */
static inline int
is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
{
	if (k_idx < 0) {
		rte_bbdev_log(ERR, "K index is invalid");
		return -1;
	}

	if (in_length - kw < 0) {
		rte_bbdev_log(ERR,
				"Mismatch between input length (%u) and kw (%u)",
				in_length, kw);
		return -1;
	}

	if (kw > MAX_KW) {
		rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
				kw, MAX_KW);
		return -1;
	}

	return 0;
}

static inline void
process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
		uint8_t cb_idx, uint8_t c, uint16_t k, uint16_t ncb,
		uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out,
		uint16_t in_offset, uint16_t out_offset, uint16_t total_left)
{
	int ret;
	int16_t k_idx;
	uint16_t m;
	uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out;
	struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
	struct bblib_crc_request crc_req;
	struct bblib_turbo_encoder_request turbo_req;
	struct bblib_turbo_encoder_response turbo_resp;
	struct bblib_rate_match_dl_request rm_req;
	struct bblib_rate_match_dl_response rm_resp;

	k_idx = compute_idx(k);
	in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);

	/* CRC24A (for TB) */
	if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
		(enc->code_block_mode == 1)) {
		ret = is_enc_input_valid(k - 24, k_idx, total_left);
		if (ret != 0) {
			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
			return;
		}
		/* copy the input to the temporary buffer to be able to extend
		 * it by 3 CRC bytes
		 */
		rte_memcpy(q->enc_in, in, (k - 24) >> 3);
		crc_req.data = q->enc_in;
		crc_req.len = (k - 24) >> 3;
		if (bblib_lte_crc24a_gen(&crc_req) == -1) {
			op->status |= 1 << RTE_BBDEV_CRC_ERROR;
			rte_bbdev_log(ERR, "CRC24a generation failed");
			return;
		}
		in = q->enc_in;
	} else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
		/* CRC24B */
		ret = is_enc_input_valid(k - 24, k_idx, total_left);
		if (ret != 0) {
			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
			return;
		}
		/* copy the input to the temporary buffer to be able to extend
		 * it by 3 CRC bytes
		 */
		rte_memcpy(q->enc_in, in, (k - 24) >> 3);
		crc_req.data = q->enc_in;
		crc_req.len = (k - 24) >> 3;
		if (bblib_lte_crc24b_gen(&crc_req) == -1) {
			op->status |= 1 << RTE_BBDEV_CRC_ERROR;
			rte_bbdev_log(ERR, "CRC24b generation failed");
			return;
		}
		in = q->enc_in;
	} else {
		ret = is_enc_input_valid(k, k_idx, total_left);
		if (ret != 0) {
			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
			return;
		}
	}

	/* Turbo encoder */

	/* Each bit layer output from turbo encoder is (k+4) bits long, i.e.
	 * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up.
	 * So dst_data's length should be 3*(k/8) + 3 bytes.
	 */
	out0 = q->enc_out;
	out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
	out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);

	turbo_req.case_id = k_idx;
	turbo_req.input_win = in;
	turbo_req.length = k >> 3;
	turbo_resp.output_win_0 = out0;
	turbo_resp.output_win_1 = out1;
	turbo_resp.output_win_2 = out2;
	if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
		op->status |= 1 << RTE_BBDEV_DRV_ERROR;
		rte_bbdev_log(ERR, "Turbo Encoder failed");
		return;
	}

	/* Rate-matching */
	if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
		/* get output data starting address */
		rm_out = (uint8_t *)rte_pktmbuf_append(m_out, (e >> 3));
		if (rm_out == NULL) {
			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
			rte_bbdev_log(ERR,
					"Too little space in output mbuf");
			return;
		}
		/* rte_bbdev_op_data.offset can be different than the offset
		 * of the appended bytes
		 */
		rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);

		/* index of current code block */
		rm_req.r = cb_idx;
		/* total number of code block */
		rm_req.C = c;
		/* For DL - 1, UL - 0 */
		rm_req.direction = 1;
		/* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO
		 * and MDL_HARQ are used for Ncb calculation. As Ncb is already
		 * known we can adjust those parameters
		 */
		rm_req.Nsoft = ncb * rm_req.C;
		rm_req.KMIMO = 1;
		rm_req.MDL_HARQ = 1;
		/* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G
		 * are used for E calculation. As E is already known we can
		 * adjust those parameters
		 */
		rm_req.NL = e;
		rm_req.Qm = 1;
		rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C;

		rm_req.rvidx = enc->rv_index;
		rm_req.Kidx = k_idx - 1;
		rm_req.nLen = k + 4;
		rm_req.tin0 = out0;
		rm_req.tin1 = out1;
		rm_req.tin2 = out2;
		rm_resp.output = rm_out;
		rm_resp.OutputLen = (e >> 3);
		if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
			rm_req.bypass_rvidx = 1;
		else
			rm_req.bypass_rvidx = 0;

		if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
			op->status |= 1 << RTE_BBDEV_DRV_ERROR;
			rte_bbdev_log(ERR, "Rate matching failed");
			return;
		}
		enc->output.length += rm_resp.OutputLen;
	} else {
		/* Rate matching is bypassed */

		/* Completing last byte of out0 (where 4 tail bits are stored)
		 * by moving first 4 bits from out1
		 */
		tmp_out = (uint8_t *) --out1;
		*tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4);
		tmp_out++;
		/* Shifting out1 data by 4 bits to the left */
		for (m = 0; m < k >> 3; ++m) {
			uint8_t *first = tmp_out;
			uint8_t second = *(tmp_out + 1);
			*first = (*first << 4) | ((second & 0xF0) >> 4);
			tmp_out++;
		}
		/* Shifting out2 data by 8 bits to the left */
		for (m = 0; m < (k >> 3) + 1; ++m) {
			*tmp_out = *(tmp_out + 1);
			tmp_out++;
		}
		*tmp_out = 0;

		/* copy shifted output to turbo_enc entity */
		out0 = (uint8_t *)rte_pktmbuf_append(m_out,
				(k >> 3) * 3 + 2);
		if (out0 == NULL) {
			op->status |= 1 << RTE_BBDEV_DATA_ERROR;
			rte_bbdev_log(ERR,
					"Too little space in output mbuf");
			return;
		}
		enc->output.length += (k >> 3) * 3 + 2;
		/* rte_bbdev_op_data.offset can be different than the
		 * offset of the appended bytes
		 */
		out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
				out_offset);
		rte_memcpy(out0, q->enc_out, (k >> 3) * 3 + 2);
	}
}

static inline void
enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op)
{
	uint8_t c, r, crc24_bits = 0;
	uint16_t k, ncb;
	uint32_t e;
	struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
	uint16_t in_offset = enc->input.offset;
	uint16_t out_offset = enc->output.offset;
	struct rte_mbuf *m_in = enc->input.data;
	struct rte_mbuf *m_out = enc->output.data;
	uint16_t total_left = enc->input.length;

	/* Clear op status */
	op->status = 0;

	if (total_left > MAX_TB_SIZE >> 3) {
		rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
				total_left, MAX_TB_SIZE);
		op->status = 1 << RTE_BBDEV_DATA_ERROR;
		return;
	}

	if (m_in == NULL || m_out == NULL) {
		rte_bbdev_log(ERR, "Invalid mbuf pointer");
		op->status = 1 << RTE_BBDEV_DATA_ERROR;
		return;
	}

	if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
		(enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
		crc24_bits = 24;

	if (enc->code_block_mode == 0) { /* For Transport Block mode */
		c = enc->tb_params.c;
		r = enc->tb_params.r;
	} else {/* For Code Block mode */
		c = 1;
		r = 0;
	}

	while (total_left > 0 && r < c) {
		if (enc->code_block_mode == 0) {
			k = (r < enc->tb_params.c_neg) ?
				enc->tb_params.k_neg : enc->tb_params.k_pos;
			ncb = (r < enc->tb_params.c_neg) ?
				enc->tb_params.ncb_neg : enc->tb_params.ncb_pos;
			e = (r < enc->tb_params.cab) ?
				enc->tb_params.ea : enc->tb_params.eb;
		} else {
			k = enc->cb_params.k;
			ncb = enc->cb_params.ncb;
			e = enc->cb_params.e;
		}

		process_enc_cb(q, op, r, c, k, ncb, e, m_in,
				m_out, in_offset, out_offset, total_left);
		/* Update total_left */
		total_left -= (k - crc24_bits) >> 3;
		/* Update offsets for next CBs (if exist) */
		in_offset += (k - crc24_bits) >> 3;
		if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
			out_offset += e >> 3;
		else
			out_offset += (k >> 3) * 3 + 2;
		r++;
	}

	/* check if all input data was processed */
	if (total_left != 0) {
		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
		rte_bbdev_log(ERR,
				"Mismatch between mbuf length and included CBs sizes");
	}
}

static inline uint16_t
enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
		uint16_t nb_ops)
{
	uint16_t i;

	for (i = 0; i < nb_ops; ++i)
		enqueue_enc_one_op(q, ops[i]);

	return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
			NULL);
}

/* Remove the padding bytes from a cyclic buffer.
 * The input buffer is a data stream wk as described in 3GPP TS 36.212 section
 * 5.1.4.1.2 starting from w0 and with length Ncb bytes.
 * The output buffer is a data stream wk with pruned padding bytes. It's length
 * is 3*D bytes and the order of non-padding bytes is preserved.
 */
static inline void
remove_nulls_from_circular_buf(const uint8_t *in, uint8_t *out, uint16_t k,
		uint16_t ncb)
{
	uint32_t in_idx, out_idx, c_idx;
	const uint32_t d = k + 4;
	const uint32_t kw = (ncb / 3);
	const uint32_t nd = kw - d;
	const uint32_t r_subblock = kw / C_SUBBLOCK;
	/* Inter-column permutation pattern */
	const uint32_t P[C_SUBBLOCK] = {0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10,
			26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13, 29, 3, 19,
			11, 27, 7, 23, 15, 31};
	in_idx = 0;
	out_idx = 0;

	/* The padding bytes are at the first Nd positions in the first row. */
	for (c_idx = 0; in_idx < kw; in_idx += r_subblock, ++c_idx) {
		if (P[c_idx] < nd) {
			rte_memcpy(&out[out_idx], &in[in_idx + 1],
					r_subblock - 1);
			out_idx += r_subblock - 1;
		} else {
			rte_memcpy(&out[out_idx], &in[in_idx], r_subblock);
			out_idx += r_subblock;
		}
	}

	/* First and second parity bits sub-blocks are interlaced. */
	for (c_idx = 0; in_idx < ncb - 2 * r_subblock;
			in_idx += 2 * r_subblock, ++c_idx) {
		uint32_t second_block_c_idx = P[c_idx];
		uint32_t third_block_c_idx = P[c_idx] + 1;

		if (second_block_c_idx < nd && third_block_c_idx < nd) {
			rte_memcpy(&out[out_idx], &in[in_idx + 2],
					2 * r_subblock - 2);
			out_idx += 2 * r_subblock - 2;
		} else if (second_block_c_idx >= nd &&
				third_block_c_idx >= nd) {
			rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock);
			out_idx += 2 * r_subblock;
		} else if (second_block_c_idx < nd) {
			out[out_idx++] = in[in_idx];
			rte_memcpy(&out[out_idx], &in[in_idx + 2],
					2 * r_subblock - 2);
			out_idx += 2 * r_subblock - 2;
		} else {
			rte_memcpy(&out[out_idx], &in[in_idx + 1],
					2 * r_subblock - 1);
			out_idx += 2 * r_subblock - 1;
		}
	}

	/* Last interlaced row is different - its last byte is the only padding
	 * byte. We can have from 2 up to 26 padding bytes (Nd) per sub-block.
	 * After interlacing the 1st and 2nd parity sub-blocks we can have 0, 1
	 * or 2 padding bytes each time we make a step of 2 * R_SUBBLOCK bytes
	 * (moving to another column). 2nd parity sub-block uses the same
	 * inter-column permutation pattern as the systematic and 1st parity
	 * sub-blocks but it adds '1' to the resulting index and calculates the
	 * modulus of the result and Kw. Last column is mapped to itself (id 31)
	 * so the first byte taken from the 2nd parity sub-block will be the
	 * 32nd (31+1) byte, then 64th etc. (step is C_SUBBLOCK == 32) and the
	 * last byte will be the first byte from the sub-block:
	 * (32 + 32 * (R_SUBBLOCK-1)) % Kw == Kw % Kw == 0. Nd can't  be smaller
	 * than 2 so we know that bytes with ids 0 and 1 must be the padding
	 * bytes. The bytes from the 1st parity sub-block are the bytes from the
	 * 31st column - Nd can't be greater than 26 so we are sure that there
	 * are no padding bytes in 31st column.
	 */
	rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock - 1);
}

static inline void
move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
		uint16_t ncb)
{
	uint16_t d = k + 4;
	uint16_t kpi = ncb / 3;
	uint16_t nd = kpi - d;

	rte_memcpy(&out[nd], in, d);
	rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
	rte_memcpy(&out[nd + 2 * (kpi + 64)], &in[2 * kpi], d);
}

static inline void
process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
		uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
		struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
		bool check_crc_24b, uint16_t total_left)
{
	int ret;
	int32_t k_idx;
	int32_t iter_cnt;
	uint8_t *in, *out, *adapter_input;
	int32_t ncb, ncb_without_null;
	struct bblib_turbo_adapter_ul_response adapter_resp;
	struct bblib_turbo_adapter_ul_request adapter_req;
	struct bblib_turbo_decoder_request turbo_req;
	struct bblib_turbo_decoder_response turbo_resp;
	struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;

	k_idx = compute_idx(k);

	ret = is_dec_input_valid(k_idx, kw, total_left);
	if (ret != 0) {
		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
		return;
	}

	in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
	ncb = kw;
	ncb_without_null = (k + 4) * 3;

	if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) {
		struct bblib_deinterleave_ul_request deint_req;
		struct bblib_deinterleave_ul_response deint_resp;

		/* SW decoder accepts only a circular buffer without NULL bytes
		 * so the input needs to be converted.
		 */
		remove_nulls_from_circular_buf(in, q->deint_input, k, ncb);

		deint_req.pharqbuffer = q->deint_input;
		deint_req.ncb = ncb_without_null;
		deint_resp.pinteleavebuffer = q->deint_output;
		bblib_deinterleave_ul(&deint_req, &deint_resp);
	} else
		move_padding_bytes(in, q->deint_output, k, ncb);

	adapter_input = q->deint_output;

	if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN)
		adapter_req.isinverted = 1;
	else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN)
		adapter_req.isinverted = 0;
	else {
		op->status |= 1 << RTE_BBDEV_DRV_ERROR;
		rte_bbdev_log(ERR, "LLR format wasn't specified");
		return;
	}

	adapter_req.ncb = ncb_without_null;
	adapter_req.pinteleavebuffer = adapter_input;
	adapter_resp.pharqout = q->adapter_output;
	bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);

	out = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3));
	if (out == NULL) {
		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
		rte_bbdev_log(ERR, "Too little space in output mbuf");
		return;
	}
	/* rte_bbdev_op_data.offset can be different than the offset of the
	 * appended bytes
	 */
	out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
	if (check_crc_24b)
		turbo_req.c = c + 1;
	else
		turbo_req.c = c;
	turbo_req.input = (int8_t *)q->adapter_output;
	turbo_req.k = k;
	turbo_req.k_idx = k_idx;
	turbo_req.max_iter_num = dec->iter_max;
	turbo_resp.ag_buf = q->ag;
	turbo_resp.cb_buf = q->code_block;
	turbo_resp.output = out;
	iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
	dec->hard_output.length += (k >> 3);

	if (iter_cnt > 0) {
		/* Temporary solution for returned iter_count from SDK */
		iter_cnt = (iter_cnt - 1) / 2;
		dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
	} else {
		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
		rte_bbdev_log(ERR, "Turbo Decoder failed");
		return;
	}
}

static inline void
enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op)
{
	uint8_t c, r = 0;
	uint16_t kw, k = 0;
	struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
	struct rte_mbuf *m_in = dec->input.data;
	struct rte_mbuf *m_out = dec->hard_output.data;
	uint16_t in_offset = dec->input.offset;
	uint16_t total_left = dec->input.length;
	uint16_t out_offset = dec->hard_output.offset;

	/* Clear op status */
	op->status = 0;

	if (m_in == NULL || m_out == NULL) {
		rte_bbdev_log(ERR, "Invalid mbuf pointer");
		op->status = 1 << RTE_BBDEV_DATA_ERROR;
		return;
	}

	if (dec->code_block_mode == 0) { /* For Transport Block mode */
		c = dec->tb_params.c;
	} else { /* For Code Block mode */
		k = dec->cb_params.k;
		c = 1;
	}

	while (total_left > 0) {
		if (dec->code_block_mode == 0)
			k = (r < dec->tb_params.c_neg) ?
				dec->tb_params.k_neg : dec->tb_params.k_pos;

		/* Calculates circular buffer size (Kw).
		 * According to 3gpp 36.212 section 5.1.4.2
		 *   Kw = 3 * Kpi,
		 * where:
		 *   Kpi = nCol * nRow
		 * where nCol is 32 and nRow can be calculated from:
		 *   D =< nCol * nRow
		 * where D is the size of each output from turbo encoder block
		 * (k + 4).
		 */
		kw = RTE_ALIGN_CEIL(k + 4, C_SUBBLOCK) * 3;

		process_dec_cb(q, op, c, k, kw, m_in, m_out, in_offset,
				out_offset, check_bit(dec->op_flags,
				RTE_BBDEV_TURBO_CRC_TYPE_24B), total_left);
		/* As a result of decoding we get Code Block with included
		 * decoded CRC24 at the end of Code Block. Type of CRC24 is
		 * specified by flag.
		 */

		/* Update total_left */
		total_left -= kw;
		/* Update offsets for next CBs (if exist) */
		in_offset += kw;
		out_offset += (k >> 3);
		r++;
	}
	if (total_left != 0) {
		op->status |= 1 << RTE_BBDEV_DATA_ERROR;
		rte_bbdev_log(ERR,
				"Mismatch between mbuf length and included Circular buffer sizes");
	}
}

static inline uint16_t
enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
		uint16_t nb_ops)
{
	uint16_t i;

	for (i = 0; i < nb_ops; ++i)
		enqueue_dec_one_op(q, ops[i]);

	return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
			NULL);
}

/* Enqueue burst */
static uint16_t
enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
		struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
{
	void *queue = q_data->queue_private;
	struct turbo_sw_queue *q = queue;
	uint16_t nb_enqueued = 0;

	nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops);

	q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
	q_data->queue_stats.enqueued_count += nb_enqueued;

	return nb_enqueued;
}

/* Enqueue burst */
static uint16_t
enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
		 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
{
	void *queue = q_data->queue_private;
	struct turbo_sw_queue *q = queue;
	uint16_t nb_enqueued = 0;

	nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops);

	q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
	q_data->queue_stats.enqueued_count += nb_enqueued;

	return nb_enqueued;
}

/* Dequeue decode burst */
static uint16_t
dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
		struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
{
	struct turbo_sw_queue *q = q_data->queue_private;
	uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
			(void **)ops, nb_ops, NULL);
	q_data->queue_stats.dequeued_count += nb_dequeued;

	return nb_dequeued;
}

/* Dequeue encode burst */
static uint16_t
dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
		struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
{
	struct turbo_sw_queue *q = q_data->queue_private;
	uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
			(void **)ops, nb_ops, NULL);
	q_data->queue_stats.dequeued_count += nb_dequeued;

	return nb_dequeued;
}

/* Parse 16bit integer from string argument */
static inline int
parse_u16_arg(const char *key, const char *value, void *extra_args)
{
	uint16_t *u16 = extra_args;
	unsigned int long result;

	if ((value == NULL) || (extra_args == NULL))
		return -EINVAL;
	errno = 0;
	result = strtoul(value, NULL, 0);
	if ((result >= (1 << 16)) || (errno != 0)) {
		rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
		return -ERANGE;
	}
	*u16 = (uint16_t)result;
	return 0;
}

/* Parse parameters used to create device */
static int
parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args)
{
	struct rte_kvargs *kvlist = NULL;
	int ret = 0;

	if (params == NULL)
		return -EINVAL;
	if (input_args) {
		kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params);
		if (kvlist == NULL)
			return -EFAULT;

		ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0],
					&parse_u16_arg, &params->queues_num);
		if (ret < 0)
			goto exit;

		ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1],
					&parse_u16_arg, &params->socket_id);
		if (ret < 0)
			goto exit;

		if (params->socket_id >= RTE_MAX_NUMA_NODES) {
			rte_bbdev_log(ERR, "Invalid socket, must be < %u",
					RTE_MAX_NUMA_NODES);
			goto exit;
		}
	}

exit:
	if (kvlist)
		rte_kvargs_free(kvlist);
	return ret;
}

/* Create device */
static int
turbo_sw_bbdev_create(struct rte_vdev_device *vdev,
		struct turbo_sw_params *init_params)
{
	struct rte_bbdev *bbdev;
	const char *name = rte_vdev_device_name(vdev);

	bbdev = rte_bbdev_allocate(name);
	if (bbdev == NULL)
		return -ENODEV;

	bbdev->data->dev_private = rte_zmalloc_socket(name,
			sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
			init_params->socket_id);
	if (bbdev->data->dev_private == NULL) {
		rte_bbdev_release(bbdev);
		return -ENOMEM;
	}

	bbdev->dev_ops = &pmd_ops;
	bbdev->device = &vdev->device;
	bbdev->data->socket_id = init_params->socket_id;
	bbdev->intr_handle = NULL;

	/* register rx/tx burst functions for data path */
	bbdev->dequeue_enc_ops = dequeue_enc_ops;
	bbdev->dequeue_dec_ops = dequeue_dec_ops;
	bbdev->enqueue_enc_ops = enqueue_enc_ops;
	bbdev->enqueue_dec_ops = enqueue_dec_ops;
	((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
			init_params->queues_num;

	return 0;
}

/* Initialise device */
static int
turbo_sw_bbdev_probe(struct rte_vdev_device *vdev)
{
	struct turbo_sw_params init_params = {
		rte_socket_id(),
		RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
	};
	const char *name;
	const char *input_args;

	if (vdev == NULL)
		return -EINVAL;

	name = rte_vdev_device_name(vdev);
	if (name == NULL)
		return -EINVAL;
	input_args = rte_vdev_device_args(vdev);
	parse_turbo_sw_params(&init_params, input_args);

	rte_bbdev_log_debug(
			"Initialising %s on NUMA node %d with max queues: %d\n",
			name, init_params.socket_id, init_params.queues_num);

	return turbo_sw_bbdev_create(vdev, &init_params);
}

/* Uninitialise device */
static int
turbo_sw_bbdev_remove(struct rte_vdev_device *vdev)
{
	struct rte_bbdev *bbdev;
	const char *name;

	if (vdev == NULL)
		return -EINVAL;

	name = rte_vdev_device_name(vdev);
	if (name == NULL)
		return -EINVAL;

	bbdev = rte_bbdev_get_named_dev(name);
	if (bbdev == NULL)
		return -EINVAL;

	rte_free(bbdev->data->dev_private);

	return rte_bbdev_release(bbdev);
}

static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = {
	.probe = turbo_sw_bbdev_probe,
	.remove = turbo_sw_bbdev_remove
};

RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
	TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
	TURBO_SW_SOCKET_ID_ARG"=<int>");

RTE_INIT(null_bbdev_init_log);
static void
null_bbdev_init_log(void)
{
	bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw");
	if (bbdev_turbo_sw_logtype >= 0)
		rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE);
}