1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
|
/* SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0)
*
* Copyright 2008-2012 Freescale Semiconductor, Inc.
*
*/
#ifndef __FSL_QMAN_H
#define __FSL_QMAN_H
#ifdef __cplusplus
extern "C" {
#endif
#include <dpaa_rbtree.h>
#include <rte_eventdev.h>
/* FQ lookups (turn this on for 64bit user-space) */
#if (__WORDSIZE == 64)
#define CONFIG_FSL_QMAN_FQ_LOOKUP
/* if FQ lookups are supported, this controls the number of initialised,
* s/w-consumed FQs that can be supported at any one time.
*/
#define CONFIG_FSL_QMAN_FQ_LOOKUP_MAX (32 * 1024)
#endif
/* Last updated for v00.800 of the BG */
/* Hardware constants */
#define QM_CHANNEL_SWPORTAL0 0
#define QMAN_CHANNEL_POOL1 0x21
#define QMAN_CHANNEL_CAAM 0x80
#define QMAN_CHANNEL_PME 0xa0
#define QMAN_CHANNEL_POOL1_REV3 0x401
#define QMAN_CHANNEL_CAAM_REV3 0x840
#define QMAN_CHANNEL_PME_REV3 0x860
extern u16 qm_channel_pool1;
extern u16 qm_channel_caam;
extern u16 qm_channel_pme;
enum qm_dc_portal {
qm_dc_portal_fman0 = 0,
qm_dc_portal_fman1 = 1,
qm_dc_portal_caam = 2,
qm_dc_portal_pme = 3
};
/* Portal processing (interrupt) sources */
#define QM_PIRQ_CCSCI 0x00200000 /* CEETM Congestion State Change */
#define QM_PIRQ_CSCI 0x00100000 /* Congestion State Change */
#define QM_PIRQ_EQCI 0x00080000 /* Enqueue Command Committed */
#define QM_PIRQ_EQRI 0x00040000 /* EQCR Ring (below threshold) */
#define QM_PIRQ_DQRI 0x00020000 /* DQRR Ring (non-empty) */
#define QM_PIRQ_MRI 0x00010000 /* MR Ring (non-empty) */
/*
* This mask contains all the interrupt sources that need handling except DQRI,
* ie. that if present should trigger slow-path processing.
*/
#define QM_PIRQ_SLOW (QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \
QM_PIRQ_MRI | QM_PIRQ_CCSCI)
/* For qman_static_dequeue_*** APIs */
#define QM_SDQCR_CHANNELS_POOL_MASK 0x00007fff
/* for n in [1,15] */
#define QM_SDQCR_CHANNELS_POOL(n) (0x00008000 >> (n))
/* for conversion from n of qm_channel */
static inline u32 QM_SDQCR_CHANNELS_POOL_CONV(u16 channel)
{
return QM_SDQCR_CHANNELS_POOL(channel + 1 - qm_channel_pool1);
}
/* For qman_volatile_dequeue(); Choose one PRECEDENCE. EXACT is optional. Use
* NUMFRAMES(n) (6-bit) or NUMFRAMES_TILLEMPTY to fill in the frame-count. Use
* FQID(n) to fill in the frame queue ID.
*/
#define QM_VDQCR_PRECEDENCE_VDQCR 0x0
#define QM_VDQCR_PRECEDENCE_SDQCR 0x80000000
#define QM_VDQCR_EXACT 0x40000000
#define QM_VDQCR_NUMFRAMES_MASK 0x3f000000
#define QM_VDQCR_NUMFRAMES_SET(n) (((n) & 0x3f) << 24)
#define QM_VDQCR_NUMFRAMES_GET(n) (((n) >> 24) & 0x3f)
#define QM_VDQCR_NUMFRAMES_TILLEMPTY QM_VDQCR_NUMFRAMES_SET(0)
/* --- QMan data structures (and associated constants) --- */
/* Represents s/w corenet portal mapped data structures */
struct qm_eqcr_entry; /* EQCR (EnQueue Command Ring) entries */
struct qm_dqrr_entry; /* DQRR (DeQueue Response Ring) entries */
struct qm_mr_entry; /* MR (Message Ring) entries */
struct qm_mc_command; /* MC (Management Command) command */
struct qm_mc_result; /* MC result */
#define QM_FD_FORMAT_SG 0x4
#define QM_FD_FORMAT_LONG 0x2
#define QM_FD_FORMAT_COMPOUND 0x1
enum qm_fd_format {
/*
* 'contig' implies a contiguous buffer, whereas 'sg' implies a
* scatter-gather table. 'big' implies a 29-bit length with no offset
* field, otherwise length is 20-bit and offset is 9-bit. 'compound'
* implies a s/g-like table, where each entry itself represents a frame
* (contiguous or scatter-gather) and the 29-bit "length" is
* interpreted purely for congestion calculations, ie. a "congestion
* weight".
*/
qm_fd_contig = 0,
qm_fd_contig_big = QM_FD_FORMAT_LONG,
qm_fd_sg = QM_FD_FORMAT_SG,
qm_fd_sg_big = QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG,
qm_fd_compound = QM_FD_FORMAT_COMPOUND
};
/* Capitalised versions are un-typed but can be used in static expressions */
#define QM_FD_CONTIG 0
#define QM_FD_CONTIG_BIG QM_FD_FORMAT_LONG
#define QM_FD_SG QM_FD_FORMAT_SG
#define QM_FD_SG_BIG (QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG)
#define QM_FD_COMPOUND QM_FD_FORMAT_COMPOUND
/* "Frame Descriptor (FD)" */
struct qm_fd {
union {
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 dd:2; /* dynamic debug */
u8 liodn_offset:6;
u8 bpid:8; /* Buffer Pool ID */
u8 eliodn_offset:4;
u8 __reserved:4;
u8 addr_hi; /* high 8-bits of 40-bit address */
u32 addr_lo; /* low 32-bits of 40-bit address */
#else
u8 liodn_offset:6;
u8 dd:2; /* dynamic debug */
u8 bpid:8; /* Buffer Pool ID */
u8 __reserved:4;
u8 eliodn_offset:4;
u8 addr_hi; /* high 8-bits of 40-bit address */
u32 addr_lo; /* low 32-bits of 40-bit address */
#endif
};
struct {
u64 __notaddress:24;
/* More efficient address accessor */
u64 addr:40;
};
u64 opaque_addr;
};
/* The 'format' field indicates the interpretation of the remaining 29
* bits of the 32-bit word. For packing reasons, it is duplicated in the
* other union elements. Note, union'd structs are difficult to use with
* static initialisation under gcc, in which case use the "opaque" form
* with one of the macros.
*/
union {
/* For easier/faster copying of this part of the fd (eg. from a
* DQRR entry to an EQCR entry) copy 'opaque'
*/
u32 opaque;
/* If 'format' is _contig or _sg, 20b length and 9b offset */
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
enum qm_fd_format format:3;
u16 offset:9;
u32 length20:20;
#else
u32 length20:20;
u16 offset:9;
enum qm_fd_format format:3;
#endif
};
/* If 'format' is _contig_big or _sg_big, 29b length */
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
enum qm_fd_format _format1:3;
u32 length29:29;
#else
u32 length29:29;
enum qm_fd_format _format1:3;
#endif
};
/* If 'format' is _compound, 29b "congestion weight" */
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
enum qm_fd_format _format2:3;
u32 cong_weight:29;
#else
u32 cong_weight:29;
enum qm_fd_format _format2:3;
#endif
};
};
union {
u32 cmd;
u32 status;
};
} __attribute__((aligned(8)));
#define QM_FD_DD_NULL 0x00
#define QM_FD_PID_MASK 0x3f
static inline u64 qm_fd_addr_get64(const struct qm_fd *fd)
{
return fd->addr;
}
static inline dma_addr_t qm_fd_addr(const struct qm_fd *fd)
{
return (dma_addr_t)fd->addr;
}
/* Macro, so we compile better if 'v' isn't always 64-bit */
#define qm_fd_addr_set64(fd, v) \
do { \
struct qm_fd *__fd931 = (fd); \
__fd931->addr = v; \
} while (0)
/* Scatter/Gather table entry */
struct qm_sg_entry {
union {
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 __reserved1[3];
u8 addr_hi; /* high 8-bits of 40-bit address */
u32 addr_lo; /* low 32-bits of 40-bit address */
#else
u32 addr_lo; /* low 32-bits of 40-bit address */
u8 addr_hi; /* high 8-bits of 40-bit address */
u8 __reserved1[3];
#endif
};
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u64 __notaddress:24;
u64 addr:40;
#else
u64 addr:40;
u64 __notaddress:24;
#endif
};
u64 opaque;
};
union {
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u32 extension:1; /* Extension bit */
u32 final:1; /* Final bit */
u32 length:30;
#else
u32 length:30;
u32 final:1; /* Final bit */
u32 extension:1; /* Extension bit */
#endif
};
u32 val;
};
u8 __reserved2;
u8 bpid;
union {
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u16 __reserved3:3;
u16 offset:13;
#else
u16 offset:13;
u16 __reserved3:3;
#endif
};
u16 val_off;
};
} __packed;
static inline u64 qm_sg_entry_get64(const struct qm_sg_entry *sg)
{
return sg->addr;
}
static inline dma_addr_t qm_sg_addr(const struct qm_sg_entry *sg)
{
return (dma_addr_t)sg->addr;
}
/* Macro, so we compile better if 'v' isn't always 64-bit */
#define qm_sg_entry_set64(sg, v) \
do { \
struct qm_sg_entry *__sg931 = (sg); \
__sg931->addr = v; \
} while (0)
/* See 1.5.8.1: "Enqueue Command" */
struct __rte_aligned(8) qm_eqcr_entry {
u8 __dont_write_directly__verb;
u8 dca;
u16 seqnum;
u32 orp; /* 24-bit */
u32 fqid; /* 24-bit */
u32 tag;
struct qm_fd fd; /* this has alignment 8 */
u8 __reserved3[32];
} __packed;
/* "Frame Dequeue Response" */
struct __rte_aligned(8) qm_dqrr_entry {
u8 verb;
u8 stat;
u16 seqnum; /* 15-bit */
u8 tok;
u8 __reserved2[3];
u32 fqid; /* 24-bit */
u32 contextB;
struct qm_fd fd; /* this has alignment 8 */
u8 __reserved4[32];
};
#define QM_DQRR_VERB_VBIT 0x80
#define QM_DQRR_VERB_MASK 0x7f /* where the verb contains; */
#define QM_DQRR_VERB_FRAME_DEQUEUE 0x60 /* "this format" */
#define QM_DQRR_STAT_FQ_EMPTY 0x80 /* FQ empty */
#define QM_DQRR_STAT_FQ_HELDACTIVE 0x40 /* FQ held active */
#define QM_DQRR_STAT_FQ_FORCEELIGIBLE 0x20 /* FQ was force-eligible'd */
#define QM_DQRR_STAT_FD_VALID 0x10 /* has a non-NULL FD */
#define QM_DQRR_STAT_UNSCHEDULED 0x02 /* Unscheduled dequeue */
#define QM_DQRR_STAT_DQCR_EXPIRED 0x01 /* VDQCR or PDQCR expired*/
/* "ERN Message Response" */
/* "FQ State Change Notification" */
struct qm_mr_entry {
union {
struct {
u8 verb;
u8 dca;
u16 seqnum;
u8 rc; /* Rejection Code */
u32 orp:24;
u32 fqid; /* 24-bit */
u32 tag;
struct qm_fd fd; /* this has alignment 8 */
} __packed __rte_aligned(8) ern;
struct {
u8 verb;
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 colour:2; /* See QM_MR_DCERN_COLOUR_* */
u8 __reserved1:4;
enum qm_dc_portal portal:2;
#else
enum qm_dc_portal portal:3;
u8 __reserved1:3;
u8 colour:2; /* See QM_MR_DCERN_COLOUR_* */
#endif
u16 __reserved2;
u8 rc; /* Rejection Code */
u32 __reserved3:24;
u32 fqid; /* 24-bit */
u32 tag;
struct qm_fd fd; /* this has alignment 8 */
} __packed __rte_aligned(8) dcern;
struct {
u8 verb;
u8 fqs; /* Frame Queue Status */
u8 __reserved1[6];
u32 fqid; /* 24-bit */
u32 contextB;
u8 __reserved2[16];
} __packed __rte_aligned(8) fq; /* FQRN/FQRNI/FQRL/FQPN */
};
u8 __reserved2[32];
} __packed __rte_aligned(8);
#define QM_MR_VERB_VBIT 0x80
/*
* ERNs originating from direct-connect portals ("dcern") use 0x20 as a verb
* which would be invalid as a s/w enqueue verb. A s/w ERN can be distinguished
* from the other MR types by noting if the 0x20 bit is unset.
*/
#define QM_MR_VERB_TYPE_MASK 0x27
#define QM_MR_VERB_DC_ERN 0x20
#define QM_MR_VERB_FQRN 0x21
#define QM_MR_VERB_FQRNI 0x22
#define QM_MR_VERB_FQRL 0x23
#define QM_MR_VERB_FQPN 0x24
#define QM_MR_RC_MASK 0xf0 /* contains one of; */
#define QM_MR_RC_CGR_TAILDROP 0x00
#define QM_MR_RC_WRED 0x10
#define QM_MR_RC_ERROR 0x20
#define QM_MR_RC_ORPWINDOW_EARLY 0x30
#define QM_MR_RC_ORPWINDOW_LATE 0x40
#define QM_MR_RC_FQ_TAILDROP 0x50
#define QM_MR_RC_ORPWINDOW_RETIRED 0x60
#define QM_MR_RC_ORP_ZERO 0x70
#define QM_MR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */
#define QM_MR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */
#define QM_MR_DCERN_COLOUR_GREEN 0x00
#define QM_MR_DCERN_COLOUR_YELLOW 0x01
#define QM_MR_DCERN_COLOUR_RED 0x02
#define QM_MR_DCERN_COLOUR_OVERRIDE 0x03
/*
* An identical structure of FQD fields is present in the "Init FQ" command and
* the "Query FQ" result, it's suctioned out into the "struct qm_fqd" type.
* Within that, the 'stashing' and 'taildrop' pieces are also factored out, the
* latter has two inlines to assist with converting to/from the mant+exp
* representation.
*/
struct qm_fqd_stashing {
/* See QM_STASHING_EXCL_<...> */
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 exclusive;
u8 __reserved1:2;
/* Numbers of cachelines */
u8 annotation_cl:2;
u8 data_cl:2;
u8 context_cl:2;
#else
u8 context_cl:2;
u8 data_cl:2;
u8 annotation_cl:2;
u8 __reserved1:2;
u8 exclusive;
#endif
} __packed;
struct qm_fqd_taildrop {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u16 __reserved1:3;
u16 mant:8;
u16 exp:5;
#else
u16 exp:5;
u16 mant:8;
u16 __reserved1:3;
#endif
} __packed;
struct qm_fqd_oac {
/* "Overhead Accounting Control", see QM_OAC_<...> */
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 oac:2; /* "Overhead Accounting Control" */
u8 __reserved1:6;
#else
u8 __reserved1:6;
u8 oac:2; /* "Overhead Accounting Control" */
#endif
/* Two's-complement value (-128 to +127) */
signed char oal; /* "Overhead Accounting Length" */
} __packed;
struct qm_fqd {
union {
u8 orpc;
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 __reserved1:2;
u8 orprws:3;
u8 oa:1;
u8 olws:2;
#else
u8 olws:2;
u8 oa:1;
u8 orprws:3;
u8 __reserved1:2;
#endif
} __packed;
};
u8 cgid;
u16 fq_ctrl; /* See QM_FQCTRL_<...> */
union {
u16 dest_wq;
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u16 channel:13; /* qm_channel */
u16 wq:3;
#else
u16 wq:3;
u16 channel:13; /* qm_channel */
#endif
} __packed dest;
};
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u16 __reserved2:1;
u16 ics_cred:15;
#else
u16 __reserved2:1;
u16 ics_cred:15;
#endif
/*
* For "Initialize Frame Queue" commands, the write-enable mask
* determines whether 'td' or 'oac_init' is observed. For query
* commands, this field is always 'td', and 'oac_query' (below) reflects
* the Overhead ACcounting values.
*/
union {
uint16_t opaque_td;
struct qm_fqd_taildrop td;
struct qm_fqd_oac oac_init;
};
u32 context_b;
union {
/* Treat it as 64-bit opaque */
u64 opaque;
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u32 hi;
u32 lo;
#else
u32 lo;
u32 hi;
#endif
};
/* Treat it as s/w portal stashing config */
/* see "FQD Context_A field used for [...]" */
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
struct qm_fqd_stashing stashing;
/*
* 48-bit address of FQ context to
* stash, must be cacheline-aligned
*/
u16 context_hi;
u32 context_lo;
#else
u32 context_lo;
u16 context_hi;
struct qm_fqd_stashing stashing;
#endif
} __packed;
} context_a;
struct qm_fqd_oac oac_query;
} __packed;
/* 64-bit converters for context_hi/lo */
static inline u64 qm_fqd_stashing_get64(const struct qm_fqd *fqd)
{
return ((u64)fqd->context_a.context_hi << 32) |
(u64)fqd->context_a.context_lo;
}
static inline dma_addr_t qm_fqd_stashing_addr(const struct qm_fqd *fqd)
{
return (dma_addr_t)qm_fqd_stashing_get64(fqd);
}
static inline u64 qm_fqd_context_a_get64(const struct qm_fqd *fqd)
{
return ((u64)fqd->context_a.hi << 32) |
(u64)fqd->context_a.lo;
}
static inline void qm_fqd_stashing_set64(struct qm_fqd *fqd, u64 addr)
{
fqd->context_a.context_hi = upper_32_bits(addr);
fqd->context_a.context_lo = lower_32_bits(addr);
}
static inline void qm_fqd_context_a_set64(struct qm_fqd *fqd, u64 addr)
{
fqd->context_a.hi = upper_32_bits(addr);
fqd->context_a.lo = lower_32_bits(addr);
}
/* convert a threshold value into mant+exp representation */
static inline int qm_fqd_taildrop_set(struct qm_fqd_taildrop *td, u32 val,
int roundup)
{
u32 e = 0;
int oddbit = 0;
if (val > 0xe0000000)
return -ERANGE;
while (val > 0xff) {
oddbit = val & 1;
val >>= 1;
e++;
if (roundup && oddbit)
val++;
}
td->exp = e;
td->mant = val;
return 0;
}
/* and the other direction */
static inline u32 qm_fqd_taildrop_get(const struct qm_fqd_taildrop *td)
{
return (u32)td->mant << td->exp;
}
/* See "Frame Queue Descriptor (FQD)" */
/* Frame Queue Descriptor (FQD) field 'fq_ctrl' uses these constants */
#define QM_FQCTRL_MASK 0x07ff /* 'fq_ctrl' flags; */
#define QM_FQCTRL_CGE 0x0400 /* Congestion Group Enable */
#define QM_FQCTRL_TDE 0x0200 /* Tail-Drop Enable */
#define QM_FQCTRL_ORP 0x0100 /* ORP Enable */
#define QM_FQCTRL_CTXASTASHING 0x0080 /* Context-A stashing */
#define QM_FQCTRL_CPCSTASH 0x0040 /* CPC Stash Enable */
#define QM_FQCTRL_FORCESFDR 0x0008 /* High-priority SFDRs */
#define QM_FQCTRL_AVOIDBLOCK 0x0004 /* Don't block active */
#define QM_FQCTRL_HOLDACTIVE 0x0002 /* Hold active in portal */
#define QM_FQCTRL_PREFERINCACHE 0x0001 /* Aggressively cache FQD */
#define QM_FQCTRL_LOCKINCACHE QM_FQCTRL_PREFERINCACHE /* older naming */
/* See "FQD Context_A field used for [...] */
/* Frame Queue Descriptor (FQD) field 'CONTEXT_A' uses these constants */
#define QM_STASHING_EXCL_ANNOTATION 0x04
#define QM_STASHING_EXCL_DATA 0x02
#define QM_STASHING_EXCL_CTX 0x01
/* See "Intra Class Scheduling" */
/* FQD field 'OAC' (Overhead ACcounting) uses these constants */
#define QM_OAC_ICS 0x2 /* Accounting for Intra-Class Scheduling */
#define QM_OAC_CG 0x1 /* Accounting for Congestion Groups */
/*
* This struct represents the 32-bit "WR_PARM_[GYR]" parameters in CGR fields
* and associated commands/responses. The WRED parameters are calculated from
* these fields as follows;
* MaxTH = MA * (2 ^ Mn)
* Slope = SA / (2 ^ Sn)
* MaxP = 4 * (Pn + 1)
*/
struct qm_cgr_wr_parm {
union {
u32 word;
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u32 MA:8;
u32 Mn:5;
u32 SA:7; /* must be between 64-127 */
u32 Sn:6;
u32 Pn:6;
#else
u32 Pn:6;
u32 Sn:6;
u32 SA:7; /* must be between 64-127 */
u32 Mn:5;
u32 MA:8;
#endif
} __packed;
};
} __packed;
/*
* This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding
* management commands, this is padded to a 16-bit structure field, so that's
* how we represent it here. The congestion state threshold is calculated from
* these fields as follows;
* CS threshold = TA * (2 ^ Tn)
*/
struct qm_cgr_cs_thres {
union {
u16 hword;
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u16 __reserved:3;
u16 TA:8;
u16 Tn:5;
#else
u16 Tn:5;
u16 TA:8;
u16 __reserved:3;
#endif
} __packed;
};
} __packed;
/*
* This identical structure of CGR fields is present in the "Init/Modify CGR"
* commands and the "Query CGR" result. It's suctioned out here into its own
* struct.
*/
struct __qm_mc_cgr {
struct qm_cgr_wr_parm wr_parm_g;
struct qm_cgr_wr_parm wr_parm_y;
struct qm_cgr_wr_parm wr_parm_r;
u8 wr_en_g; /* boolean, use QM_CGR_EN */
u8 wr_en_y; /* boolean, use QM_CGR_EN */
u8 wr_en_r; /* boolean, use QM_CGR_EN */
u8 cscn_en; /* boolean, use QM_CGR_EN */
union {
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u16 cscn_targ_upd_ctrl; /* use QM_CSCN_TARG_UDP_ */
u16 cscn_targ_dcp_low; /* CSCN_TARG_DCP low-16bits */
#else
u16 cscn_targ_dcp_low; /* CSCN_TARG_DCP low-16bits */
u16 cscn_targ_upd_ctrl; /* use QM_CSCN_TARG_UDP_ */
#endif
};
u32 cscn_targ; /* use QM_CGR_TARG_* */
};
u8 cstd_en; /* boolean, use QM_CGR_EN */
u8 cs; /* boolean, only used in query response */
union {
struct qm_cgr_cs_thres cs_thres;
/* use qm_cgr_cs_thres_set64() */
u16 __cs_thres;
};
u8 mode; /* QMAN_CGR_MODE_FRAME not supported in rev1.0 */
} __packed;
#define QM_CGR_EN 0x01 /* For wr_en_*, cscn_en, cstd_en */
#define QM_CGR_TARG_UDP_CTRL_WRITE_BIT 0x8000 /* value written to portal bit*/
#define QM_CGR_TARG_UDP_CTRL_DCP 0x4000 /* 0: SWP, 1: DCP */
#define QM_CGR_TARG_PORTAL(n) (0x80000000 >> (n)) /* s/w portal, 0-9 */
#define QM_CGR_TARG_FMAN0 0x00200000 /* direct-connect portal: fman0 */
#define QM_CGR_TARG_FMAN1 0x00100000 /* : fman1 */
/* Convert CGR thresholds to/from "cs_thres" format */
static inline u64 qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres *th)
{
return (u64)th->TA << th->Tn;
}
static inline int qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres *th, u64 val,
int roundup)
{
u32 e = 0;
int oddbit = 0;
while (val > 0xff) {
oddbit = val & 1;
val >>= 1;
e++;
if (roundup && oddbit)
val++;
}
th->Tn = e;
th->TA = val;
return 0;
}
/* See 1.5.8.5.1: "Initialize FQ" */
/* See 1.5.8.5.2: "Query FQ" */
/* See 1.5.8.5.3: "Query FQ Non-Programmable Fields" */
/* See 1.5.8.5.4: "Alter FQ State Commands " */
/* See 1.5.8.6.1: "Initialize/Modify CGR" */
/* See 1.5.8.6.2: "CGR Test Write" */
/* See 1.5.8.6.3: "Query CGR" */
/* See 1.5.8.6.4: "Query Congestion Group State" */
struct qm_mcc_initfq {
u8 __reserved1;
u16 we_mask; /* Write Enable Mask */
u32 fqid; /* 24-bit */
u16 count; /* Initialises 'count+1' FQDs */
struct qm_fqd fqd; /* the FQD fields go here */
u8 __reserved3[30];
} __packed;
struct qm_mcc_queryfq {
u8 __reserved1[3];
u32 fqid; /* 24-bit */
u8 __reserved2[56];
} __packed;
struct qm_mcc_queryfq_np {
u8 __reserved1[3];
u32 fqid; /* 24-bit */
u8 __reserved2[56];
} __packed;
struct qm_mcc_alterfq {
u8 __reserved1[3];
u32 fqid; /* 24-bit */
u8 __reserved2;
u8 count; /* number of consecutive FQID */
u8 __reserved3[10];
u32 context_b; /* frame queue context b */
u8 __reserved4[40];
} __packed;
struct qm_mcc_initcgr {
u8 __reserved1;
u16 we_mask; /* Write Enable Mask */
struct __qm_mc_cgr cgr; /* CGR fields */
u8 __reserved2[2];
u8 cgid;
u8 __reserved4[32];
} __packed;
struct qm_mcc_cgrtestwrite {
u8 __reserved1[2];
u8 i_bcnt_hi:8;/* high 8-bits of 40-bit "Instant" */
u32 i_bcnt_lo; /* low 32-bits of 40-bit */
u8 __reserved2[23];
u8 cgid;
u8 __reserved3[32];
} __packed;
struct qm_mcc_querycgr {
u8 __reserved1[30];
u8 cgid;
u8 __reserved2[32];
} __packed;
struct qm_mcc_querycongestion {
u8 __reserved[63];
} __packed;
struct qm_mcc_querywq {
u8 __reserved;
/* select channel if verb != QUERYWQ_DEDICATED */
union {
u16 channel_wq; /* ignores wq (3 lsbits) */
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u16 id:13; /* qm_channel */
u16 __reserved1:3;
#else
u16 __reserved1:3;
u16 id:13; /* qm_channel */
#endif
} __packed channel;
};
u8 __reserved2[60];
} __packed;
struct qm_mc_command {
u8 __dont_write_directly__verb;
union {
struct qm_mcc_initfq initfq;
struct qm_mcc_queryfq queryfq;
struct qm_mcc_queryfq_np queryfq_np;
struct qm_mcc_alterfq alterfq;
struct qm_mcc_initcgr initcgr;
struct qm_mcc_cgrtestwrite cgrtestwrite;
struct qm_mcc_querycgr querycgr;
struct qm_mcc_querycongestion querycongestion;
struct qm_mcc_querywq querywq;
};
} __packed;
/* INITFQ-specific flags */
#define QM_INITFQ_WE_MASK 0x01ff /* 'Write Enable' flags; */
#define QM_INITFQ_WE_OAC 0x0100
#define QM_INITFQ_WE_ORPC 0x0080
#define QM_INITFQ_WE_CGID 0x0040
#define QM_INITFQ_WE_FQCTRL 0x0020
#define QM_INITFQ_WE_DESTWQ 0x0010
#define QM_INITFQ_WE_ICSCRED 0x0008
#define QM_INITFQ_WE_TDTHRESH 0x0004
#define QM_INITFQ_WE_CONTEXTB 0x0002
#define QM_INITFQ_WE_CONTEXTA 0x0001
/* INITCGR/MODIFYCGR-specific flags */
#define QM_CGR_WE_MASK 0x07ff /* 'Write Enable Mask'; */
#define QM_CGR_WE_WR_PARM_G 0x0400
#define QM_CGR_WE_WR_PARM_Y 0x0200
#define QM_CGR_WE_WR_PARM_R 0x0100
#define QM_CGR_WE_WR_EN_G 0x0080
#define QM_CGR_WE_WR_EN_Y 0x0040
#define QM_CGR_WE_WR_EN_R 0x0020
#define QM_CGR_WE_CSCN_EN 0x0010
#define QM_CGR_WE_CSCN_TARG 0x0008
#define QM_CGR_WE_CSTD_EN 0x0004
#define QM_CGR_WE_CS_THRES 0x0002
#define QM_CGR_WE_MODE 0x0001
struct qm_mcr_initfq {
u8 __reserved1[62];
} __packed;
struct qm_mcr_queryfq {
u8 __reserved1[8];
struct qm_fqd fqd; /* the FQD fields are here */
u8 __reserved2[30];
} __packed;
struct qm_mcr_queryfq_np {
u8 __reserved1;
u8 state; /* QM_MCR_NP_STATE_*** */
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u8 __reserved2;
u32 fqd_link:24;
u16 __reserved3:2;
u16 odp_seq:14;
u16 __reserved4:2;
u16 orp_nesn:14;
u16 __reserved5:1;
u16 orp_ea_hseq:15;
u16 __reserved6:1;
u16 orp_ea_tseq:15;
u8 __reserved7;
u32 orp_ea_hptr:24;
u8 __reserved8;
u32 orp_ea_tptr:24;
u8 __reserved9;
u32 pfdr_hptr:24;
u8 __reserved10;
u32 pfdr_tptr:24;
u8 __reserved11[5];
u8 __reserved12:7;
u8 is:1;
u16 ics_surp;
u32 byte_cnt;
u8 __reserved13;
u32 frm_cnt:24;
u32 __reserved14;
u16 ra1_sfdr; /* QM_MCR_NP_RA1_*** */
u16 ra2_sfdr; /* QM_MCR_NP_RA2_*** */
u16 __reserved15;
u16 od1_sfdr; /* QM_MCR_NP_OD1_*** */
u16 od2_sfdr; /* QM_MCR_NP_OD2_*** */
u16 od3_sfdr; /* QM_MCR_NP_OD3_*** */
#else
u8 __reserved2;
u32 fqd_link:24;
u16 odp_seq:14;
u16 __reserved3:2;
u16 orp_nesn:14;
u16 __reserved4:2;
u16 orp_ea_hseq:15;
u16 __reserved5:1;
u16 orp_ea_tseq:15;
u16 __reserved6:1;
u8 __reserved7;
u32 orp_ea_hptr:24;
u8 __reserved8;
u32 orp_ea_tptr:24;
u8 __reserved9;
u32 pfdr_hptr:24;
u8 __reserved10;
u32 pfdr_tptr:24;
u8 __reserved11[5];
u8 is:1;
u8 __reserved12:7;
u16 ics_surp;
u32 byte_cnt;
u8 __reserved13;
u32 frm_cnt:24;
u32 __reserved14;
u16 ra1_sfdr; /* QM_MCR_NP_RA1_*** */
u16 ra2_sfdr; /* QM_MCR_NP_RA2_*** */
u16 __reserved15;
u16 od1_sfdr; /* QM_MCR_NP_OD1_*** */
u16 od2_sfdr; /* QM_MCR_NP_OD2_*** */
u16 od3_sfdr; /* QM_MCR_NP_OD3_*** */
#endif
} __packed;
struct qm_mcr_alterfq {
u8 fqs; /* Frame Queue Status */
u8 __reserved1[61];
} __packed;
struct qm_mcr_initcgr {
u8 __reserved1[62];
} __packed;
struct qm_mcr_cgrtestwrite {
u16 __reserved1;
struct __qm_mc_cgr cgr; /* CGR fields */
u8 __reserved2[3];
u32 __reserved3:24;
u32 i_bcnt_hi:8;/* high 8-bits of 40-bit "Instant" */
u32 i_bcnt_lo; /* low 32-bits of 40-bit */
u32 __reserved4:24;
u32 a_bcnt_hi:8;/* high 8-bits of 40-bit "Average" */
u32 a_bcnt_lo; /* low 32-bits of 40-bit */
u16 lgt; /* Last Group Tick */
u16 wr_prob_g;
u16 wr_prob_y;
u16 wr_prob_r;
u8 __reserved5[8];
} __packed;
struct qm_mcr_querycgr {
u16 __reserved1;
struct __qm_mc_cgr cgr; /* CGR fields */
u8 __reserved2[3];
union {
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u32 __reserved3:24;
u32 i_bcnt_hi:8;/* high 8-bits of 40-bit "Instant" */
u32 i_bcnt_lo; /* low 32-bits of 40-bit */
#else
u32 i_bcnt_lo; /* low 32-bits of 40-bit */
u32 i_bcnt_hi:8;/* high 8-bits of 40-bit "Instant" */
u32 __reserved3:24;
#endif
};
u64 i_bcnt;
};
union {
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u32 __reserved4:24;
u32 a_bcnt_hi:8;/* high 8-bits of 40-bit "Average" */
u32 a_bcnt_lo; /* low 32-bits of 40-bit */
#else
u32 a_bcnt_lo; /* low 32-bits of 40-bit */
u32 a_bcnt_hi:8;/* high 8-bits of 40-bit "Average" */
u32 __reserved4:24;
#endif
};
u64 a_bcnt;
};
union {
u32 cscn_targ_swp[4];
u8 __reserved5[16];
};
} __packed;
struct __qm_mcr_querycongestion {
u32 state[8];
};
struct qm_mcr_querycongestion {
u8 __reserved[30];
/* Access this struct using QM_MCR_QUERYCONGESTION() */
struct __qm_mcr_querycongestion state;
} __packed;
struct qm_mcr_querywq {
union {
u16 channel_wq; /* ignores wq (3 lsbits) */
struct {
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
u16 id:13; /* qm_channel */
u16 __reserved:3;
#else
u16 __reserved:3;
u16 id:13; /* qm_channel */
#endif
} __packed channel;
};
u8 __reserved[28];
u32 wq_len[8];
} __packed;
struct qm_mc_result {
u8 verb;
u8 result;
union {
struct qm_mcr_initfq initfq;
struct qm_mcr_queryfq queryfq;
struct qm_mcr_queryfq_np queryfq_np;
struct qm_mcr_alterfq alterfq;
struct qm_mcr_initcgr initcgr;
struct qm_mcr_cgrtestwrite cgrtestwrite;
struct qm_mcr_querycgr querycgr;
struct qm_mcr_querycongestion querycongestion;
struct qm_mcr_querywq querywq;
};
} __packed;
#define QM_MCR_VERB_RRID 0x80
#define QM_MCR_VERB_MASK QM_MCC_VERB_MASK
#define QM_MCR_VERB_INITFQ_PARKED QM_MCC_VERB_INITFQ_PARKED
#define QM_MCR_VERB_INITFQ_SCHED QM_MCC_VERB_INITFQ_SCHED
#define QM_MCR_VERB_QUERYFQ QM_MCC_VERB_QUERYFQ
#define QM_MCR_VERB_QUERYFQ_NP QM_MCC_VERB_QUERYFQ_NP
#define QM_MCR_VERB_QUERYWQ QM_MCC_VERB_QUERYWQ
#define QM_MCR_VERB_QUERYWQ_DEDICATED QM_MCC_VERB_QUERYWQ_DEDICATED
#define QM_MCR_VERB_ALTER_SCHED QM_MCC_VERB_ALTER_SCHED
#define QM_MCR_VERB_ALTER_FE QM_MCC_VERB_ALTER_FE
#define QM_MCR_VERB_ALTER_RETIRE QM_MCC_VERB_ALTER_RETIRE
#define QM_MCR_VERB_ALTER_OOS QM_MCC_VERB_ALTER_OOS
#define QM_MCR_RESULT_NULL 0x00
#define QM_MCR_RESULT_OK 0xf0
#define QM_MCR_RESULT_ERR_FQID 0xf1
#define QM_MCR_RESULT_ERR_FQSTATE 0xf2
#define QM_MCR_RESULT_ERR_NOTEMPTY 0xf3 /* OOS fails if FQ is !empty */
#define QM_MCR_RESULT_ERR_BADCHANNEL 0xf4
#define QM_MCR_RESULT_PENDING 0xf8
#define QM_MCR_RESULT_ERR_BADCOMMAND 0xff
#define QM_MCR_NP_STATE_FE 0x10
#define QM_MCR_NP_STATE_R 0x08
#define QM_MCR_NP_STATE_MASK 0x07 /* Reads FQD::STATE; */
#define QM_MCR_NP_STATE_OOS 0x00
#define QM_MCR_NP_STATE_RETIRED 0x01
#define QM_MCR_NP_STATE_TEN_SCHED 0x02
#define QM_MCR_NP_STATE_TRU_SCHED 0x03
#define QM_MCR_NP_STATE_PARKED 0x04
#define QM_MCR_NP_STATE_ACTIVE 0x05
#define QM_MCR_NP_PTR_MASK 0x07ff /* for RA[12] & OD[123] */
#define QM_MCR_NP_RA1_NRA(v) (((v) >> 14) & 0x3) /* FQD::NRA */
#define QM_MCR_NP_RA2_IT(v) (((v) >> 14) & 0x1) /* FQD::IT */
#define QM_MCR_NP_OD1_NOD(v) (((v) >> 14) & 0x3) /* FQD::NOD */
#define QM_MCR_NP_OD3_NPC(v) (((v) >> 14) & 0x3) /* FQD::NPC */
#define QM_MCR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */
#define QM_MCR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */
/* This extracts the state for congestion group 'n' from a query response.
* Eg.
* u8 cgr = [...];
* struct qm_mc_result *res = [...];
* printf("congestion group %d congestion state: %d\n", cgr,
* QM_MCR_QUERYCONGESTION(&res->querycongestion.state, cgr));
*/
#define __CGR_WORD(num) (num >> 5)
#define __CGR_SHIFT(num) (num & 0x1f)
#define __CGR_NUM (sizeof(struct __qm_mcr_querycongestion) << 3)
static inline int QM_MCR_QUERYCONGESTION(struct __qm_mcr_querycongestion *p,
u8 cgr)
{
return p->state[__CGR_WORD(cgr)] & (0x80000000 >> __CGR_SHIFT(cgr));
}
/* Portal and Frame Queues */
/* Represents a managed portal */
struct qman_portal;
/*
* This object type represents QMan frame queue descriptors (FQD), it is
* cacheline-aligned, and initialised by qman_create_fq(). The structure is
* defined further down.
*/
struct qman_fq;
/*
* This object type represents a QMan congestion group, it is defined further
* down.
*/
struct qman_cgr;
/*
* This enum, and the callback type that returns it, are used when handling
* dequeued frames via DQRR. Note that for "null" callbacks registered with the
* portal object (for handling dequeues that do not demux because context_b is
* NULL), the return value *MUST* be qman_cb_dqrr_consume.
*/
enum qman_cb_dqrr_result {
/* DQRR entry can be consumed */
qman_cb_dqrr_consume,
/* Like _consume, but requests parking - FQ must be held-active */
qman_cb_dqrr_park,
/* Does not consume, for DCA mode only. This allows out-of-order
* consumes by explicit calls to qman_dca() and/or the use of implicit
* DCA via EQCR entries.
*/
qman_cb_dqrr_defer,
/*
* Stop processing without consuming this ring entry. Exits the current
* qman_p_poll_dqrr() or interrupt-handling, as appropriate. If within
* an interrupt handler, the callback would typically call
* qman_irqsource_remove(QM_PIRQ_DQRI) before returning this value,
* otherwise the interrupt will reassert immediately.
*/
qman_cb_dqrr_stop,
/* Like qman_cb_dqrr_stop, but consumes the current entry. */
qman_cb_dqrr_consume_stop
};
typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm,
struct qman_fq *fq,
const struct qm_dqrr_entry *dqrr);
typedef enum qman_cb_dqrr_result (*qman_dpdk_cb_dqrr)(void *event,
struct qman_portal *qm,
struct qman_fq *fq,
const struct qm_dqrr_entry *dqrr,
void **bd);
/* This callback type is used when handling buffers in dpdk pull mode */
typedef void (*qman_dpdk_pull_cb_dqrr)(struct qman_fq **fq,
struct qm_dqrr_entry **dqrr,
void **bufs,
int num_bufs);
typedef void (*qman_dpdk_cb_prepare)(struct qm_dqrr_entry *dq, void **bufs);
/*
* This callback type is used when handling ERNs, FQRNs and FQRLs via MR. They
* are always consumed after the callback returns.
*/
typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq,
const struct qm_mr_entry *msg);
/* This callback type is used when handling DCP ERNs */
typedef void (*qman_cb_dc_ern)(struct qman_portal *qm,
const struct qm_mr_entry *msg);
/*
* s/w-visible states. Ie. tentatively scheduled + truly scheduled + active +
* held-active + held-suspended are just "sched". Things like "retired" will not
* be assumed until it is complete (ie. QMAN_FQ_STATE_CHANGING is set until
* then, to indicate it's completing and to gate attempts to retry the retire
* command). Note, park commands do not set QMAN_FQ_STATE_CHANGING because it's
* technically impossible in the case of enqueue DCAs (which refer to DQRR ring
* index rather than the FQ that ring entry corresponds to), so repeated park
* commands are allowed (if you're silly enough to try) but won't change FQ
* state, and the resulting park notifications move FQs from "sched" to
* "parked".
*/
enum qman_fq_state {
qman_fq_state_oos,
qman_fq_state_parked,
qman_fq_state_sched,
qman_fq_state_retired
};
/*
* Frame queue objects (struct qman_fq) are stored within memory passed to
* qman_create_fq(), as this allows stashing of caller-provided demux callback
* pointers at no extra cost to stashing of (driver-internal) FQ state. If the
* caller wishes to add per-FQ state and have it benefit from dequeue-stashing,
* they should;
*
* (a) extend the qman_fq structure with their state; eg.
*
* // myfq is allocated and driver_fq callbacks filled in;
* struct my_fq {
* struct qman_fq base;
* int an_extra_field;
* [ ... add other fields to be associated with each FQ ...]
* } *myfq = some_my_fq_allocator();
* struct qman_fq *fq = qman_create_fq(fqid, flags, &myfq->base);
*
* // in a dequeue callback, access extra fields from 'fq' via a cast;
* struct my_fq *myfq = (struct my_fq *)fq;
* do_something_with(myfq->an_extra_field);
* [...]
*
* (b) when and if configuring the FQ for context stashing, specify how ever
* many cachelines are required to stash 'struct my_fq', to accelerate not
* only the QMan driver but the callback as well.
*/
struct qman_fq_cb {
union { /* for dequeued frames */
qman_dpdk_cb_dqrr dqrr_dpdk_cb;
qman_dpdk_pull_cb_dqrr dqrr_dpdk_pull_cb;
qman_cb_dqrr dqrr;
};
qman_dpdk_cb_prepare dqrr_prepare;
qman_cb_mr ern; /* for s/w ERNs */
qman_cb_mr fqs; /* frame-queue state changes*/
};
struct qman_fq {
/* Caller of qman_create_fq() provides these demux callbacks */
struct qman_fq_cb cb;
u32 fqid_le;
u16 ch_id;
u8 cgr_groupid;
u8 is_static;
/* DPDK Interface */
void *dpaa_intf;
struct rte_event ev;
/* affined portal in case of static queue */
struct qman_portal *qp;
volatile unsigned long flags;
enum qman_fq_state state;
u32 fqid;
spinlock_t fqlock;
struct rb_node node;
#ifdef CONFIG_FSL_QMAN_FQ_LOOKUP
u32 key;
#endif
};
/*
* This callback type is used when handling congestion group entry/exit.
* 'congested' is non-zero on congestion-entry, and zero on congestion-exit.
*/
typedef void (*qman_cb_cgr)(struct qman_portal *qm,
struct qman_cgr *cgr, int congested);
struct qman_cgr {
/* Set these prior to qman_create_cgr() */
u32 cgrid; /* 0..255, but u32 to allow specials like -1, 256, etc.*/
qman_cb_cgr cb;
/* These are private to the driver */
u16 chan; /* portal channel this object is created on */
struct list_head node;
};
/* Flags to qman_create_fq() */
#define QMAN_FQ_FLAG_NO_ENQUEUE 0x00000001 /* can't enqueue */
#define QMAN_FQ_FLAG_NO_MODIFY 0x00000002 /* can only enqueue */
#define QMAN_FQ_FLAG_TO_DCPORTAL 0x00000004 /* consumed by CAAM/PME/Fman */
#define QMAN_FQ_FLAG_LOCKED 0x00000008 /* multi-core locking */
#define QMAN_FQ_FLAG_AS_IS 0x00000010 /* query h/w state */
#define QMAN_FQ_FLAG_DYNAMIC_FQID 0x00000020 /* (de)allocate fqid */
/* Flags to qman_destroy_fq() */
#define QMAN_FQ_DESTROY_PARKED 0x00000001 /* FQ can be parked or OOS */
/* Flags from qman_fq_state() */
#define QMAN_FQ_STATE_CHANGING 0x80000000 /* 'state' is changing */
#define QMAN_FQ_STATE_NE 0x40000000 /* retired FQ isn't empty */
#define QMAN_FQ_STATE_ORL 0x20000000 /* retired FQ has ORL */
#define QMAN_FQ_STATE_BLOCKOOS 0xe0000000 /* if any are set, no OOS */
#define QMAN_FQ_STATE_CGR_EN 0x10000000 /* CGR enabled */
#define QMAN_FQ_STATE_VDQCR 0x08000000 /* being volatile dequeued */
/* Flags to qman_init_fq() */
#define QMAN_INITFQ_FLAG_SCHED 0x00000001 /* schedule rather than park */
#define QMAN_INITFQ_FLAG_LOCAL 0x00000004 /* set dest portal */
/* Flags to qman_enqueue(). NB, the strange numbering is to align with hardware,
* bit-wise. (NB: the PME API is sensitive to these precise numberings too, so
* any change here should be audited in PME.)
*/
#define QMAN_ENQUEUE_FLAG_WATCH_CGR 0x00080000 /* watch congestion state */
#define QMAN_ENQUEUE_FLAG_DCA 0x00008000 /* perform enqueue-DCA */
#define QMAN_ENQUEUE_FLAG_DCA_PARK 0x00004000 /* If DCA, requests park */
#define QMAN_ENQUEUE_FLAG_DCA_PTR(p) /* If DCA, p is DQRR entry */ \
(((u32)(p) << 2) & 0x00000f00)
#define QMAN_ENQUEUE_FLAG_C_GREEN 0x00000000 /* choose one C_*** flag */
#define QMAN_ENQUEUE_FLAG_C_YELLOW 0x00000008
#define QMAN_ENQUEUE_FLAG_C_RED 0x00000010
#define QMAN_ENQUEUE_FLAG_C_OVERRIDE 0x00000018
/* For the ORP-specific qman_enqueue_orp() variant;
* - this flag indicates "Not Last In Sequence", ie. all but the final fragment
* of a frame.
*/
#define QMAN_ENQUEUE_FLAG_NLIS 0x01000000
/* - this flag performs no enqueue but fills in an ORP sequence number that
* would otherwise block it (eg. if a frame has been dropped).
*/
#define QMAN_ENQUEUE_FLAG_HOLE 0x02000000
/* - this flag performs no enqueue but advances NESN to the given sequence
* number.
*/
#define QMAN_ENQUEUE_FLAG_NESN 0x04000000
/* Flags to qman_modify_cgr() */
#define QMAN_CGR_FLAG_USE_INIT 0x00000001
#define QMAN_CGR_MODE_FRAME 0x00000001
/**
* qman_get_portal_index - get portal configuration index
*/
int qman_get_portal_index(void);
u32 qman_portal_dequeue(struct rte_event ev[], unsigned int poll_limit,
void **bufs);
/**
* qman_irqsource_add - add processing sources to be interrupt-driven
* @bits: bitmask of QM_PIRQ_**I processing sources
*
* Adds processing sources that should be interrupt-driven (rather than
* processed via qman_poll_***() functions). Returns zero for success, or
* -EINVAL if the current CPU is sharing a portal hosted on another CPU.
*/
int qman_irqsource_add(u32 bits);
/**
* qman_irqsource_remove - remove processing sources from being interrupt-driven
* @bits: bitmask of QM_PIRQ_**I processing sources
*
* Removes processing sources from being interrupt-driven, so that they will
* instead be processed via qman_poll_***() functions. Returns zero for success,
* or -EINVAL if the current CPU is sharing a portal hosted on another CPU.
*/
int qman_irqsource_remove(u32 bits);
/**
* qman_affine_channel - return the channel ID of an portal
* @cpu: the cpu whose affine portal is the subject of the query
*
* If @cpu is -1, the affine portal for the current CPU will be used. It is a
* bug to call this function for any value of @cpu (other than -1) that is not a
* member of the cpu mask.
*/
u16 qman_affine_channel(int cpu);
unsigned int qman_portal_poll_rx(unsigned int poll_limit,
void **bufs, struct qman_portal *q);
/**
* qman_set_vdq - Issue a volatile dequeue command
* @fq: Frame Queue on which the volatile dequeue command is issued
* @num: Number of Frames requested for volatile dequeue
* @vdqcr_flags: QM_VDQCR_EXACT flag to for VDQCR command
*
* This function will issue a volatile dequeue command to the QMAN.
*/
int qman_set_vdq(struct qman_fq *fq, u16 num, uint32_t vdqcr_flags);
/**
* qman_dequeue - Get the DQRR entry after volatile dequeue command
* @fq: Frame Queue on which the volatile dequeue command is issued
*
* This function will return the DQRR entry after a volatile dequeue command
* is issued. It will keep returning NULL until there is no packet available on
* the DQRR.
*/
struct qm_dqrr_entry *qman_dequeue(struct qman_fq *fq);
/**
* qman_dqrr_consume - Consume the DQRR entriy after volatile dequeue
* @fq: Frame Queue on which the volatile dequeue command is issued
* @dq: DQRR entry to consume. This is the one which is provided by the
* 'qbman_dequeue' command.
*
* This will consume the DQRR enrey and make it available for next volatile
* dequeue.
*/
void qman_dqrr_consume(struct qman_fq *fq,
struct qm_dqrr_entry *dq);
/**
* qman_poll_dqrr - process DQRR (fast-path) entries
* @limit: the maximum number of DQRR entries to process
*
* Use of this function requires that DQRR processing not be interrupt-driven.
* Ie. the value returned by qman_irqsource_get() should not include
* QM_PIRQ_DQRI. If the current CPU is sharing a portal hosted on another CPU,
* this function will return -EINVAL, otherwise the return value is >=0 and
* represents the number of DQRR entries processed.
*/
int qman_poll_dqrr(unsigned int limit);
/**
* qman_poll
*
* Dispatcher logic on a cpu can use this to trigger any maintenance of the
* affine portal. There are two classes of portal processing in question;
* fast-path (which involves demuxing dequeue ring (DQRR) entries and tracking
* enqueue ring (EQCR) consumption), and slow-path (which involves EQCR
* thresholds, congestion state changes, etc). This function does whatever
* processing is not triggered by interrupts.
*
* Note, if DQRR and some slow-path processing are poll-driven (rather than
* interrupt-driven) then this function uses a heuristic to determine how often
* to run slow-path processing - as slow-path processing introduces at least a
* minimum latency each time it is run, whereas fast-path (DQRR) processing is
* close to zero-cost if there is no work to be done.
*/
void qman_poll(void);
/**
* qman_stop_dequeues - Stop h/w dequeuing to the s/w portal
*
* Disables DQRR processing of the portal. This is reference-counted, so
* qman_start_dequeues() must be called as many times as qman_stop_dequeues() to
* truly re-enable dequeuing.
*/
void qman_stop_dequeues(void);
/**
* qman_start_dequeues - (Re)start h/w dequeuing to the s/w portal
*
* Enables DQRR processing of the portal. This is reference-counted, so
* qman_start_dequeues() must be called as many times as qman_stop_dequeues() to
* truly re-enable dequeuing.
*/
void qman_start_dequeues(void);
/**
* qman_static_dequeue_add - Add pool channels to the portal SDQCR
* @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
*
* Adds a set of pool channels to the portal's static dequeue command register
* (SDQCR). The requested pools are limited to those the portal has dequeue
* access to.
*/
void qman_static_dequeue_add(u32 pools, struct qman_portal *qm);
/**
* qman_static_dequeue_del - Remove pool channels from the portal SDQCR
* @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
*
* Removes a set of pool channels from the portal's static dequeue command
* register (SDQCR). The requested pools are limited to those the portal has
* dequeue access to.
*/
void qman_static_dequeue_del(u32 pools, struct qman_portal *qp);
/**
* qman_static_dequeue_get - return the portal's current SDQCR
*
* Returns the portal's current static dequeue command register (SDQCR). The
* entire register is returned, so if only the currently-enabled pool channels
* are desired, mask the return value with QM_SDQCR_CHANNELS_POOL_MASK.
*/
u32 qman_static_dequeue_get(struct qman_portal *qp);
/**
* qman_dca - Perform a Discrete Consumption Acknowledgment
* @dq: the DQRR entry to be consumed
* @park_request: indicates whether the held-active @fq should be parked
*
* Only allowed in DCA-mode portals, for DQRR entries whose handler callback had
* previously returned 'qman_cb_dqrr_defer'. NB, as with the other APIs, this
* does not take a 'portal' argument but implies the core affine portal from the
* cpu that is currently executing the function. For reasons of locking, this
* function must be called from the same CPU as that which processed the DQRR
* entry in the first place.
*/
void qman_dca(const struct qm_dqrr_entry *dq, int park_request);
/**
* qman_dca_index - Perform a Discrete Consumption Acknowledgment
* @index: the DQRR index to be consumed
* @park_request: indicates whether the held-active @fq should be parked
*
* Only allowed in DCA-mode portals, for DQRR entries whose handler callback had
* previously returned 'qman_cb_dqrr_defer'. NB, as with the other APIs, this
* does not take a 'portal' argument but implies the core affine portal from the
* cpu that is currently executing the function. For reasons of locking, this
* function must be called from the same CPU as that which processed the DQRR
* entry in the first place.
*/
void qman_dca_index(u8 index, int park_request);
/**
* qman_eqcr_is_empty - Determine if portal's EQCR is empty
*
* For use in situations where a cpu-affine caller needs to determine when all
* enqueues for the local portal have been processed by Qman but can't use the
* QMAN_ENQUEUE_FLAG_WAIT_SYNC flag to do this from the final qman_enqueue().
* The function forces tracking of EQCR consumption (which normally doesn't
* happen until enqueue processing needs to find space to put new enqueue
* commands), and returns zero if the ring still has unprocessed entries,
* non-zero if it is empty.
*/
int qman_eqcr_is_empty(void);
/**
* qman_set_dc_ern - Set the handler for DCP enqueue rejection notifications
* @handler: callback for processing DCP ERNs
* @affine: whether this handler is specific to the locally affine portal
*
* If a hardware block's interface to Qman (ie. its direct-connect portal, or
* DCP) is configured not to receive enqueue rejections, then any enqueues
* through that DCP that are rejected will be sent to a given software portal.
* If @affine is non-zero, then this handler will only be used for DCP ERNs
* received on the portal affine to the current CPU. If multiple CPUs share a
* portal and they all call this function, they will be setting the handler for
* the same portal! If @affine is zero, then this handler will be global to all
* portals handled by this instance of the driver. Only those portals that do
* not have their own affine handler will use the global handler.
*/
void qman_set_dc_ern(qman_cb_dc_ern handler, int affine);
/* FQ management */
/* ------------- */
/**
* qman_create_fq - Allocates a FQ
* @fqid: the index of the FQD to encapsulate, must be "Out of Service"
* @flags: bit-mask of QMAN_FQ_FLAG_*** options
* @fq: memory for storing the 'fq', with callbacks filled in
*
* Creates a frame queue object for the given @fqid, unless the
* QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is
* dynamically allocated (or the function fails if none are available). Once
* created, the caller should not touch the memory at 'fq' except as extended to
* adjacent memory for user-defined fields (see the definition of "struct
* qman_fq" for more info). NO_MODIFY is only intended for enqueuing to
* pre-existing frame-queues that aren't to be otherwise interfered with, it
* prevents all other modifications to the frame queue. The TO_DCPORTAL flag
* causes the driver to honour any contextB modifications requested in the
* qm_init_fq() API, as this indicates the frame queue will be consumed by a
* direct-connect portal (PME, CAAM, or Fman). When frame queues are consumed by
* software portals, the contextB field is controlled by the driver and can't be
* modified by the caller. If the AS_IS flag is specified, management commands
* will be used on portal @p to query state for frame queue @fqid and construct
* a frame queue object based on that, rather than assuming/requiring that it be
* Out of Service.
*/
int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq);
/**
* qman_destroy_fq - Deallocates a FQ
* @fq: the frame queue object to release
* @flags: bit-mask of QMAN_FQ_FREE_*** options
*
* The memory for this frame queue object ('fq' provided in qman_create_fq()) is
* not deallocated but the caller regains ownership, to do with as desired. The
* FQ must be in the 'out-of-service' state unless the QMAN_FQ_FREE_PARKED flag
* is specified, in which case it may also be in the 'parked' state.
*/
void qman_destroy_fq(struct qman_fq *fq, u32 flags);
/**
* qman_fq_fqid - Queries the frame queue ID of a FQ object
* @fq: the frame queue object to query
*/
u32 qman_fq_fqid(struct qman_fq *fq);
/**
* qman_fq_state - Queries the state of a FQ object
* @fq: the frame queue object to query
* @state: pointer to state enum to return the FQ scheduling state
* @flags: pointer to state flags to receive QMAN_FQ_STATE_*** bitmask
*
* Queries the state of the FQ object, without performing any h/w commands.
* This captures the state, as seen by the driver, at the time the function
* executes.
*/
void qman_fq_state(struct qman_fq *fq, enum qman_fq_state *state, u32 *flags);
/**
* qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled"
* @fq: the frame queue object to modify, must be 'parked' or new.
* @flags: bit-mask of QMAN_INITFQ_FLAG_*** options
* @opts: the FQ-modification settings, as defined in the low-level API
*
* The @opts parameter comes from the low-level portal API. Select
* QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be scheduled
* rather than parked. NB, @opts can be NULL.
*
* Note that some fields and options within @opts may be ignored or overwritten
* by the driver;
* 1. the 'count' and 'fqid' fields are always ignored (this operation only
* affects one frame queue: @fq).
* 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated
* 'fqd' structure's 'context_b' field are sometimes overwritten;
* - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is
* initialised to a value used by the driver for demux.
* - if context_b is initialised for demux, so is context_a in case stashing
* is requested (see item 4).
* (So caller control of context_b is only possible for TO_DCPORTAL frame queue
* objects.)
* 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's
* 'dest::channel' field will be overwritten to match the portal used to issue
* the command. If the WE_DESTWQ write-enable bit had already been set by the
* caller, the channel workqueue will be left as-is, otherwise the write-enable
* bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag
* isn't set, the destination channel/workqueue fields and the write-enable bit
* are left as-is.
* 4. if the driver overwrites context_a/b for demux, then if
* QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite
* context_a.address fields and will leave the stashing fields provided by the
* user alone, otherwise it will zero out the context_a.stashing fields.
*/
int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts);
/**
* qman_schedule_fq - Schedules a FQ
* @fq: the frame queue object to schedule, must be 'parked'
*
* Schedules the frame queue, which must be Parked, which takes it to
* Tentatively-Scheduled or Truly-Scheduled depending on its fill-level.
*/
int qman_schedule_fq(struct qman_fq *fq);
/**
* qman_retire_fq - Retires a FQ
* @fq: the frame queue object to retire
* @flags: FQ flags (as per qman_fq_state) if retirement completes immediately
*
* Retires the frame queue. This returns zero if it succeeds immediately, +1 if
* the retirement was started asynchronously, otherwise it returns negative for
* failure. When this function returns zero, @flags is set to indicate whether
* the retired FQ is empty and/or whether it has any ORL fragments (to show up
* as ERNs). Otherwise the corresponding flags will be known when a subsequent
* FQRN message shows up on the portal's message ring.
*
* NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or
* Active state), the completion will be via the message ring as a FQRN - but
* the corresponding callback may occur before this function returns!! Ie. the
* caller should be prepared to accept the callback as the function is called,
* not only once it has returned.
*/
int qman_retire_fq(struct qman_fq *fq, u32 *flags);
/**
* qman_oos_fq - Puts a FQ "out of service"
* @fq: the frame queue object to be put out-of-service, must be 'retired'
*
* The frame queue must be retired and empty, and if any order restoration list
* was released as ERNs at the time of retirement, they must all be consumed.
*/
int qman_oos_fq(struct qman_fq *fq);
/**
* qman_fq_flow_control - Set the XON/XOFF state of a FQ
* @fq: the frame queue object to be set to XON/XOFF state, must not be 'oos',
* or 'retired' or 'parked' state
* @xon: boolean to set fq in XON or XOFF state
*
* The frame should be in Tentatively Scheduled state or Truly Schedule sate,
* otherwise the IFSI interrupt will be asserted.
*/
int qman_fq_flow_control(struct qman_fq *fq, int xon);
/**
* qman_query_fq - Queries FQD fields (via h/w query command)
* @fq: the frame queue object to be queried
* @fqd: storage for the queried FQD fields
*/
int qman_query_fq(struct qman_fq *fq, struct qm_fqd *fqd);
/**
* qman_query_fq_has_pkts - Queries non-programmable FQD fields and returns '1'
* if packets are in the frame queue. If there are no packets on frame
* queue '0' is returned.
* @fq: the frame queue object to be queried
*/
int qman_query_fq_has_pkts(struct qman_fq *fq);
/**
* qman_query_fq_np - Queries non-programmable FQD fields
* @fq: the frame queue object to be queried
* @np: storage for the queried FQD fields
*/
int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np);
/**
* qman_query_fq_frmcnt - Queries fq frame count
* @fq: the frame queue object to be queried
* @frm_cnt: number of frames in the queue
*/
int qman_query_fq_frm_cnt(struct qman_fq *fq, u32 *frm_cnt);
/**
* qman_query_wq - Queries work queue lengths
* @query_dedicated: If non-zero, query length of WQs in the channel dedicated
* to this software portal. Otherwise, query length of WQs in a
* channel specified in wq.
* @wq: storage for the queried WQs lengths. Also specified the channel to
* to query if query_dedicated is zero.
*/
int qman_query_wq(u8 query_dedicated, struct qm_mcr_querywq *wq);
/**
* qman_volatile_dequeue - Issue a volatile dequeue command
* @fq: the frame queue object to dequeue from
* @flags: a bit-mask of QMAN_VOLATILE_FLAG_*** options
* @vdqcr: bit mask of QM_VDQCR_*** options, as per qm_dqrr_vdqcr_set()
*
* Attempts to lock access to the portal's VDQCR volatile dequeue functionality.
* The function will block and sleep if QMAN_VOLATILE_FLAG_WAIT is specified and
* the VDQCR is already in use, otherwise returns non-zero for failure. If
* QMAN_VOLATILE_FLAG_FINISH is specified, the function will only return once
* the VDQCR command has finished executing (ie. once the callback for the last
* DQRR entry resulting from the VDQCR command has been called). If not using
* the FINISH flag, completion can be determined either by detecting the
* presence of the QM_DQRR_STAT_UNSCHEDULED and QM_DQRR_STAT_DQCR_EXPIRED bits
* in the "stat" field of the "struct qm_dqrr_entry" passed to the FQ's dequeue
* callback, or by waiting for the QMAN_FQ_STATE_VDQCR bit to disappear from the
* "flags" retrieved from qman_fq_state().
*/
int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr);
/**
* qman_enqueue - Enqueue a frame to a frame queue
* @fq: the frame queue object to enqueue to
* @fd: a descriptor of the frame to be enqueued
* @flags: bit-mask of QMAN_ENQUEUE_FLAG_*** options
*
* Fills an entry in the EQCR of portal @qm to enqueue the frame described by
* @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid'
* field is ignored. The return value is non-zero on error, such as ring full
* (and FLAG_WAIT not specified), congestion avoidance (FLAG_WATCH_CGR
* specified), etc. If the ring is full and FLAG_WAIT is specified, this
* function will block. If FLAG_INTERRUPT is set, the EQCI bit of the portal
* interrupt will assert when Qman consumes the EQCR entry (subject to "status
* disable", "enable", and "inhibit" registers). If FLAG_DCA is set, Qman will
* perform an implied "discrete consumption acknowledgment" on the dequeue
* ring's (DQRR) entry, at the ring index specified by the FLAG_DCA_IDX(x)
* macro. (As an alternative to issuing explicit DCA actions on DQRR entries,
* this implicit DCA can delay the release of a "held active" frame queue
* corresponding to a DQRR entry until Qman consumes the EQCR entry - providing
* order-preservation semantics in packet-forwarding scenarios.) If FLAG_DCA is
* set, then FLAG_DCA_PARK can also be set to imply that the DQRR consumption
* acknowledgment should "park request" the "held active" frame queue. Ie.
* when the portal eventually releases that frame queue, it will be left in the
* Parked state rather than Tentatively Scheduled or Truly Scheduled. If the
* portal is watching congestion groups, the QMAN_ENQUEUE_FLAG_WATCH_CGR flag
* is requested, and the FQ is a member of a congestion group, then this
* function returns -EAGAIN if the congestion group is currently congested.
* Note, this does not eliminate ERNs, as the async interface means we can be
* sending enqueue commands to an un-congested FQ that becomes congested before
* the enqueue commands are processed, but it does minimise needless thrashing
* of an already busy hardware resource by throttling many of the to-be-dropped
* enqueues "at the source".
*/
int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd, u32 flags);
int qman_enqueue_multi(struct qman_fq *fq, const struct qm_fd *fd, u32 *flags,
int frames_to_send);
/**
* qman_enqueue_multi_fq - Enqueue multiple frames to their respective frame
* queues.
* @fq[]: Array of frame queue objects to enqueue to
* @fd: pointer to first descriptor of frame to be enqueued
* @frames_to_send: number of frames to be sent.
*
* This API is similar to qman_enqueue_multi(), but it takes fd which needs
* to be processed by different frame queues.
*/
int
qman_enqueue_multi_fq(struct qman_fq *fq[], const struct qm_fd *fd,
int frames_to_send);
typedef int (*qman_cb_precommit) (void *arg);
/**
* qman_enqueue_orp - Enqueue a frame to a frame queue using an ORP
* @fq: the frame queue object to enqueue to
* @fd: a descriptor of the frame to be enqueued
* @flags: bit-mask of QMAN_ENQUEUE_FLAG_*** options
* @orp: the frame queue object used as an order restoration point.
* @orp_seqnum: the sequence number of this frame in the order restoration path
*
* Similar to qman_enqueue(), but with the addition of an Order Restoration
* Point (@orp) and corresponding sequence number (@orp_seqnum) for this
* enqueue operation to employ order restoration. Each frame queue object acts
* as an Order Definition Point (ODP) by providing each frame dequeued from it
* with an incrementing sequence number, this value is generally ignored unless
* that sequence of dequeued frames will need order restoration later. Each
* frame queue object also encapsulates an Order Restoration Point (ORP), which
* is a re-assembly context for re-ordering frames relative to their sequence
* numbers as they are enqueued. The ORP does not have to be within the frame
* queue that receives the enqueued frame, in fact it is usually the frame
* queue from which the frames were originally dequeued. For the purposes of
* order restoration, multiple frames (or "fragments") can be enqueued for a
* single sequence number by setting the QMAN_ENQUEUE_FLAG_NLIS flag for all
* enqueues except the final fragment of a given sequence number. Ordering
* between sequence numbers is guaranteed, even if fragments of different
* sequence numbers are interlaced with one another. Fragments of the same
* sequence number will retain the order in which they are enqueued. If no
* enqueue is to performed, QMAN_ENQUEUE_FLAG_HOLE indicates that the given
* sequence number is to be "skipped" by the ORP logic (eg. if a frame has been
* dropped from a sequence), or QMAN_ENQUEUE_FLAG_NESN indicates that the given
* sequence number should become the ORP's "Next Expected Sequence Number".
*
* Side note: a frame queue object can be used purely as an ORP, without
* carrying any frames at all. Care should be taken not to deallocate a frame
* queue object that is being actively used as an ORP, as a future allocation
* of the frame queue object may start using the internal ORP before the
* previous use has finished.
*/
int qman_enqueue_orp(struct qman_fq *fq, const struct qm_fd *fd, u32 flags,
struct qman_fq *orp, u16 orp_seqnum);
/**
* qman_alloc_fqid_range - Allocate a contiguous range of FQIDs
* @result: is set by the API to the base FQID of the allocated range
* @count: the number of FQIDs required
* @align: required alignment of the allocated range
* @partial: non-zero if the API can return fewer than @count FQIDs
*
* Returns the number of frame queues allocated, or a negative error code. If
* @partial is non zero, the allocation request may return a smaller range of
* FQs than requested (though alignment will be as requested). If @partial is
* zero, the return value will either be 'count' or negative.
*/
int qman_alloc_fqid_range(u32 *result, u32 count, u32 align, int partial);
static inline int qman_alloc_fqid(u32 *result)
{
int ret = qman_alloc_fqid_range(result, 1, 0, 0);
return (ret > 0) ? 0 : ret;
}
/**
* qman_release_fqid_range - Release the specified range of frame queue IDs
* @fqid: the base FQID of the range to deallocate
* @count: the number of FQIDs in the range
*
* This function can also be used to seed the allocator with ranges of FQIDs
* that it can subsequently allocate from.
*/
void qman_release_fqid_range(u32 fqid, unsigned int count);
static inline void qman_release_fqid(u32 fqid)
{
qman_release_fqid_range(fqid, 1);
}
void qman_seed_fqid_range(u32 fqid, unsigned int count);
int qman_shutdown_fq(u32 fqid);
/**
* qman_reserve_fqid_range - Reserve the specified range of frame queue IDs
* @fqid: the base FQID of the range to deallocate
* @count: the number of FQIDs in the range
*/
int qman_reserve_fqid_range(u32 fqid, unsigned int count);
static inline int qman_reserve_fqid(u32 fqid)
{
return qman_reserve_fqid_range(fqid, 1);
}
/* Pool-channel management */
/**
* qman_alloc_pool_range - Allocate a contiguous range of pool-channel IDs
* @result: is set by the API to the base pool-channel ID of the allocated range
* @count: the number of pool-channel IDs required
* @align: required alignment of the allocated range
* @partial: non-zero if the API can return fewer than @count
*
* Returns the number of pool-channel IDs allocated, or a negative error code.
* If @partial is non zero, the allocation request may return a smaller range of
* than requested (though alignment will be as requested). If @partial is zero,
* the return value will either be 'count' or negative.
*/
int qman_alloc_pool_range(u32 *result, u32 count, u32 align, int partial);
static inline int qman_alloc_pool(u32 *result)
{
int ret = qman_alloc_pool_range(result, 1, 0, 0);
return (ret > 0) ? 0 : ret;
}
/**
* qman_release_pool_range - Release the specified range of pool-channel IDs
* @id: the base pool-channel ID of the range to deallocate
* @count: the number of pool-channel IDs in the range
*/
void qman_release_pool_range(u32 id, unsigned int count);
static inline void qman_release_pool(u32 id)
{
qman_release_pool_range(id, 1);
}
/**
* qman_reserve_pool_range - Reserve the specified range of pool-channel IDs
* @id: the base pool-channel ID of the range to reserve
* @count: the number of pool-channel IDs in the range
*/
int qman_reserve_pool_range(u32 id, unsigned int count);
static inline int qman_reserve_pool(u32 id)
{
return qman_reserve_pool_range(id, 1);
}
void qman_seed_pool_range(u32 id, unsigned int count);
/* CGR management */
/* -------------- */
/**
* qman_create_cgr - Register a congestion group object
* @cgr: the 'cgr' object, with fields filled in
* @flags: QMAN_CGR_FLAG_* values
* @opts: optional state of CGR settings
*
* Registers this object to receiving congestion entry/exit callbacks on the
* portal affine to the cpu portal on which this API is executed. If opts is
* NULL then only the callback (cgr->cb) function is registered. If @flags
* contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset
* any unspecified parameters) will be used rather than a modify hw hardware
* (which only modifies the specified parameters).
*/
int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
struct qm_mcc_initcgr *opts);
/**
* qman_create_cgr_to_dcp - Register a congestion group object to DCP portal
* @cgr: the 'cgr' object, with fields filled in
* @flags: QMAN_CGR_FLAG_* values
* @dcp_portal: the DCP portal to which the cgr object is registered.
* @opts: optional state of CGR settings
*
*/
int qman_create_cgr_to_dcp(struct qman_cgr *cgr, u32 flags, u16 dcp_portal,
struct qm_mcc_initcgr *opts);
/**
* qman_delete_cgr - Deregisters a congestion group object
* @cgr: the 'cgr' object to deregister
*
* "Unplugs" this CGR object from the portal affine to the cpu on which this API
* is executed. This must be excuted on the same affine portal on which it was
* created.
*/
int qman_delete_cgr(struct qman_cgr *cgr);
/**
* qman_modify_cgr - Modify CGR fields
* @cgr: the 'cgr' object to modify
* @flags: QMAN_CGR_FLAG_* values
* @opts: the CGR-modification settings
*
* The @opts parameter comes from the low-level portal API, and can be NULL.
* Note that some fields and options within @opts may be ignored or overwritten
* by the driver, in particular the 'cgrid' field is ignored (this operation
* only affects the given CGR object). If @flags contains
* QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset any
* unspecified parameters) will be used rather than a modify hw hardware (which
* only modifies the specified parameters).
*/
int qman_modify_cgr(struct qman_cgr *cgr, u32 flags,
struct qm_mcc_initcgr *opts);
/**
* qman_query_cgr - Queries CGR fields
* @cgr: the 'cgr' object to query
* @result: storage for the queried congestion group record
*/
int qman_query_cgr(struct qman_cgr *cgr, struct qm_mcr_querycgr *result);
/**
* qman_query_congestion - Queries the state of all congestion groups
* @congestion: storage for the queried state of all congestion groups
*/
int qman_query_congestion(struct qm_mcr_querycongestion *congestion);
/**
* qman_alloc_cgrid_range - Allocate a contiguous range of CGR IDs
* @result: is set by the API to the base CGR ID of the allocated range
* @count: the number of CGR IDs required
* @align: required alignment of the allocated range
* @partial: non-zero if the API can return fewer than @count
*
* Returns the number of CGR IDs allocated, or a negative error code.
* If @partial is non zero, the allocation request may return a smaller range of
* than requested (though alignment will be as requested). If @partial is zero,
* the return value will either be 'count' or negative.
*/
int qman_alloc_cgrid_range(u32 *result, u32 count, u32 align, int partial);
static inline int qman_alloc_cgrid(u32 *result)
{
int ret = qman_alloc_cgrid_range(result, 1, 0, 0);
return (ret > 0) ? 0 : ret;
}
/**
* qman_release_cgrid_range - Release the specified range of CGR IDs
* @id: the base CGR ID of the range to deallocate
* @count: the number of CGR IDs in the range
*/
void qman_release_cgrid_range(u32 id, unsigned int count);
static inline void qman_release_cgrid(u32 id)
{
qman_release_cgrid_range(id, 1);
}
/**
* qman_reserve_cgrid_range - Reserve the specified range of CGR ID
* @id: the base CGR ID of the range to reserve
* @count: the number of CGR IDs in the range
*/
int qman_reserve_cgrid_range(u32 id, unsigned int count);
static inline int qman_reserve_cgrid(u32 id)
{
return qman_reserve_cgrid_range(id, 1);
}
void qman_seed_cgrid_range(u32 id, unsigned int count);
/* Helpers */
/* ------- */
/**
* qman_poll_fq_for_init - Check if an FQ has been initialised from OOS
* @fqid: the FQID that will be initialised by other s/w
*
* In many situations, a FQID is provided for communication between s/w
* entities, and whilst the consumer is responsible for initialising and
* scheduling the FQ, the producer(s) generally create a wrapper FQ object using
* and only call qman_enqueue() (no FQ initialisation, scheduling, etc). Ie;
* qman_create_fq(..., QMAN_FQ_FLAG_NO_MODIFY, ...);
* However, data can not be enqueued to the FQ until it is initialised out of
* the OOS state - this function polls for that condition. It is particularly
* useful for users of IPC functions - each endpoint's Rx FQ is the other
* endpoint's Tx FQ, so each side can initialise and schedule their Rx FQ object
* and then use this API on the (NO_MODIFY) Tx FQ object in order to
* synchronise. The function returns zero for success, +1 if the FQ is still in
* the OOS state, or negative if there was an error.
*/
static inline int qman_poll_fq_for_init(struct qman_fq *fq)
{
struct qm_mcr_queryfq_np np;
int err;
err = qman_query_fq_np(fq, &np);
if (err)
return err;
if ((np.state & QM_MCR_NP_STATE_MASK) == QM_MCR_NP_STATE_OOS)
return 1;
return 0;
}
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
#define cpu_to_hw_sg(x)
#define hw_sg_to_cpu(x)
#else
#define cpu_to_hw_sg(x) __cpu_to_hw_sg(x)
#define hw_sg_to_cpu(x) __hw_sg_to_cpu(x)
static inline void __cpu_to_hw_sg(struct qm_sg_entry *sgentry)
{
sgentry->opaque = cpu_to_be64(sgentry->opaque);
sgentry->val = cpu_to_be32(sgentry->val);
sgentry->val_off = cpu_to_be16(sgentry->val_off);
}
static inline void __hw_sg_to_cpu(struct qm_sg_entry *sgentry)
{
sgentry->opaque = be64_to_cpu(sgentry->opaque);
sgentry->val = be32_to_cpu(sgentry->val);
sgentry->val_off = be16_to_cpu(sgentry->val_off);
}
#endif
#ifdef __cplusplus
}
#endif
#endif /* __FSL_QMAN_H */
|