1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
|
/*-
* BSD LICENSE
*
* Copyright(c) 2016 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_common.h>
#include <rte_config.h>
#include <rte_hexdump.h>
#include <rte_cryptodev.h>
#include <rte_cryptodev_pmd.h>
#include <rte_dev.h>
#include <rte_malloc.h>
#include <rte_cpuflags.h>
#include "rte_kasumi_pmd_private.h"
#define KASUMI_KEY_LENGTH 16
#define KASUMI_IV_LENGTH 8
#define KASUMI_DIGEST_LENGTH 4
#define KASUMI_MAX_BURST 4
#define BYTE_LEN 8
/**
* Global static parameter used to create a unique name for each KASUMI
* crypto device.
*/
static unsigned unique_name_id;
static inline int
create_unique_device_name(char *name, size_t size)
{
int ret;
if (name == NULL)
return -EINVAL;
ret = snprintf(name, size, "%s_%u", RTE_STR(CRYPTODEV_NAME_KASUMI_PMD),
unique_name_id++);
if (ret < 0)
return ret;
return 0;
}
/** Get xform chain order. */
static enum kasumi_operation
kasumi_get_mode(const struct rte_crypto_sym_xform *xform)
{
if (xform == NULL)
return KASUMI_OP_NOT_SUPPORTED;
if (xform->next)
if (xform->next->next != NULL)
return KASUMI_OP_NOT_SUPPORTED;
if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
if (xform->next == NULL)
return KASUMI_OP_ONLY_AUTH;
else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER)
return KASUMI_OP_AUTH_CIPHER;
else
return KASUMI_OP_NOT_SUPPORTED;
}
if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
if (xform->next == NULL)
return KASUMI_OP_ONLY_CIPHER;
else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
return KASUMI_OP_CIPHER_AUTH;
else
return KASUMI_OP_NOT_SUPPORTED;
}
return KASUMI_OP_NOT_SUPPORTED;
}
/** Parse crypto xform chain and set private session parameters. */
int
kasumi_set_session_parameters(struct kasumi_session *sess,
const struct rte_crypto_sym_xform *xform)
{
const struct rte_crypto_sym_xform *auth_xform = NULL;
const struct rte_crypto_sym_xform *cipher_xform = NULL;
int mode;
/* Select Crypto operation - hash then cipher / cipher then hash */
mode = kasumi_get_mode(xform);
switch (mode) {
case KASUMI_OP_CIPHER_AUTH:
auth_xform = xform->next;
/* Fall-through */
case KASUMI_OP_ONLY_CIPHER:
cipher_xform = xform;
break;
case KASUMI_OP_AUTH_CIPHER:
cipher_xform = xform->next;
/* Fall-through */
case KASUMI_OP_ONLY_AUTH:
auth_xform = xform;
}
if (mode == KASUMI_OP_NOT_SUPPORTED) {
KASUMI_LOG_ERR("Unsupported operation chain order parameter");
return -EINVAL;
}
if (cipher_xform) {
/* Only KASUMI F8 supported */
if (cipher_xform->cipher.algo != RTE_CRYPTO_CIPHER_KASUMI_F8)
return -EINVAL;
/* Initialize key */
sso_kasumi_init_f8_key_sched(xform->cipher.key.data,
&sess->pKeySched_cipher);
}
if (auth_xform) {
/* Only KASUMI F9 supported */
if (auth_xform->auth.algo != RTE_CRYPTO_AUTH_KASUMI_F9)
return -EINVAL;
sess->auth_op = auth_xform->auth.op;
/* Initialize key */
sso_kasumi_init_f9_key_sched(xform->auth.key.data,
&sess->pKeySched_hash);
}
sess->op = mode;
return 0;
}
/** Get KASUMI session. */
static struct kasumi_session *
kasumi_get_session(struct kasumi_qp *qp, struct rte_crypto_op *op)
{
struct kasumi_session *sess;
if (op->sym->sess_type == RTE_CRYPTO_SYM_OP_WITH_SESSION) {
if (unlikely(op->sym->session->dev_type !=
RTE_CRYPTODEV_KASUMI_PMD))
return NULL;
sess = (struct kasumi_session *)op->sym->session->_private;
} else {
struct rte_cryptodev_session *c_sess = NULL;
if (rte_mempool_get(qp->sess_mp, (void **)&c_sess))
return NULL;
sess = (struct kasumi_session *)c_sess->_private;
if (unlikely(kasumi_set_session_parameters(sess,
op->sym->xform) != 0))
return NULL;
}
return sess;
}
/** Encrypt/decrypt mbufs with same cipher key. */
static uint8_t
process_kasumi_cipher_op(struct rte_crypto_op **ops,
struct kasumi_session *session,
uint8_t num_ops)
{
unsigned i;
uint8_t processed_ops = 0;
uint8_t *src[num_ops], *dst[num_ops];
uint64_t IV[num_ops];
uint32_t num_bytes[num_ops];
for (i = 0; i < num_ops; i++) {
/* Sanity checks. */
if (ops[i]->sym->cipher.iv.length != KASUMI_IV_LENGTH) {
ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
KASUMI_LOG_ERR("iv");
break;
}
src[i] = rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) +
(ops[i]->sym->cipher.data.offset >> 3);
dst[i] = ops[i]->sym->m_dst ?
rte_pktmbuf_mtod(ops[i]->sym->m_dst, uint8_t *) +
(ops[i]->sym->cipher.data.offset >> 3) :
rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) +
(ops[i]->sym->cipher.data.offset >> 3);
IV[i] = *((uint64_t *)(ops[i]->sym->cipher.iv.data));
num_bytes[i] = ops[i]->sym->cipher.data.length >> 3;
processed_ops++;
}
if (processed_ops != 0)
sso_kasumi_f8_n_buffer(&session->pKeySched_cipher, IV,
src, dst, num_bytes, processed_ops);
return processed_ops;
}
/** Encrypt/decrypt mbuf (bit level function). */
static uint8_t
process_kasumi_cipher_op_bit(struct rte_crypto_op *op,
struct kasumi_session *session)
{
uint8_t *src, *dst;
uint64_t IV;
uint32_t length_in_bits, offset_in_bits;
/* Sanity checks. */
if (unlikely(op->sym->cipher.iv.length != KASUMI_IV_LENGTH)) {
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
KASUMI_LOG_ERR("iv");
return 0;
}
offset_in_bits = op->sym->cipher.data.offset;
src = rte_pktmbuf_mtod(op->sym->m_src, uint8_t *);
if (op->sym->m_dst == NULL) {
op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
KASUMI_LOG_ERR("bit-level in-place not supported\n");
return 0;
}
dst = rte_pktmbuf_mtod(op->sym->m_dst, uint8_t *);
IV = *((uint64_t *)(op->sym->cipher.iv.data));
length_in_bits = op->sym->cipher.data.length;
sso_kasumi_f8_1_buffer_bit(&session->pKeySched_cipher, IV,
src, dst, length_in_bits, offset_in_bits);
return 1;
}
/** Generate/verify hash from mbufs with same hash key. */
static int
process_kasumi_hash_op(struct rte_crypto_op **ops,
struct kasumi_session *session,
uint8_t num_ops)
{
unsigned i;
uint8_t processed_ops = 0;
uint8_t *src, *dst;
uint32_t length_in_bits;
uint32_t num_bytes;
uint32_t shift_bits;
uint64_t IV;
uint8_t direction;
for (i = 0; i < num_ops; i++) {
if (unlikely(ops[i]->sym->auth.aad.length != KASUMI_IV_LENGTH)) {
ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
KASUMI_LOG_ERR("aad");
break;
}
if (unlikely(ops[i]->sym->auth.digest.length != KASUMI_DIGEST_LENGTH)) {
ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
KASUMI_LOG_ERR("digest");
break;
}
/* Data must be byte aligned */
if ((ops[i]->sym->auth.data.offset % BYTE_LEN) != 0) {
ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
KASUMI_LOG_ERR("offset");
break;
}
length_in_bits = ops[i]->sym->auth.data.length;
src = rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) +
(ops[i]->sym->auth.data.offset >> 3);
/* IV from AAD */
IV = *((uint64_t *)(ops[i]->sym->auth.aad.data));
/* Direction from next bit after end of message */
num_bytes = (length_in_bits >> 3) + 1;
shift_bits = (BYTE_LEN - 1 - length_in_bits) % BYTE_LEN;
direction = (src[num_bytes - 1] >> shift_bits) & 0x01;
if (session->auth_op == RTE_CRYPTO_AUTH_OP_VERIFY) {
dst = (uint8_t *)rte_pktmbuf_append(ops[i]->sym->m_src,
ops[i]->sym->auth.digest.length);
sso_kasumi_f9_1_buffer_user(&session->pKeySched_hash,
IV, src,
length_in_bits, dst, direction);
/* Verify digest. */
if (memcmp(dst, ops[i]->sym->auth.digest.data,
ops[i]->sym->auth.digest.length) != 0)
ops[i]->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
/* Trim area used for digest from mbuf. */
rte_pktmbuf_trim(ops[i]->sym->m_src,
ops[i]->sym->auth.digest.length);
} else {
dst = ops[i]->sym->auth.digest.data;
sso_kasumi_f9_1_buffer_user(&session->pKeySched_hash,
IV, src,
length_in_bits, dst, direction);
}
processed_ops++;
}
return processed_ops;
}
/** Process a batch of crypto ops which shares the same session. */
static int
process_ops(struct rte_crypto_op **ops, struct kasumi_session *session,
struct kasumi_qp *qp, uint8_t num_ops,
uint16_t *accumulated_enqueued_ops)
{
unsigned i;
unsigned enqueued_ops, processed_ops;
switch (session->op) {
case KASUMI_OP_ONLY_CIPHER:
processed_ops = process_kasumi_cipher_op(ops,
session, num_ops);
break;
case KASUMI_OP_ONLY_AUTH:
processed_ops = process_kasumi_hash_op(ops, session,
num_ops);
break;
case KASUMI_OP_CIPHER_AUTH:
processed_ops = process_kasumi_cipher_op(ops, session,
num_ops);
process_kasumi_hash_op(ops, session, processed_ops);
break;
case KASUMI_OP_AUTH_CIPHER:
processed_ops = process_kasumi_hash_op(ops, session,
num_ops);
process_kasumi_cipher_op(ops, session, processed_ops);
break;
default:
/* Operation not supported. */
processed_ops = 0;
}
for (i = 0; i < num_ops; i++) {
/*
* If there was no error/authentication failure,
* change status to successful.
*/
if (ops[i]->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
ops[i]->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
/* Free session if a session-less crypto op. */
if (ops[i]->sym->sess_type == RTE_CRYPTO_SYM_OP_SESSIONLESS) {
rte_mempool_put(qp->sess_mp, ops[i]->sym->session);
ops[i]->sym->session = NULL;
}
}
enqueued_ops = rte_ring_enqueue_burst(qp->processed_ops,
(void **)ops, processed_ops);
qp->qp_stats.enqueued_count += enqueued_ops;
*accumulated_enqueued_ops += enqueued_ops;
return enqueued_ops;
}
/** Process a crypto op with length/offset in bits. */
static int
process_op_bit(struct rte_crypto_op *op, struct kasumi_session *session,
struct kasumi_qp *qp, uint16_t *accumulated_enqueued_ops)
{
unsigned enqueued_op, processed_op;
switch (session->op) {
case KASUMI_OP_ONLY_CIPHER:
processed_op = process_kasumi_cipher_op_bit(op,
session);
break;
case KASUMI_OP_ONLY_AUTH:
processed_op = process_kasumi_hash_op(&op, session, 1);
break;
case KASUMI_OP_CIPHER_AUTH:
processed_op = process_kasumi_cipher_op_bit(op, session);
if (processed_op == 1)
process_kasumi_hash_op(&op, session, 1);
break;
case KASUMI_OP_AUTH_CIPHER:
processed_op = process_kasumi_hash_op(&op, session, 1);
if (processed_op == 1)
process_kasumi_cipher_op_bit(op, session);
break;
default:
/* Operation not supported. */
processed_op = 0;
}
/*
* If there was no error/authentication failure,
* change status to successful.
*/
if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
/* Free session if a session-less crypto op. */
if (op->sym->sess_type == RTE_CRYPTO_SYM_OP_SESSIONLESS) {
rte_mempool_put(qp->sess_mp, op->sym->session);
op->sym->session = NULL;
}
enqueued_op = rte_ring_enqueue_burst(qp->processed_ops, (void **)&op,
processed_op);
qp->qp_stats.enqueued_count += enqueued_op;
*accumulated_enqueued_ops += enqueued_op;
return enqueued_op;
}
static uint16_t
kasumi_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct rte_crypto_op *c_ops[nb_ops];
struct rte_crypto_op *curr_c_op;
struct kasumi_session *prev_sess = NULL, *curr_sess = NULL;
struct kasumi_qp *qp = queue_pair;
unsigned i;
uint8_t burst_size = 0;
uint16_t enqueued_ops = 0;
uint8_t processed_ops;
for (i = 0; i < nb_ops; i++) {
curr_c_op = ops[i];
/* Set status as enqueued (not processed yet) by default. */
curr_c_op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
curr_sess = kasumi_get_session(qp, curr_c_op);
if (unlikely(curr_sess == NULL ||
curr_sess->op == KASUMI_OP_NOT_SUPPORTED)) {
curr_c_op->status =
RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
break;
}
/* If length/offset is at bit-level, process this buffer alone. */
if (((curr_c_op->sym->cipher.data.length % BYTE_LEN) != 0)
|| ((ops[i]->sym->cipher.data.offset
% BYTE_LEN) != 0)) {
/* Process the ops of the previous session. */
if (prev_sess != NULL) {
processed_ops = process_ops(c_ops, prev_sess,
qp, burst_size, &enqueued_ops);
if (processed_ops < burst_size) {
burst_size = 0;
break;
}
burst_size = 0;
prev_sess = NULL;
}
processed_ops = process_op_bit(curr_c_op, curr_sess,
qp, &enqueued_ops);
if (processed_ops != 1)
break;
continue;
}
/* Batch ops that share the same session. */
if (prev_sess == NULL) {
prev_sess = curr_sess;
c_ops[burst_size++] = curr_c_op;
} else if (curr_sess == prev_sess) {
c_ops[burst_size++] = curr_c_op;
/*
* When there are enough ops to process in a batch,
* process them, and start a new batch.
*/
if (burst_size == KASUMI_MAX_BURST) {
processed_ops = process_ops(c_ops, prev_sess,
qp, burst_size, &enqueued_ops);
if (processed_ops < burst_size) {
burst_size = 0;
break;
}
burst_size = 0;
prev_sess = NULL;
}
} else {
/*
* Different session, process the ops
* of the previous session.
*/
processed_ops = process_ops(c_ops, prev_sess,
qp, burst_size, &enqueued_ops);
if (processed_ops < burst_size) {
burst_size = 0;
break;
}
burst_size = 0;
prev_sess = curr_sess;
c_ops[burst_size++] = curr_c_op;
}
}
if (burst_size != 0) {
/* Process the crypto ops of the last session. */
processed_ops = process_ops(c_ops, prev_sess,
qp, burst_size, &enqueued_ops);
}
qp->qp_stats.enqueue_err_count += nb_ops - enqueued_ops;
return enqueued_ops;
}
static uint16_t
kasumi_pmd_dequeue_burst(void *queue_pair,
struct rte_crypto_op **c_ops, uint16_t nb_ops)
{
struct kasumi_qp *qp = queue_pair;
unsigned nb_dequeued;
nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops,
(void **)c_ops, nb_ops);
qp->qp_stats.dequeued_count += nb_dequeued;
return nb_dequeued;
}
static int cryptodev_kasumi_uninit(const char *name);
static int
cryptodev_kasumi_create(const char *name,
struct rte_crypto_vdev_init_params *init_params)
{
struct rte_cryptodev *dev;
char crypto_dev_name[RTE_CRYPTODEV_NAME_MAX_LEN];
struct kasumi_private *internals;
uint64_t cpu_flags = 0;
/* Check CPU for supported vector instruction set */
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX))
cpu_flags |= RTE_CRYPTODEV_FF_CPU_AVX;
else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1))
cpu_flags |= RTE_CRYPTODEV_FF_CPU_SSE;
else {
KASUMI_LOG_ERR("Vector instructions are not supported by CPU");
return -EFAULT;
}
/* Create a unique device name. */
if (create_unique_device_name(crypto_dev_name,
RTE_CRYPTODEV_NAME_MAX_LEN) != 0) {
KASUMI_LOG_ERR("failed to create unique cryptodev name");
return -EINVAL;
}
dev = rte_cryptodev_pmd_virtual_dev_init(crypto_dev_name,
sizeof(struct kasumi_private), init_params->socket_id);
if (dev == NULL) {
KASUMI_LOG_ERR("failed to create cryptodev vdev");
goto init_error;
}
dev->dev_type = RTE_CRYPTODEV_KASUMI_PMD;
dev->dev_ops = rte_kasumi_pmd_ops;
/* Register RX/TX burst functions for data path. */
dev->dequeue_burst = kasumi_pmd_dequeue_burst;
dev->enqueue_burst = kasumi_pmd_enqueue_burst;
dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
cpu_flags;
internals = dev->data->dev_private;
internals->max_nb_queue_pairs = init_params->max_nb_queue_pairs;
internals->max_nb_sessions = init_params->max_nb_sessions;
return 0;
init_error:
KASUMI_LOG_ERR("driver %s: cryptodev_kasumi_create failed", name);
cryptodev_kasumi_uninit(crypto_dev_name);
return -EFAULT;
}
static int
cryptodev_kasumi_init(const char *name,
const char *input_args)
{
struct rte_crypto_vdev_init_params init_params = {
RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_QUEUE_PAIRS,
RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_SESSIONS,
rte_socket_id()
};
rte_cryptodev_parse_vdev_init_params(&init_params, input_args);
RTE_LOG(INFO, PMD, "Initialising %s on NUMA node %d\n", name,
init_params.socket_id);
RTE_LOG(INFO, PMD, " Max number of queue pairs = %d\n",
init_params.max_nb_queue_pairs);
RTE_LOG(INFO, PMD, " Max number of sessions = %d\n",
init_params.max_nb_sessions);
return cryptodev_kasumi_create(name, &init_params);
}
static int
cryptodev_kasumi_uninit(const char *name)
{
if (name == NULL)
return -EINVAL;
RTE_LOG(INFO, PMD, "Closing KASUMI crypto device %s"
" on numa socket %u\n",
name, rte_socket_id());
return 0;
}
static struct rte_driver cryptodev_kasumi_pmd_drv = {
.type = PMD_VDEV,
.init = cryptodev_kasumi_init,
.uninit = cryptodev_kasumi_uninit
};
PMD_REGISTER_DRIVER(cryptodev_kasumi_pmd_drv, CRYPTODEV_NAME_KASUMI_PMD);
DRIVER_REGISTER_PARAM_STRING(CRYPTODEV_NAME_KASUMI_PMD,
"max_nb_queue_pairs=<int> "
"max_nb_sessions=<int> "
"socket_id=<int>");
|