1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <rte_cryptodev.h>
#include <rte_malloc.h>
#include "rte_cryptodev_scheduler_operations.h"
#include "scheduler_pmd_private.h"
struct rr_scheduler_qp_ctx {
struct scheduler_slave slaves[RTE_CRYPTODEV_SCHEDULER_MAX_NB_SLAVES];
uint32_t nb_slaves;
uint32_t last_enq_slave_idx;
uint32_t last_deq_slave_idx;
};
static uint16_t
schedule_enqueue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
{
struct rr_scheduler_qp_ctx *rr_qp_ctx =
((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
uint32_t slave_idx = rr_qp_ctx->last_enq_slave_idx;
struct scheduler_slave *slave = &rr_qp_ctx->slaves[slave_idx];
uint16_t i, processed_ops;
if (unlikely(nb_ops == 0))
return 0;
for (i = 0; i < nb_ops && i < 4; i++)
rte_prefetch0(ops[i]->sym->session);
processed_ops = rte_cryptodev_enqueue_burst(slave->dev_id,
slave->qp_id, ops, nb_ops);
slave->nb_inflight_cops += processed_ops;
rr_qp_ctx->last_enq_slave_idx += 1;
rr_qp_ctx->last_enq_slave_idx %= rr_qp_ctx->nb_slaves;
return processed_ops;
}
static uint16_t
schedule_enqueue_ordering(void *qp, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct rte_ring *order_ring =
((struct scheduler_qp_ctx *)qp)->order_ring;
uint16_t nb_ops_to_enq = get_max_enqueue_order_count(order_ring,
nb_ops);
uint16_t nb_ops_enqd = schedule_enqueue(qp, ops,
nb_ops_to_enq);
scheduler_order_insert(order_ring, ops, nb_ops_enqd);
return nb_ops_enqd;
}
static uint16_t
schedule_dequeue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
{
struct rr_scheduler_qp_ctx *rr_qp_ctx =
((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
struct scheduler_slave *slave;
uint32_t last_slave_idx = rr_qp_ctx->last_deq_slave_idx;
uint16_t nb_deq_ops;
if (unlikely(rr_qp_ctx->slaves[last_slave_idx].nb_inflight_cops == 0)) {
do {
last_slave_idx += 1;
if (unlikely(last_slave_idx >= rr_qp_ctx->nb_slaves))
last_slave_idx = 0;
/* looped back, means no inflight cops in the queue */
if (last_slave_idx == rr_qp_ctx->last_deq_slave_idx)
return 0;
} while (rr_qp_ctx->slaves[last_slave_idx].nb_inflight_cops
== 0);
}
slave = &rr_qp_ctx->slaves[last_slave_idx];
nb_deq_ops = rte_cryptodev_dequeue_burst(slave->dev_id,
slave->qp_id, ops, nb_ops);
last_slave_idx += 1;
last_slave_idx %= rr_qp_ctx->nb_slaves;
rr_qp_ctx->last_deq_slave_idx = last_slave_idx;
slave->nb_inflight_cops -= nb_deq_ops;
return nb_deq_ops;
}
static uint16_t
schedule_dequeue_ordering(void *qp, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct rte_ring *order_ring =
((struct scheduler_qp_ctx *)qp)->order_ring;
schedule_dequeue(qp, ops, nb_ops);
return scheduler_order_drain(order_ring, ops, nb_ops);
}
static int
slave_attach(__rte_unused struct rte_cryptodev *dev,
__rte_unused uint8_t slave_id)
{
return 0;
}
static int
slave_detach(__rte_unused struct rte_cryptodev *dev,
__rte_unused uint8_t slave_id)
{
return 0;
}
static int
scheduler_start(struct rte_cryptodev *dev)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
uint16_t i;
if (sched_ctx->reordering_enabled) {
dev->enqueue_burst = &schedule_enqueue_ordering;
dev->dequeue_burst = &schedule_dequeue_ordering;
} else {
dev->enqueue_burst = &schedule_enqueue;
dev->dequeue_burst = &schedule_dequeue;
}
for (i = 0; i < dev->data->nb_queue_pairs; i++) {
struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[i];
struct rr_scheduler_qp_ctx *rr_qp_ctx =
qp_ctx->private_qp_ctx;
uint32_t j;
memset(rr_qp_ctx->slaves, 0,
RTE_CRYPTODEV_SCHEDULER_MAX_NB_SLAVES *
sizeof(struct scheduler_slave));
for (j = 0; j < sched_ctx->nb_slaves; j++) {
rr_qp_ctx->slaves[j].dev_id =
sched_ctx->slaves[j].dev_id;
rr_qp_ctx->slaves[j].qp_id = i;
}
rr_qp_ctx->nb_slaves = sched_ctx->nb_slaves;
rr_qp_ctx->last_enq_slave_idx = 0;
rr_qp_ctx->last_deq_slave_idx = 0;
}
return 0;
}
static int
scheduler_stop(__rte_unused struct rte_cryptodev *dev)
{
return 0;
}
static int
scheduler_config_qp(struct rte_cryptodev *dev, uint16_t qp_id)
{
struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[qp_id];
struct rr_scheduler_qp_ctx *rr_qp_ctx;
rr_qp_ctx = rte_zmalloc_socket(NULL, sizeof(*rr_qp_ctx), 0,
rte_socket_id());
if (!rr_qp_ctx) {
CR_SCHED_LOG(ERR, "failed allocate memory for private queue pair");
return -ENOMEM;
}
qp_ctx->private_qp_ctx = (void *)rr_qp_ctx;
return 0;
}
static int
scheduler_create_private_ctx(__rte_unused struct rte_cryptodev *dev)
{
return 0;
}
struct rte_cryptodev_scheduler_ops scheduler_rr_ops = {
slave_attach,
slave_detach,
scheduler_start,
scheduler_stop,
scheduler_config_qp,
scheduler_create_private_ctx,
NULL, /* option_set */
NULL /* option_get */
};
struct rte_cryptodev_scheduler scheduler = {
.name = "roundrobin-scheduler",
.description = "scheduler which will round robin burst across "
"slave crypto devices",
.mode = CDEV_SCHED_MODE_ROUNDROBIN,
.ops = &scheduler_rr_ops
};
struct rte_cryptodev_scheduler *roundrobin_scheduler = &scheduler;
|