aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/avf/avf_rxtx_vec_sse.c
blob: 343a6aac3a8bf65ca371aa226e43219d3cc7ca51 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2017 Intel Corporation
 */

#include <stdint.h>
#include <rte_ethdev_driver.h>
#include <rte_malloc.h>

#include "base/avf_prototype.h"
#include "base/avf_type.h"
#include "avf.h"
#include "avf_rxtx.h"
#include "avf_rxtx_vec_common.h"

#include <tmmintrin.h>

#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif

static inline void
avf_rxq_rearm(struct avf_rx_queue *rxq)
{
	int i;
	uint16_t rx_id;

	volatile union avf_rx_desc *rxdp;
	struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
	struct rte_mbuf *mb0, *mb1;
	__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
			RTE_PKTMBUF_HEADROOM);
	__m128i dma_addr0, dma_addr1;

	rxdp = rxq->rx_ring + rxq->rxrearm_start;

	/* Pull 'n' more MBUFs into the software ring */
	if (rte_mempool_get_bulk(rxq->mp, (void *)rxp,
				 rxq->rx_free_thresh) < 0) {
		if (rxq->rxrearm_nb + rxq->rx_free_thresh >= rxq->nb_rx_desc) {
			dma_addr0 = _mm_setzero_si128();
			for (i = 0; i < AVF_VPMD_DESCS_PER_LOOP; i++) {
				rxp[i] = &rxq->fake_mbuf;
				_mm_store_si128((__m128i *)&rxdp[i].read,
						dma_addr0);
			}
		}
		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
			rxq->rx_free_thresh;
		return;
	}

	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
	for (i = 0; i < rxq->rx_free_thresh; i += 2, rxp += 2) {
		__m128i vaddr0, vaddr1;

		mb0 = rxp[0];
		mb1 = rxp[1];

		/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
				offsetof(struct rte_mbuf, buf_addr) + 8);
		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);

		/* convert pa to dma_addr hdr/data */
		dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
		dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);

		/* add headroom to pa values */
		dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
		dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);

		/* flush desc with pa dma_addr */
		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
	}

	rxq->rxrearm_start += rxq->rx_free_thresh;
	if (rxq->rxrearm_start >= rxq->nb_rx_desc)
		rxq->rxrearm_start = 0;

	rxq->rxrearm_nb -= rxq->rx_free_thresh;

	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
			   (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));

	PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
		   "rearm_start=%u rearm_nb=%u",
		   rxq->port_id, rxq->queue_id,
		   rx_id, rxq->rxrearm_start, rxq->rxrearm_nb);

	/* Update the tail pointer on the NIC */
	AVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
}

static inline void
desc_to_olflags_v(struct avf_rx_queue *rxq, __m128i descs[4],
		  struct rte_mbuf **rx_pkts)
{
	const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
	__m128i rearm0, rearm1, rearm2, rearm3;

	__m128i vlan0, vlan1, rss, l3_l4e;

	/* mask everything except RSS, flow director and VLAN flags
	 * bit2 is for VLAN tag, bit11 for flow director indication
	 * bit13:12 for RSS indication.
	 */
	const __m128i rss_vlan_msk = _mm_set_epi32(
			0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804);

	const __m128i cksum_mask = _mm_set_epi32(
			PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
			PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
			PKT_RX_EIP_CKSUM_BAD,
			PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
			PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
			PKT_RX_EIP_CKSUM_BAD,
			PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
			PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
			PKT_RX_EIP_CKSUM_BAD,
			PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
			PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
			PKT_RX_EIP_CKSUM_BAD);

	/* map rss and vlan type to rss hash and vlan flag */
	const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0,
			0, 0, 0, 0,
			0, 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
			0, 0, 0, 0);

	const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
			0, 0, 0, 0,
			PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
			0, 0, PKT_RX_FDIR, 0);

	const __m128i l3_l4e_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
			/* shift right 1 bit to make sure it not exceed 255 */
			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
			 PKT_RX_IP_CKSUM_BAD) >> 1,
			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
			 PKT_RX_L4_CKSUM_BAD) >> 1,
			(PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
			(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
			PKT_RX_IP_CKSUM_BAD >> 1,
			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);

	vlan0 = _mm_unpackhi_epi32(descs[0], descs[1]);
	vlan1 = _mm_unpackhi_epi32(descs[2], descs[3]);
	vlan0 = _mm_unpacklo_epi64(vlan0, vlan1);

	vlan1 = _mm_and_si128(vlan0, rss_vlan_msk);
	vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1);

	rss = _mm_srli_epi32(vlan1, 11);
	rss = _mm_shuffle_epi8(rss_flags, rss);

	l3_l4e = _mm_srli_epi32(vlan1, 22);
	l3_l4e = _mm_shuffle_epi8(l3_l4e_flags, l3_l4e);
	/* then we shift left 1 bit */
	l3_l4e = _mm_slli_epi32(l3_l4e, 1);
	/* we need to mask out the reduntant bits */
	l3_l4e = _mm_and_si128(l3_l4e, cksum_mask);

	vlan0 = _mm_or_si128(vlan0, rss);
	vlan0 = _mm_or_si128(vlan0, l3_l4e);

	/* At this point, we have the 4 sets of flags in the low 16-bits
	 * of each 32-bit value in vlan0.
	 * We want to extract these, and merge them with the mbuf init data
	 * so we can do a single 16-byte write to the mbuf to set the flags
	 * and all the other initialization fields. Extracting the
	 * appropriate flags means that we have to do a shift and blend for
	 * each mbuf before we do the write.
	 */
	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 8), 0x10);
	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 4), 0x10);
	rearm2 = _mm_blend_epi16(mbuf_init, vlan0, 0x10);
	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(vlan0, 4), 0x10);

	/* write the rearm data and the olflags in one write */
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
			offsetof(struct rte_mbuf, rearm_data) + 8);
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
			RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
	_mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
	_mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
	_mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
	_mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
}

#define PKTLEN_SHIFT     10

static inline void
desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
{
	__m128i ptype0 = _mm_unpackhi_epi64(descs[0], descs[1]);
	__m128i ptype1 = _mm_unpackhi_epi64(descs[2], descs[3]);
	static const uint32_t type_table[UINT8_MAX + 1] __rte_cache_aligned = {
		/* [0] reserved */
		[1] = RTE_PTYPE_L2_ETHER,
		/* [2] - [21] reserved */
		[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
			RTE_PTYPE_L4_FRAG,
		[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
			RTE_PTYPE_L4_NONFRAG,
		[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
			RTE_PTYPE_L4_UDP,
		/* [25] reserved */
		[26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
			RTE_PTYPE_L4_TCP,
		[27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
			RTE_PTYPE_L4_SCTP,
		[28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
			RTE_PTYPE_L4_ICMP,
		/* All others reserved */
	};

	ptype0 = _mm_srli_epi64(ptype0, 30);
	ptype1 = _mm_srli_epi64(ptype1, 30);

	rx_pkts[0]->packet_type = type_table[_mm_extract_epi8(ptype0, 0)];
	rx_pkts[1]->packet_type = type_table[_mm_extract_epi8(ptype0, 8)];
	rx_pkts[2]->packet_type = type_table[_mm_extract_epi8(ptype1, 0)];
	rx_pkts[3]->packet_type = type_table[_mm_extract_epi8(ptype1, 8)];
}

/* Notice:
 * - nb_pkts < AVF_VPMD_DESCS_PER_LOOP, just return no packet
 * - nb_pkts > AVF_VPMD_RX_MAX_BURST, only scan AVF_VPMD_RX_MAX_BURST
 *   numbers of DD bits
 */
static inline uint16_t
_recv_raw_pkts_vec(struct avf_rx_queue *rxq, struct rte_mbuf **rx_pkts,
		   uint16_t nb_pkts, uint8_t *split_packet)
{
	volatile union avf_rx_desc *rxdp;
	struct rte_mbuf **sw_ring;
	uint16_t nb_pkts_recd;
	int pos;
	uint64_t var;
	__m128i shuf_msk;

	__m128i crc_adjust = _mm_set_epi16(
				0, 0, 0,    /* ignore non-length fields */
				-rxq->crc_len, /* sub crc on data_len */
				0,          /* ignore high-16bits of pkt_len */
				-rxq->crc_len, /* sub crc on pkt_len */
				0, 0            /* ignore pkt_type field */
			);
	/* compile-time check the above crc_adjust layout is correct.
	 * NOTE: the first field (lowest address) is given last in set_epi16
	 * call above.
	 */
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
	__m128i dd_check, eop_check;

	/* nb_pkts shall be less equal than AVF_VPMD_RX_MAX_BURST */
	nb_pkts = RTE_MIN(nb_pkts, AVF_VPMD_RX_MAX_BURST);

	/* nb_pkts has to be floor-aligned to AVF_VPMD_DESCS_PER_LOOP */
	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, AVF_VPMD_DESCS_PER_LOOP);

	/* Just the act of getting into the function from the application is
	 * going to cost about 7 cycles
	 */
	rxdp = rxq->rx_ring + rxq->rx_tail;

	rte_prefetch0(rxdp);

	/* See if we need to rearm the RX queue - gives the prefetch a bit
	 * of time to act
	 */
	if (rxq->rxrearm_nb > rxq->rx_free_thresh)
		avf_rxq_rearm(rxq);

	/* Before we start moving massive data around, check to see if
	 * there is actually a packet available
	 */
	if (!(rxdp->wb.qword1.status_error_len &
	      rte_cpu_to_le_32(1 << AVF_RX_DESC_STATUS_DD_SHIFT)))
		return 0;

	/* 4 packets DD mask */
	dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);

	/* 4 packets EOP mask */
	eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);

	/* mask to shuffle from desc. to mbuf */
	shuf_msk = _mm_set_epi8(
		7, 6, 5, 4,  /* octet 4~7, 32bits rss */
		3, 2,        /* octet 2~3, low 16 bits vlan_macip */
		15, 14,      /* octet 15~14, 16 bits data_len */
		0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
		15, 14,      /* octet 15~14, low 16 bits pkt_len */
		0xFF, 0xFF, 0xFF, 0xFF /* pkt_type set as unknown */
		);
	/* Compile-time verify the shuffle mask
	 * NOTE: some field positions already verified above, but duplicated
	 * here for completeness in case of future modifications.
	 */
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);

	/* Cache is empty -> need to scan the buffer rings, but first move
	 * the next 'n' mbufs into the cache
	 */
	sw_ring = &rxq->sw_ring[rxq->rx_tail];

	/* A. load 4 packet in one loop
	 * [A*. mask out 4 unused dirty field in desc]
	 * B. copy 4 mbuf point from swring to rx_pkts
	 * C. calc the number of DD bits among the 4 packets
	 * [C*. extract the end-of-packet bit, if requested]
	 * D. fill info. from desc to mbuf
	 */

	for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
	     pos += AVF_VPMD_DESCS_PER_LOOP,
	     rxdp += AVF_VPMD_DESCS_PER_LOOP) {
		__m128i descs[AVF_VPMD_DESCS_PER_LOOP];
		__m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
		__m128i zero, staterr, sterr_tmp1, sterr_tmp2;
		/* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
		__m128i mbp1;
#if defined(RTE_ARCH_X86_64)
		__m128i mbp2;
#endif

		/* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
		mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
		/* Read desc statuses backwards to avoid race condition */
		/* A.1 load 4 pkts desc */
		descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
		rte_compiler_barrier();

		/* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
		_mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);

#if defined(RTE_ARCH_X86_64)
		/* B.1 load 2 64 bit mbuf points */
		mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
#endif

		descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
		rte_compiler_barrier();
		/* B.1 load 2 mbuf point */
		descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
		rte_compiler_barrier();
		descs[0] = _mm_loadu_si128((__m128i *)(rxdp));

#if defined(RTE_ARCH_X86_64)
		/* B.2 copy 2 mbuf point into rx_pkts  */
		_mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
#endif

		if (split_packet) {
			rte_mbuf_prefetch_part2(rx_pkts[pos]);
			rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
			rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
			rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
		}

		/* avoid compiler reorder optimization */
		rte_compiler_barrier();

		/* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
		const __m128i len3 = _mm_slli_epi32(descs[3], PKTLEN_SHIFT);
		const __m128i len2 = _mm_slli_epi32(descs[2], PKTLEN_SHIFT);

		/* merge the now-aligned packet length fields back in */
		descs[3] = _mm_blend_epi16(descs[3], len3, 0x80);
		descs[2] = _mm_blend_epi16(descs[2], len2, 0x80);

		/* D.1 pkt 3,4 convert format from desc to pktmbuf */
		pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
		pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);

		/* C.1 4=>2 status err info only */
		sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
		sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);

		desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);

		/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
		pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
		pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);

		/* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
		const __m128i len1 = _mm_slli_epi32(descs[1], PKTLEN_SHIFT);
		const __m128i len0 = _mm_slli_epi32(descs[0], PKTLEN_SHIFT);

		/* merge the now-aligned packet length fields back in */
		descs[1] = _mm_blend_epi16(descs[1], len1, 0x80);
		descs[0] = _mm_blend_epi16(descs[0], len0, 0x80);

		/* D.1 pkt 1,2 convert format from desc to pktmbuf */
		pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
		pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);

		/* C.2 get 4 pkts status err value  */
		zero = _mm_xor_si128(dd_check, dd_check);
		staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);

		/* D.3 copy final 3,4 data to rx_pkts */
		_mm_storeu_si128(
			(void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
			pkt_mb4);
		_mm_storeu_si128(
			(void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
			pkt_mb3);

		/* D.2 pkt 1,2 remove crc */
		pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
		pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);

		/* C* extract and record EOP bit */
		if (split_packet) {
			__m128i eop_shuf_mask = _mm_set_epi8(
					0xFF, 0xFF, 0xFF, 0xFF,
					0xFF, 0xFF, 0xFF, 0xFF,
					0xFF, 0xFF, 0xFF, 0xFF,
					0x04, 0x0C, 0x00, 0x08
					);

			/* and with mask to extract bits, flipping 1-0 */
			__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
			/* the staterr values are not in order, as the count
			 * count of dd bits doesn't care. However, for end of
			 * packet tracking, we do care, so shuffle. This also
			 * compresses the 32-bit values to 8-bit
			 */
			eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
			/* store the resulting 32-bit value */
			*(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
			split_packet += AVF_VPMD_DESCS_PER_LOOP;
		}

		/* C.3 calc available number of desc */
		staterr = _mm_and_si128(staterr, dd_check);
		staterr = _mm_packs_epi32(staterr, zero);

		/* D.3 copy final 1,2 data to rx_pkts */
		_mm_storeu_si128(
			(void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
			pkt_mb2);
		_mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
				 pkt_mb1);
		desc_to_ptype_v(descs, &rx_pkts[pos]);
		/* C.4 calc avaialbe number of desc */
		var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
		nb_pkts_recd += var;
		if (likely(var != AVF_VPMD_DESCS_PER_LOOP))
			break;
	}

	/* Update our internal tail pointer */
	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
	rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
	rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);

	return nb_pkts_recd;
}

/* Notice:
 * - nb_pkts < AVF_DESCS_PER_LOOP, just return no packet
 * - nb_pkts > AVF_VPMD_RX_MAX_BURST, only scan AVF_VPMD_RX_MAX_BURST
 *   numbers of DD bits
 */
uint16_t
avf_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
		  uint16_t nb_pkts)
{
	return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
}

/* vPMD receive routine that reassembles scattered packets
 * Notice:
 * - nb_pkts < AVF_VPMD_DESCS_PER_LOOP, just return no packet
 * - nb_pkts > VPMD_RX_MAX_BURST, only scan AVF_VPMD_RX_MAX_BURST
 *   numbers of DD bits
 */
uint16_t
avf_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
			    uint16_t nb_pkts)
{
	struct avf_rx_queue *rxq = rx_queue;
	uint8_t split_flags[AVF_VPMD_RX_MAX_BURST] = {0};
	unsigned int i = 0;

	/* get some new buffers */
	uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
					      split_flags);
	if (nb_bufs == 0)
		return 0;

	/* happy day case, full burst + no packets to be joined */
	const uint64_t *split_fl64 = (uint64_t *)split_flags;

	if (!rxq->pkt_first_seg &&
	    split_fl64[0] == 0 && split_fl64[1] == 0 &&
	    split_fl64[2] == 0 && split_fl64[3] == 0)
		return nb_bufs;

	/* reassemble any packets that need reassembly*/
	if (!rxq->pkt_first_seg) {
		/* find the first split flag, and only reassemble then*/
		while (i < nb_bufs && !split_flags[i])
			i++;
		if (i == nb_bufs)
			return nb_bufs;
	}
	return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
		&split_flags[i]);
}

static inline void
vtx1(volatile struct avf_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags)
{
	uint64_t high_qw =
			(AVF_TX_DESC_DTYPE_DATA |
			 ((uint64_t)flags  << AVF_TXD_QW1_CMD_SHIFT) |
			 ((uint64_t)pkt->data_len <<
			  AVF_TXD_QW1_TX_BUF_SZ_SHIFT));

	__m128i descriptor = _mm_set_epi64x(high_qw,
					    pkt->buf_iova + pkt->data_off);
	_mm_store_si128((__m128i *)txdp, descriptor);
}

static inline void
avf_vtx(volatile struct avf_tx_desc *txdp, struct rte_mbuf **pkt,
	uint16_t nb_pkts,  uint64_t flags)
{
	int i;

	for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
		vtx1(txdp, *pkt, flags);
}

uint16_t
avf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
			 uint16_t nb_pkts)
{
	struct avf_tx_queue *txq = (struct avf_tx_queue *)tx_queue;
	volatile struct avf_tx_desc *txdp;
	struct avf_tx_entry *txep;
	uint16_t n, nb_commit, tx_id;
	uint64_t flags = AVF_TX_DESC_CMD_EOP | 0x04;  /* bit 2 must be set */
	uint64_t rs = AVF_TX_DESC_CMD_RS | flags;
	int i;

	/* cross rx_thresh boundary is not allowed */
	nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);

	if (txq->nb_free < txq->free_thresh)
		avf_tx_free_bufs(txq);

	nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
	if (unlikely(nb_pkts == 0))
		return 0;
	nb_commit = nb_pkts;

	tx_id = txq->tx_tail;
	txdp = &txq->tx_ring[tx_id];
	txep = &txq->sw_ring[tx_id];

	txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);

	n = (uint16_t)(txq->nb_tx_desc - tx_id);
	if (nb_commit >= n) {
		tx_backlog_entry(txep, tx_pkts, n);

		for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
			vtx1(txdp, *tx_pkts, flags);

		vtx1(txdp, *tx_pkts++, rs);

		nb_commit = (uint16_t)(nb_commit - n);

		tx_id = 0;
		txq->next_rs = (uint16_t)(txq->rs_thresh - 1);

		/* avoid reach the end of ring */
		txdp = &txq->tx_ring[tx_id];
		txep = &txq->sw_ring[tx_id];
	}

	tx_backlog_entry(txep, tx_pkts, nb_commit);

	avf_vtx(txdp, tx_pkts, nb_commit, flags);

	tx_id = (uint16_t)(tx_id + nb_commit);
	if (tx_id > txq->next_rs) {
		txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |=
			rte_cpu_to_le_64(((uint64_t)AVF_TX_DESC_CMD_RS) <<
					 AVF_TXD_QW1_CMD_SHIFT);
		txq->next_rs =
			(uint16_t)(txq->next_rs + txq->rs_thresh);
	}

	txq->tx_tail = tx_id;

	PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_pkts=%u",
		   txq->port_id, txq->queue_id, tx_id, nb_pkts);

	AVF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);

	return nb_pkts;
}

static void __attribute__((cold))
avf_rx_queue_release_mbufs_sse(struct avf_rx_queue *rxq)
{
	_avf_rx_queue_release_mbufs_vec(rxq);
}

static void __attribute__((cold))
avf_tx_queue_release_mbufs_sse(struct avf_tx_queue *txq)
{
	_avf_tx_queue_release_mbufs_vec(txq);
}

static const struct avf_rxq_ops sse_vec_rxq_ops = {
	.release_mbufs = avf_rx_queue_release_mbufs_sse,
};

static const struct avf_txq_ops sse_vec_txq_ops = {
	.release_mbufs = avf_tx_queue_release_mbufs_sse,
};

int __attribute__((cold))
avf_txq_vec_setup(struct avf_tx_queue *txq)
{
	txq->ops = &sse_vec_txq_ops;
	return 0;
}

int __attribute__((cold))
avf_rxq_vec_setup(struct avf_rx_queue *rxq)
{
	rxq->ops = &sse_vec_rxq_ops;
	return avf_rxq_vec_setup_default(rxq);
}