aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/e1000/base/e1000_vf.c
blob: 7845b48e75a60678b767cc36eb2d91d1168fd480 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
/*******************************************************************************

Copyright (c) 2001-2015, Intel Corporation
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice,
    this list of conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in the
    documentation and/or other materials provided with the distribution.

 3. Neither the name of the Intel Corporation nor the names of its
    contributors may be used to endorse or promote products derived from
    this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

***************************************************************************/


#include "e1000_api.h"


STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
STATIC void e1000_release_vf(struct e1000_hw *hw);
STATIC s32 e1000_acquire_vf(struct e1000_hw *hw);
STATIC s32 e1000_setup_link_vf(struct e1000_hw *hw);
STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw);
STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
				     u16 *duplex);
STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw);
STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw);
STATIC void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
STATIC int  e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *);

/**
 *  e1000_init_phy_params_vf - Inits PHY params
 *  @hw: pointer to the HW structure
 *
 *  Doesn't do much - there's no PHY available to the VF.
 **/
STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_init_phy_params_vf");
	hw->phy.type = e1000_phy_vf;
	hw->phy.ops.acquire = e1000_acquire_vf;
	hw->phy.ops.release = e1000_release_vf;

	return E1000_SUCCESS;
}

/**
 *  e1000_init_nvm_params_vf - Inits NVM params
 *  @hw: pointer to the HW structure
 *
 *  Doesn't do much - there's no NVM available to the VF.
 **/
STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_init_nvm_params_vf");
	hw->nvm.type = e1000_nvm_none;
	hw->nvm.ops.acquire = e1000_acquire_vf;
	hw->nvm.ops.release = e1000_release_vf;

	return E1000_SUCCESS;
}

/**
 *  e1000_init_mac_params_vf - Inits MAC params
 *  @hw: pointer to the HW structure
 **/
STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;

	DEBUGFUNC("e1000_init_mac_params_vf");

	/* Set media type */
	/*
	 * Virtual functions don't care what they're media type is as they
	 * have no direct access to the PHY, or the media.  That is handled
	 * by the physical function driver.
	 */
	hw->phy.media_type = e1000_media_type_unknown;

	/* No ASF features for the VF driver */
	mac->asf_firmware_present = false;
	/* ARC subsystem not supported */
	mac->arc_subsystem_valid = false;
	/* Disable adaptive IFS mode so the generic funcs don't do anything */
	mac->adaptive_ifs = false;
	/* VF's have no MTA Registers - PF feature only */
	mac->mta_reg_count = 128;
	/* VF's have no access to RAR entries  */
	mac->rar_entry_count = 1;

	/* Function pointers */
	/* link setup */
	mac->ops.setup_link = e1000_setup_link_vf;
	/* bus type/speed/width */
	mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
	/* reset */
	mac->ops.reset_hw = e1000_reset_hw_vf;
	/* hw initialization */
	mac->ops.init_hw = e1000_init_hw_vf;
	/* check for link */
	mac->ops.check_for_link = e1000_check_for_link_vf;
	/* link info */
	mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
	/* multicast address update */
	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
	/* set mac address */
	mac->ops.rar_set = e1000_rar_set_vf;
	/* read mac address */
	mac->ops.read_mac_addr = e1000_read_mac_addr_vf;


	return E1000_SUCCESS;
}

/**
 *  e1000_init_function_pointers_vf - Inits function pointers
 *  @hw: pointer to the HW structure
 **/
void e1000_init_function_pointers_vf(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_init_function_pointers_vf");

	hw->mac.ops.init_params = e1000_init_mac_params_vf;
	hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
	hw->phy.ops.init_params = e1000_init_phy_params_vf;
	hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
}

/**
 *  e1000_acquire_vf - Acquire rights to access PHY or NVM.
 *  @hw: pointer to the HW structure
 *
 *  There is no PHY or NVM so we want all attempts to acquire these to fail.
 *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
 *  even want any SW to attempt to use them.
 **/
STATIC s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw)
{
	UNREFERENCED_1PARAMETER(hw);
	return -E1000_ERR_PHY;
}

/**
 *  e1000_release_vf - Release PHY or NVM
 *  @hw: pointer to the HW structure
 *
 *  There is no PHY or NVM so we want all attempts to acquire these to fail.
 *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
 *  even want any SW to attempt to use them.
 **/
STATIC void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw)
{
	UNREFERENCED_1PARAMETER(hw);
	return;
}

/**
 *  e1000_setup_link_vf - Sets up link.
 *  @hw: pointer to the HW structure
 *
 *  Virtual functions cannot change link.
 **/
STATIC s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw)
{
	DEBUGFUNC("e1000_setup_link_vf");
	UNREFERENCED_1PARAMETER(hw);

	return E1000_SUCCESS;
}

/**
 *  e1000_get_bus_info_pcie_vf - Gets the bus info.
 *  @hw: pointer to the HW structure
 *
 *  Virtual functions are not really on their own bus.
 **/
STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;

	DEBUGFUNC("e1000_get_bus_info_pcie_vf");

	/* Do not set type PCI-E because we don't want disable master to run */
	bus->type = e1000_bus_type_reserved;
	bus->speed = e1000_bus_speed_2500;

	return 0;
}

/**
 *  e1000_get_link_up_info_vf - Gets link info.
 *  @hw: pointer to the HW structure
 *  @speed: pointer to 16 bit value to store link speed.
 *  @duplex: pointer to 16 bit value to store duplex.
 *
 *  Since we cannot read the PHY and get accurate link info, we must rely upon
 *  the status register's data which is often stale and inaccurate.
 **/
STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
				     u16 *duplex)
{
	s32 status;

	DEBUGFUNC("e1000_get_link_up_info_vf");

	status = E1000_READ_REG(hw, E1000_STATUS);
	if (status & E1000_STATUS_SPEED_1000) {
		*speed = SPEED_1000;
		DEBUGOUT("1000 Mbs, ");
	} else if (status & E1000_STATUS_SPEED_100) {
		*speed = SPEED_100;
		DEBUGOUT("100 Mbs, ");
	} else {
		*speed = SPEED_10;
		DEBUGOUT("10 Mbs, ");
	}

	if (status & E1000_STATUS_FD) {
		*duplex = FULL_DUPLEX;
		DEBUGOUT("Full Duplex\n");
	} else {
		*duplex = HALF_DUPLEX;
		DEBUGOUT("Half Duplex\n");
	}

	return E1000_SUCCESS;
}

/**
 *  e1000_reset_hw_vf - Resets the HW
 *  @hw: pointer to the HW structure
 *
 *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
 *  This is all the reset we can perform on a VF.
 **/
STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw)
{
	struct e1000_mbx_info *mbx = &hw->mbx;
	u32 timeout = E1000_VF_INIT_TIMEOUT;
	s32 ret_val = -E1000_ERR_MAC_INIT;
	u32 ctrl, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	DEBUGFUNC("e1000_reset_hw_vf");

	DEBUGOUT("Issuing a function level reset to MAC\n");
	ctrl = E1000_READ_REG(hw, E1000_CTRL);
	E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);

	/* we cannot reset while the RSTI / RSTD bits are asserted */
	while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
		timeout--;
		usec_delay(5);
	}

	if (timeout) {
		/* mailbox timeout can now become active */
		mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;

		msgbuf[0] = E1000_VF_RESET;
		mbx->ops.write_posted(hw, msgbuf, 1, 0);

		msec_delay(10);

		/* set our "perm_addr" based on info provided by PF */
		ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
		if (!ret_val) {
			if (msgbuf[0] == (E1000_VF_RESET |
			    E1000_VT_MSGTYPE_ACK))
				memcpy(hw->mac.perm_addr, addr, 6);
			else
				ret_val = -E1000_ERR_MAC_INIT;
		}
	}

	return ret_val;
}

/**
 *  e1000_init_hw_vf - Inits the HW
 *  @hw: pointer to the HW structure
 *
 *  Not much to do here except clear the PF Reset indication if there is one.
 **/
STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw)
{
	DEBUGFUNC("e1000_init_hw_vf");

	/* attempt to set and restore our mac address */
	e1000_rar_set_vf(hw, hw->mac.addr, 0);

	return E1000_SUCCESS;
}

/**
 *  e1000_rar_set_vf - set device MAC address
 *  @hw: pointer to the HW structure
 *  @addr: pointer to the receive address
 *  @index receive address array register
 **/
STATIC int e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr,
			     u32 E1000_UNUSEDARG index)
{
	struct e1000_mbx_info *mbx = &hw->mbx;
	u32 msgbuf[3];
	u8 *msg_addr = (u8 *)(&msgbuf[1]);
	s32 ret_val;

	UNREFERENCED_1PARAMETER(index);
	memset(msgbuf, 0, 12);
	msgbuf[0] = E1000_VF_SET_MAC_ADDR;
	memcpy(msg_addr, addr, 6);
	ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);

	if (!ret_val)
		ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);

	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;

	/* if nacked the address was rejected, use "perm_addr" */
	if (!ret_val &&
	    (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
		e1000_read_mac_addr_vf(hw);

	return E1000_SUCCESS;
}

/**
 *  e1000_hash_mc_addr_vf - Generate a multicast hash value
 *  @hw: pointer to the HW structure
 *  @mc_addr: pointer to a multicast address
 *
 *  Generates a multicast address hash value which is used to determine
 *  the multicast filter table array address and new table value.
 **/
STATIC u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
{
	u32 hash_value, hash_mask;
	u8 bit_shift = 0;

	DEBUGFUNC("e1000_hash_mc_addr_generic");

	/* Register count multiplied by bits per register */
	hash_mask = (hw->mac.mta_reg_count * 32) - 1;

	/*
	 * The bit_shift is the number of left-shifts
	 * where 0xFF would still fall within the hash mask.
	 */
	while (hash_mask >> bit_shift != 0xFF)
		bit_shift++;

	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
				  (((u16) mc_addr[5]) << bit_shift)));

	return hash_value;
}

STATIC void e1000_write_msg_read_ack(struct e1000_hw *hw,
				     u32 *msg, u16 size)
{
	struct e1000_mbx_info *mbx = &hw->mbx;
	u32 retmsg[E1000_VFMAILBOX_SIZE];
	s32 retval = mbx->ops.write_posted(hw, msg, size, 0);

	if (!retval)
		mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
}

/**
 *  e1000_update_mc_addr_list_vf - Update Multicast addresses
 *  @hw: pointer to the HW structure
 *  @mc_addr_list: array of multicast addresses to program
 *  @mc_addr_count: number of multicast addresses to program
 *
 *  Updates the Multicast Table Array.
 *  The caller must have a packed mc_addr_list of multicast addresses.
 **/
void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
				  u8 *mc_addr_list, u32 mc_addr_count)
{
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
	u16 *hash_list = (u16 *)&msgbuf[1];
	u32 hash_value;
	u32 i;

	DEBUGFUNC("e1000_update_mc_addr_list_vf");

	/* Each entry in the list uses 1 16 bit word.  We have 30
	 * 16 bit words available in our HW msg buffer (minus 1 for the
	 * msg type).  That's 30 hash values if we pack 'em right.  If
	 * there are more than 30 MC addresses to add then punt the
	 * extras for now and then add code to handle more than 30 later.
	 * It would be unusual for a server to request that many multi-cast
	 * addresses except for in large enterprise network environments.
	 */

	DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);

	if (mc_addr_count > 30) {
		msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
		mc_addr_count = 30;
	}

	msgbuf[0] = E1000_VF_SET_MULTICAST;
	msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;

	for (i = 0; i < mc_addr_count; i++) {
		hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
		DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
		hash_list[i] = hash_value & 0x0FFF;
		mc_addr_list += ETH_ADDR_LEN;
	}

	e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
}

/**
 *  e1000_vfta_set_vf - Set/Unset vlan filter table address
 *  @hw: pointer to the HW structure
 *  @vid: determines the vfta register and bit to set/unset
 *  @set: if true then set bit, else clear bit
 **/
void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
{
	u32 msgbuf[2];

	msgbuf[0] = E1000_VF_SET_VLAN;
	msgbuf[1] = vid;
	/* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
	if (set)
		msgbuf[0] |= E1000_VF_SET_VLAN_ADD;

	e1000_write_msg_read_ack(hw, msgbuf, 2);
}

/** e1000_rlpml_set_vf - Set the maximum receive packet length
 *  @hw: pointer to the HW structure
 *  @max_size: value to assign to max frame size
 **/
void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
{
	u32 msgbuf[2];

	msgbuf[0] = E1000_VF_SET_LPE;
	msgbuf[1] = max_size;

	e1000_write_msg_read_ack(hw, msgbuf, 2);
}

/**
 *  e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
 *  @hw: pointer to the HW structure
 *  @uni: boolean indicating unicast promisc status
 *  @multi: boolean indicating multicast promisc status
 **/
s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
{
	struct e1000_mbx_info *mbx = &hw->mbx;
	u32 msgbuf = E1000_VF_SET_PROMISC;
	s32 ret_val;

	switch (type) {
	case e1000_promisc_multicast:
		msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
		break;
	case e1000_promisc_enabled:
		msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
	case e1000_promisc_unicast:
		msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
	case e1000_promisc_disabled:
		break;
	default:
		return -E1000_ERR_MAC_INIT;
	}

	 ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);

	if (!ret_val)
		ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);

	if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
		ret_val = -E1000_ERR_MAC_INIT;

	return ret_val;
}

/**
 *  e1000_read_mac_addr_vf - Read device MAC address
 *  @hw: pointer to the HW structure
 **/
STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
{
	int i;

	for (i = 0; i < ETH_ADDR_LEN; i++)
		hw->mac.addr[i] = hw->mac.perm_addr[i];

	return E1000_SUCCESS;
}

/**
 *  e1000_check_for_link_vf - Check for link for a virtual interface
 *  @hw: pointer to the HW structure
 *
 *  Checks to see if the underlying PF is still talking to the VF and
 *  if it is then it reports the link state to the hardware, otherwise
 *  it reports link down and returns an error.
 **/
STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw)
{
	struct e1000_mbx_info *mbx = &hw->mbx;
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val = E1000_SUCCESS;
	u32 in_msg = 0;

	DEBUGFUNC("e1000_check_for_link_vf");

	/*
	 * We only want to run this if there has been a rst asserted.
	 * in this case that could mean a link change, device reset,
	 * or a virtual function reset
	 */

	/* If we were hit with a reset or timeout drop the link */
	if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
		mac->get_link_status = true;

	if (!mac->get_link_status)
		goto out;

	/* if link status is down no point in checking to see if pf is up */
	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
		goto out;

	/* if the read failed it could just be a mailbox collision, best wait
	 * until we are called again and don't report an error */
	if (mbx->ops.read(hw, &in_msg, 1, 0))
		goto out;

	/* if incoming message isn't clear to send we are waiting on response */
	if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
		/* message is not CTS and is NACK we have lost CTS status */
		if (in_msg & E1000_VT_MSGTYPE_NACK)
			ret_val = -E1000_ERR_MAC_INIT;
		goto out;
	}

	/* at this point we know the PF is talking to us, check and see if
	 * we are still accepting timeout or if we had a timeout failure.
	 * if we failed then we will need to reinit */
	if (!mbx->timeout) {
		ret_val = -E1000_ERR_MAC_INIT;
		goto out;
	}

	/* if we passed all the tests above then the link is up and we no
	 * longer need to check for link */
	mac->get_link_status = false;

out:
	return ret_val;
}