1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
|
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation
*/
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdarg.h>
#include <inttypes.h>
#include <rte_bus_pci.h>
#include <rte_interrupts.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_eal.h>
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_memcpy.h>
#include <rte_malloc.h>
#include <rte_random.h>
#include "base/e1000_defines.h"
#include "base/e1000_regs.h"
#include "base/e1000_hw.h"
#include "e1000_ethdev.h"
static inline uint16_t
dev_num_vf(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
return pci_dev->max_vfs;
}
static inline
int igb_vf_perm_addr_gen(struct rte_eth_dev *dev, uint16_t vf_num)
{
unsigned char vf_mac_addr[ETHER_ADDR_LEN];
struct e1000_vf_info *vfinfo =
*E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private);
uint16_t vfn;
for (vfn = 0; vfn < vf_num; vfn++) {
eth_random_addr(vf_mac_addr);
/* keep the random address as default */
memcpy(vfinfo[vfn].vf_mac_addresses, vf_mac_addr,
ETHER_ADDR_LEN);
}
return 0;
}
static inline int
igb_mb_intr_setup(struct rte_eth_dev *dev)
{
struct e1000_interrupt *intr =
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
intr->mask |= E1000_ICR_VMMB;
return 0;
}
void igb_pf_host_init(struct rte_eth_dev *eth_dev)
{
struct e1000_vf_info **vfinfo =
E1000_DEV_PRIVATE_TO_P_VFDATA(eth_dev->data->dev_private);
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
uint16_t vf_num;
uint8_t nb_queue;
RTE_ETH_DEV_SRIOV(eth_dev).active = 0;
if (0 == (vf_num = dev_num_vf(eth_dev)))
return;
if (hw->mac.type == e1000_i350)
nb_queue = 1;
else if(hw->mac.type == e1000_82576)
/* per datasheet, it should be 2, but 1 seems correct */
nb_queue = 1;
else
return;
*vfinfo = rte_zmalloc("vf_info", sizeof(struct e1000_vf_info) * vf_num, 0);
if (*vfinfo == NULL)
rte_panic("Cannot allocate memory for private VF data\n");
RTE_ETH_DEV_SRIOV(eth_dev).active = ETH_8_POOLS;
RTE_ETH_DEV_SRIOV(eth_dev).nb_q_per_pool = nb_queue;
RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx = vf_num;
RTE_ETH_DEV_SRIOV(eth_dev).def_pool_q_idx = (uint16_t)(vf_num * nb_queue);
igb_vf_perm_addr_gen(eth_dev, vf_num);
/* set mb interrupt mask */
igb_mb_intr_setup(eth_dev);
return;
}
void igb_pf_host_uninit(struct rte_eth_dev *dev)
{
struct e1000_vf_info **vfinfo;
uint16_t vf_num;
PMD_INIT_FUNC_TRACE();
vfinfo = E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private);
RTE_ETH_DEV_SRIOV(dev).active = 0;
RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 0;
RTE_ETH_DEV_SRIOV(dev).def_vmdq_idx = 0;
RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx = 0;
vf_num = dev_num_vf(dev);
if (vf_num == 0)
return;
rte_free(*vfinfo);
*vfinfo = NULL;
}
#define E1000_RAH_POOLSEL_SHIFT (18)
int igb_pf_host_configure(struct rte_eth_dev *eth_dev)
{
uint32_t vtctl;
uint16_t vf_num;
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
uint32_t vlanctrl;
int i;
uint32_t rah;
if (0 == (vf_num = dev_num_vf(eth_dev)))
return -1;
/* enable VMDq and set the default pool for PF */
vtctl = E1000_READ_REG(hw, E1000_VT_CTL);
vtctl &= ~E1000_VT_CTL_DEFAULT_POOL_MASK;
vtctl |= RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx
<< E1000_VT_CTL_DEFAULT_POOL_SHIFT;
vtctl |= E1000_VT_CTL_VM_REPL_EN;
E1000_WRITE_REG(hw, E1000_VT_CTL, vtctl);
/* Enable pools reserved to PF only */
E1000_WRITE_REG(hw, E1000_VFRE, (~0U) << vf_num);
E1000_WRITE_REG(hw, E1000_VFTE, (~0U) << vf_num);
/* PFDMA Tx General Switch Control Enables VMDQ loopback */
if (hw->mac.type == e1000_i350)
E1000_WRITE_REG(hw, E1000_TXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN);
else
E1000_WRITE_REG(hw, E1000_DTXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN);
/* clear VMDq map to perment rar 0 */
rah = E1000_READ_REG(hw, E1000_RAH(0));
rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT);
E1000_WRITE_REG(hw, E1000_RAH(0), rah);
/* clear VMDq map to scan rar 32 */
rah = E1000_READ_REG(hw, E1000_RAH(hw->mac.rar_entry_count));
rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT);
E1000_WRITE_REG(hw, E1000_RAH(hw->mac.rar_entry_count), rah);
/* set VMDq map to default PF pool */
rah = E1000_READ_REG(hw, E1000_RAH(0));
rah |= (0x1 << (RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx +
E1000_RAH_POOLSEL_SHIFT));
E1000_WRITE_REG(hw, E1000_RAH(0), rah);
/*
* enable vlan filtering and allow all vlan tags through
*/
vlanctrl = E1000_READ_REG(hw, E1000_RCTL);
vlanctrl |= E1000_RCTL_VFE ; /* enable vlan filters */
E1000_WRITE_REG(hw, E1000_RCTL, vlanctrl);
/* VFTA - enable all vlan filters */
for (i = 0; i < IGB_VFTA_SIZE; i++) {
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, 0xFFFFFFFF);
}
/* Enable/Disable MAC Anti-Spoofing */
e1000_vmdq_set_anti_spoofing_pf(hw, FALSE, vf_num);
return 0;
}
static void
set_rx_mode(struct rte_eth_dev *dev)
{
struct rte_eth_dev_data *dev_data = dev->data;
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t fctrl, vmolr = E1000_VMOLR_BAM | E1000_VMOLR_AUPE;
uint16_t vfn = dev_num_vf(dev);
/* Check for Promiscuous and All Multicast modes */
fctrl = E1000_READ_REG(hw, E1000_RCTL);
/* set all bits that we expect to always be set */
fctrl &= ~E1000_RCTL_SBP; /* disable store-bad-packets */
fctrl |= E1000_RCTL_BAM;
/* clear the bits we are changing the status of */
fctrl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
if (dev_data->promiscuous) {
fctrl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
} else {
if (dev_data->all_multicast) {
fctrl |= E1000_RCTL_MPE;
vmolr |= E1000_VMOLR_MPME;
} else {
vmolr |= E1000_VMOLR_ROMPE;
}
}
if ((hw->mac.type == e1000_82576) ||
(hw->mac.type == e1000_i350)) {
vmolr |= E1000_READ_REG(hw, E1000_VMOLR(vfn)) &
~(E1000_VMOLR_MPME | E1000_VMOLR_ROMPE |
E1000_VMOLR_ROPE);
E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
}
E1000_WRITE_REG(hw, E1000_RCTL, fctrl);
}
static inline void
igb_vf_reset_event(struct rte_eth_dev *dev, uint16_t vf)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vf_info *vfinfo =
*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
uint32_t vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE |
E1000_VMOLR_BAM | E1000_VMOLR_AUPE);
E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
E1000_WRITE_REG(hw, E1000_VMVIR(vf), 0);
/* reset multicast table array for vf */
vfinfo[vf].num_vf_mc_hashes = 0;
/* reset rx mode */
set_rx_mode(dev);
}
static inline void
igb_vf_reset_msg(struct rte_eth_dev *dev, uint16_t vf)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t reg;
/* enable transmit and receive for vf */
reg = E1000_READ_REG(hw, E1000_VFTE);
reg |= (reg | (1 << vf));
E1000_WRITE_REG(hw, E1000_VFTE, reg);
reg = E1000_READ_REG(hw, E1000_VFRE);
reg |= (reg | (1 << vf));
E1000_WRITE_REG(hw, E1000_VFRE, reg);
igb_vf_reset_event(dev, vf);
}
static int
igb_vf_reset(struct rte_eth_dev *dev, uint16_t vf, uint32_t *msgbuf)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vf_info *vfinfo =
*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
unsigned char *vf_mac = vfinfo[vf].vf_mac_addresses;
int rar_entry = hw->mac.rar_entry_count - (vf + 1);
uint8_t *new_mac = (uint8_t *)(&msgbuf[1]);
uint32_t rah;
igb_vf_reset_msg(dev, vf);
hw->mac.ops.rar_set(hw, vf_mac, rar_entry);
rah = E1000_READ_REG(hw, E1000_RAH(rar_entry));
rah |= (0x1 << (vf + E1000_RAH_POOLSEL_SHIFT));
E1000_WRITE_REG(hw, E1000_RAH(rar_entry), rah);
/* reply to reset with ack and vf mac address */
msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
rte_memcpy(new_mac, vf_mac, ETHER_ADDR_LEN);
e1000_write_mbx(hw, msgbuf, 3, vf);
return 0;
}
static int
igb_vf_set_mac_addr(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vf_info *vfinfo =
*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
int rar_entry = hw->mac.rar_entry_count - (vf + 1);
uint8_t *new_mac = (uint8_t *)(&msgbuf[1]);
int rah;
if (is_unicast_ether_addr((struct ether_addr *)new_mac)) {
if (!is_zero_ether_addr((struct ether_addr *)new_mac))
rte_memcpy(vfinfo[vf].vf_mac_addresses, new_mac,
sizeof(vfinfo[vf].vf_mac_addresses));
hw->mac.ops.rar_set(hw, new_mac, rar_entry);
rah = E1000_READ_REG(hw, E1000_RAH(rar_entry));
rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + vf));
E1000_WRITE_REG(hw, E1000_RAH(rar_entry), rah);
return 0;
}
return -1;
}
static int
igb_vf_set_multicast(struct rte_eth_dev *dev, __rte_unused uint32_t vf, uint32_t *msgbuf)
{
int i;
uint32_t vector_bit;
uint32_t vector_reg;
uint32_t mta_reg;
int entries = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >>
E1000_VT_MSGINFO_SHIFT;
uint16_t *hash_list = (uint16_t *)&msgbuf[1];
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vf_info *vfinfo =
*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
/* only so many hash values supported */
entries = RTE_MIN(entries, E1000_MAX_VF_MC_ENTRIES);
/*
* salt away the number of multi cast addresses assigned
* to this VF for later use to restore when the PF multi cast
* list changes
*/
vfinfo->num_vf_mc_hashes = (uint16_t)entries;
/*
* VFs are limited to using the MTA hash table for their multicast
* addresses
*/
for (i = 0; i < entries; i++) {
vfinfo->vf_mc_hashes[i] = hash_list[i];
}
for (i = 0; i < vfinfo->num_vf_mc_hashes; i++) {
vector_reg = (vfinfo->vf_mc_hashes[i] >> 5) & 0x7F;
vector_bit = vfinfo->vf_mc_hashes[i] & 0x1F;
mta_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, vector_reg);
mta_reg |= (1 << vector_bit);
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, vector_reg, mta_reg);
}
return 0;
}
static int
igb_vf_set_vlan(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
{
int add, vid;
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vf_info *vfinfo =
*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
uint32_t vid_idx, vid_bit, vfta;
add = (msgbuf[0] & E1000_VT_MSGINFO_MASK)
>> E1000_VT_MSGINFO_SHIFT;
vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
if (add)
vfinfo[vf].vlan_count++;
else if (vfinfo[vf].vlan_count)
vfinfo[vf].vlan_count--;
vid_idx = (uint32_t)((vid >> E1000_VFTA_ENTRY_SHIFT) &
E1000_VFTA_ENTRY_MASK);
vid_bit = (uint32_t)(1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
if (add)
vfta |= vid_bit;
else
vfta &= ~vid_bit;
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
E1000_WRITE_FLUSH(hw);
return 0;
}
static int
igb_vf_set_rlpml(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t rlpml = msgbuf[1] & E1000_VMOLR_RLPML_MASK;
uint32_t max_frame = rlpml + ETHER_HDR_LEN + ETHER_CRC_LEN;
uint32_t vmolr;
if ((max_frame < ETHER_MIN_LEN) || (max_frame > ETHER_MAX_JUMBO_FRAME_LEN))
return -1;
vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
vmolr &= ~E1000_VMOLR_RLPML_MASK;
vmolr |= rlpml;
/* Enable Long Packet support */
vmolr |= E1000_VMOLR_LPE;
E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
E1000_WRITE_FLUSH(hw);
return 0;
}
static int
igb_rcv_msg_from_vf(struct rte_eth_dev *dev, uint16_t vf)
{
uint16_t mbx_size = E1000_VFMAILBOX_SIZE;
uint32_t msgbuf[E1000_VFMAILBOX_SIZE];
int32_t retval;
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
retval = e1000_read_mbx(hw, msgbuf, mbx_size, vf);
if (retval) {
PMD_INIT_LOG(ERR, "Error mbx recv msg from VF %d", vf);
return retval;
}
/* do nothing with the message already processed */
if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
return retval;
/* flush the ack before we write any messages back */
E1000_WRITE_FLUSH(hw);
/* perform VF reset */
if (msgbuf[0] == E1000_VF_RESET) {
return igb_vf_reset(dev, vf, msgbuf);
}
/* check & process VF to PF mailbox message */
switch ((msgbuf[0] & 0xFFFF)) {
case E1000_VF_SET_MAC_ADDR:
retval = igb_vf_set_mac_addr(dev, vf, msgbuf);
break;
case E1000_VF_SET_MULTICAST:
retval = igb_vf_set_multicast(dev, vf, msgbuf);
break;
case E1000_VF_SET_LPE:
retval = igb_vf_set_rlpml(dev, vf, msgbuf);
break;
case E1000_VF_SET_VLAN:
retval = igb_vf_set_vlan(dev, vf, msgbuf);
break;
default:
PMD_INIT_LOG(DEBUG, "Unhandled Msg %8.8x",
(unsigned) msgbuf[0]);
retval = E1000_ERR_MBX;
break;
}
/* response the VF according to the message process result */
if (retval)
msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
else
msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
e1000_write_mbx(hw, msgbuf, 1, vf);
return retval;
}
static inline void
igb_rcv_ack_from_vf(struct rte_eth_dev *dev, uint16_t vf)
{
uint32_t msg = E1000_VT_MSGTYPE_NACK;
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
e1000_write_mbx(hw, &msg, 1, vf);
}
void igb_pf_mbx_process(struct rte_eth_dev *eth_dev)
{
uint16_t vf;
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
for (vf = 0; vf < dev_num_vf(eth_dev); vf++) {
/* check & process vf function level reset */
if (!e1000_check_for_rst(hw, vf))
igb_vf_reset_event(eth_dev, vf);
/* check & process vf mailbox messages */
if (!e1000_check_for_msg(hw, vf))
igb_rcv_msg_from_vf(eth_dev, vf);
/* check & process acks from vf */
if (!e1000_check_for_ack(hw, vf))
igb_rcv_ack_from_vf(eth_dev, vf);
}
}
|