aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/e1000/igb_rxtx.c
blob: 2f37167249952acfd335b79f007a16d38a099d39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2016 Intel Corporation
 */

#include <sys/queue.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <stdint.h>
#include <stdarg.h>
#include <inttypes.h>

#include <rte_interrupts.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_prefetch.h>
#include <rte_udp.h>
#include <rte_tcp.h>
#include <rte_sctp.h>
#include <rte_net.h>
#include <rte_string_fns.h>

#include "e1000_logs.h"
#include "base/e1000_api.h"
#include "e1000_ethdev.h"

#ifdef RTE_LIBRTE_IEEE1588
#define IGB_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
#else
#define IGB_TX_IEEE1588_TMST 0
#endif
/* Bit Mask to indicate what bits required for building TX context */
#define IGB_TX_OFFLOAD_MASK (			 \
		PKT_TX_VLAN_PKT |		 \
		PKT_TX_IP_CKSUM |		 \
		PKT_TX_L4_MASK |		 \
		PKT_TX_TCP_SEG |		 \
		IGB_TX_IEEE1588_TMST)

#define IGB_TX_OFFLOAD_NOTSUP_MASK \
		(PKT_TX_OFFLOAD_MASK ^ IGB_TX_OFFLOAD_MASK)

/**
 * Structure associated with each descriptor of the RX ring of a RX queue.
 */
struct igb_rx_entry {
	struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
};

/**
 * Structure associated with each descriptor of the TX ring of a TX queue.
 */
struct igb_tx_entry {
	struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
	uint16_t next_id; /**< Index of next descriptor in ring. */
	uint16_t last_id; /**< Index of last scattered descriptor. */
};

/**
 * rx queue flags
 */
enum igb_rxq_flags {
	IGB_RXQ_FLAG_LB_BSWAP_VLAN = 0x01,
};

/**
 * Structure associated with each RX queue.
 */
struct igb_rx_queue {
	struct rte_mempool  *mb_pool;   /**< mbuf pool to populate RX ring. */
	volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
	uint64_t            rx_ring_phys_addr; /**< RX ring DMA address. */
	volatile uint32_t   *rdt_reg_addr; /**< RDT register address. */
	volatile uint32_t   *rdh_reg_addr; /**< RDH register address. */
	struct igb_rx_entry *sw_ring;   /**< address of RX software ring. */
	struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
	struct rte_mbuf *pkt_last_seg;  /**< Last segment of current packet. */
	uint16_t            nb_rx_desc; /**< number of RX descriptors. */
	uint16_t            rx_tail;    /**< current value of RDT register. */
	uint16_t            nb_rx_hold; /**< number of held free RX desc. */
	uint16_t            rx_free_thresh; /**< max free RX desc to hold. */
	uint16_t            queue_id;   /**< RX queue index. */
	uint16_t            reg_idx;    /**< RX queue register index. */
	uint16_t            port_id;    /**< Device port identifier. */
	uint8_t             pthresh;    /**< Prefetch threshold register. */
	uint8_t             hthresh;    /**< Host threshold register. */
	uint8_t             wthresh;    /**< Write-back threshold register. */
	uint8_t             crc_len;    /**< 0 if CRC stripped, 4 otherwise. */
	uint8_t             drop_en;  /**< If not 0, set SRRCTL.Drop_En. */
	uint32_t            flags;      /**< RX flags. */
};

/**
 * Hardware context number
 */
enum igb_advctx_num {
	IGB_CTX_0    = 0, /**< CTX0    */
	IGB_CTX_1    = 1, /**< CTX1    */
	IGB_CTX_NUM  = 2, /**< CTX_NUM */
};

/** Offload features */
union igb_tx_offload {
	uint64_t data;
	struct {
		uint64_t l3_len:9; /**< L3 (IP) Header Length. */
		uint64_t l2_len:7; /**< L2 (MAC) Header Length. */
		uint64_t vlan_tci:16;  /**< VLAN Tag Control Identifier(CPU order). */
		uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
		uint64_t tso_segsz:16; /**< TCP TSO segment size. */

		/* uint64_t unused:8; */
	};
};

/*
 * Compare mask for igb_tx_offload.data,
 * should be in sync with igb_tx_offload layout.
 * */
#define TX_MACIP_LEN_CMP_MASK	0x000000000000FFFFULL /**< L2L3 header mask. */
#define TX_VLAN_CMP_MASK		0x00000000FFFF0000ULL /**< Vlan mask. */
#define TX_TCP_LEN_CMP_MASK		0x000000FF00000000ULL /**< TCP header mask. */
#define TX_TSO_MSS_CMP_MASK		0x00FFFF0000000000ULL /**< TSO segsz mask. */
/** Mac + IP + TCP + Mss mask. */
#define TX_TSO_CMP_MASK	\
	(TX_MACIP_LEN_CMP_MASK | TX_TCP_LEN_CMP_MASK | TX_TSO_MSS_CMP_MASK)

/**
 * Strucutre to check if new context need be built
 */
struct igb_advctx_info {
	uint64_t flags;           /**< ol_flags related to context build. */
	/** tx offload: vlan, tso, l2-l3-l4 lengths. */
	union igb_tx_offload tx_offload;
	/** compare mask for tx offload. */
	union igb_tx_offload tx_offload_mask;
};

/**
 * Structure associated with each TX queue.
 */
struct igb_tx_queue {
	volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
	uint64_t               tx_ring_phys_addr; /**< TX ring DMA address. */
	struct igb_tx_entry    *sw_ring; /**< virtual address of SW ring. */
	volatile uint32_t      *tdt_reg_addr; /**< Address of TDT register. */
	uint32_t               txd_type;      /**< Device-specific TXD type */
	uint16_t               nb_tx_desc;    /**< number of TX descriptors. */
	uint16_t               tx_tail; /**< Current value of TDT register. */
	uint16_t               tx_head;
	/**< Index of first used TX descriptor. */
	uint16_t               queue_id; /**< TX queue index. */
	uint16_t               reg_idx;  /**< TX queue register index. */
	uint16_t               port_id;  /**< Device port identifier. */
	uint8_t                pthresh;  /**< Prefetch threshold register. */
	uint8_t                hthresh;  /**< Host threshold register. */
	uint8_t                wthresh;  /**< Write-back threshold register. */
	uint32_t               ctx_curr;
	/**< Current used hardware descriptor. */
	uint32_t               ctx_start;
	/**< Start context position for transmit queue. */
	struct igb_advctx_info ctx_cache[IGB_CTX_NUM];
	/**< Hardware context history.*/
};

#if 1
#define RTE_PMD_USE_PREFETCH
#endif

#ifdef RTE_PMD_USE_PREFETCH
#define rte_igb_prefetch(p)	rte_prefetch0(p)
#else
#define rte_igb_prefetch(p)	do {} while(0)
#endif

#ifdef RTE_PMD_PACKET_PREFETCH
#define rte_packet_prefetch(p) rte_prefetch1(p)
#else
#define rte_packet_prefetch(p)	do {} while(0)
#endif

/*
 * Macro for VMDq feature for 1 GbE NIC.
 */
#define E1000_VMOLR_SIZE			(8)
#define IGB_TSO_MAX_HDRLEN			(512)
#define IGB_TSO_MAX_MSS				(9216)

/*********************************************************************
 *
 *  TX function
 *
 **********************************************************************/

/*
 *There're some limitations in hardware for TCP segmentation offload. We
 *should check whether the parameters are valid.
 */
static inline uint64_t
check_tso_para(uint64_t ol_req, union igb_tx_offload ol_para)
{
	if (!(ol_req & PKT_TX_TCP_SEG))
		return ol_req;
	if ((ol_para.tso_segsz > IGB_TSO_MAX_MSS) || (ol_para.l2_len +
			ol_para.l3_len + ol_para.l4_len > IGB_TSO_MAX_HDRLEN)) {
		ol_req &= ~PKT_TX_TCP_SEG;
		ol_req |= PKT_TX_TCP_CKSUM;
	}
	return ol_req;
}

/*
 * Advanced context descriptor are almost same between igb/ixgbe
 * This is a separate function, looking for optimization opportunity here
 * Rework required to go with the pre-defined values.
 */

static inline void
igbe_set_xmit_ctx(struct igb_tx_queue* txq,
		volatile struct e1000_adv_tx_context_desc *ctx_txd,
		uint64_t ol_flags, union igb_tx_offload tx_offload)
{
	uint32_t type_tucmd_mlhl;
	uint32_t mss_l4len_idx;
	uint32_t ctx_idx, ctx_curr;
	uint32_t vlan_macip_lens;
	union igb_tx_offload tx_offload_mask;

	ctx_curr = txq->ctx_curr;
	ctx_idx = ctx_curr + txq->ctx_start;

	tx_offload_mask.data = 0;
	type_tucmd_mlhl = 0;

	/* Specify which HW CTX to upload. */
	mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);

	if (ol_flags & PKT_TX_VLAN_PKT)
		tx_offload_mask.data |= TX_VLAN_CMP_MASK;

	/* check if TCP segmentation required for this packet */
	if (ol_flags & PKT_TX_TCP_SEG) {
		/* implies IP cksum in IPv4 */
		if (ol_flags & PKT_TX_IP_CKSUM)
			type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4 |
				E1000_ADVTXD_TUCMD_L4T_TCP |
				E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
		else
			type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV6 |
				E1000_ADVTXD_TUCMD_L4T_TCP |
				E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;

		tx_offload_mask.data |= TX_TSO_CMP_MASK;
		mss_l4len_idx |= tx_offload.tso_segsz << E1000_ADVTXD_MSS_SHIFT;
		mss_l4len_idx |= tx_offload.l4_len << E1000_ADVTXD_L4LEN_SHIFT;
	} else { /* no TSO, check if hardware checksum is needed */
		if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK))
			tx_offload_mask.data |= TX_MACIP_LEN_CMP_MASK;

		if (ol_flags & PKT_TX_IP_CKSUM)
			type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;

		switch (ol_flags & PKT_TX_L4_MASK) {
		case PKT_TX_UDP_CKSUM:
			type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
				E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
			mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case PKT_TX_TCP_CKSUM:
			type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
				E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
			mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
			break;
		case PKT_TX_SCTP_CKSUM:
			type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
				E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
			mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
			break;
		default:
			type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
				E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
			break;
		}
	}

	txq->ctx_cache[ctx_curr].flags = ol_flags;
	txq->ctx_cache[ctx_curr].tx_offload.data =
		tx_offload_mask.data & tx_offload.data;
	txq->ctx_cache[ctx_curr].tx_offload_mask = tx_offload_mask;

	ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
	vlan_macip_lens = (uint32_t)tx_offload.data;
	ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
	ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
	ctx_txd->seqnum_seed = 0;
}

/*
 * Check which hardware context can be used. Use the existing match
 * or create a new context descriptor.
 */
static inline uint32_t
what_advctx_update(struct igb_tx_queue *txq, uint64_t flags,
		union igb_tx_offload tx_offload)
{
	/* If match with the current context */
	if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
		(txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
		(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
			return txq->ctx_curr;
	}

	/* If match with the second context */
	txq->ctx_curr ^= 1;
	if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
		(txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
		(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
			return txq->ctx_curr;
	}

	/* Mismatch, use the previous context */
	return IGB_CTX_NUM;
}

static inline uint32_t
tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
{
	static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
	static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
	uint32_t tmp;

	tmp  = l4_olinfo[(ol_flags & PKT_TX_L4_MASK)  != PKT_TX_L4_NO_CKSUM];
	tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
	tmp |= l4_olinfo[(ol_flags & PKT_TX_TCP_SEG) != 0];
	return tmp;
}

static inline uint32_t
tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
{
	uint32_t cmdtype;
	static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
	static uint32_t tso_cmd[2] = {0, E1000_ADVTXD_DCMD_TSE};
	cmdtype = vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
	cmdtype |= tso_cmd[(ol_flags & PKT_TX_TCP_SEG) != 0];
	return cmdtype;
}

uint16_t
eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
	       uint16_t nb_pkts)
{
	struct igb_tx_queue *txq;
	struct igb_tx_entry *sw_ring;
	struct igb_tx_entry *txe, *txn;
	volatile union e1000_adv_tx_desc *txr;
	volatile union e1000_adv_tx_desc *txd;
	struct rte_mbuf     *tx_pkt;
	struct rte_mbuf     *m_seg;
	uint64_t buf_dma_addr;
	uint32_t olinfo_status;
	uint32_t cmd_type_len;
	uint32_t pkt_len;
	uint16_t slen;
	uint64_t ol_flags;
	uint16_t tx_end;
	uint16_t tx_id;
	uint16_t tx_last;
	uint16_t nb_tx;
	uint64_t tx_ol_req;
	uint32_t new_ctx = 0;
	uint32_t ctx = 0;
	union igb_tx_offload tx_offload = {0};

	txq = tx_queue;
	sw_ring = txq->sw_ring;
	txr     = txq->tx_ring;
	tx_id   = txq->tx_tail;
	txe = &sw_ring[tx_id];

	for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
		tx_pkt = *tx_pkts++;
		pkt_len = tx_pkt->pkt_len;

		RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);

		/*
		 * The number of descriptors that must be allocated for a
		 * packet is the number of segments of that packet, plus 1
		 * Context Descriptor for the VLAN Tag Identifier, if any.
		 * Determine the last TX descriptor to allocate in the TX ring
		 * for the packet, starting from the current position (tx_id)
		 * in the ring.
		 */
		tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1);

		ol_flags = tx_pkt->ol_flags;
		tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK;

		/* If a Context Descriptor need be built . */
		if (tx_ol_req) {
			tx_offload.l2_len = tx_pkt->l2_len;
			tx_offload.l3_len = tx_pkt->l3_len;
			tx_offload.l4_len = tx_pkt->l4_len;
			tx_offload.vlan_tci = tx_pkt->vlan_tci;
			tx_offload.tso_segsz = tx_pkt->tso_segsz;
			tx_ol_req = check_tso_para(tx_ol_req, tx_offload);

			ctx = what_advctx_update(txq, tx_ol_req, tx_offload);
			/* Only allocate context descriptor if required*/
			new_ctx = (ctx == IGB_CTX_NUM);
			ctx = txq->ctx_curr + txq->ctx_start;
			tx_last = (uint16_t) (tx_last + new_ctx);
		}
		if (tx_last >= txq->nb_tx_desc)
			tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);

		PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
			   " tx_first=%u tx_last=%u",
			   (unsigned) txq->port_id,
			   (unsigned) txq->queue_id,
			   (unsigned) pkt_len,
			   (unsigned) tx_id,
			   (unsigned) tx_last);

		/*
		 * Check if there are enough free descriptors in the TX ring
		 * to transmit the next packet.
		 * This operation is based on the two following rules:
		 *
		 *   1- Only check that the last needed TX descriptor can be
		 *      allocated (by construction, if that descriptor is free,
		 *      all intermediate ones are also free).
		 *
		 *      For this purpose, the index of the last TX descriptor
		 *      used for a packet (the "last descriptor" of a packet)
		 *      is recorded in the TX entries (the last one included)
		 *      that are associated with all TX descriptors allocated
		 *      for that packet.
		 *
		 *   2- Avoid to allocate the last free TX descriptor of the
		 *      ring, in order to never set the TDT register with the
		 *      same value stored in parallel by the NIC in the TDH
		 *      register, which makes the TX engine of the NIC enter
		 *      in a deadlock situation.
		 *
		 *      By extension, avoid to allocate a free descriptor that
		 *      belongs to the last set of free descriptors allocated
		 *      to the same packet previously transmitted.
		 */

		/*
		 * The "last descriptor" of the previously sent packet, if any,
		 * which used the last descriptor to allocate.
		 */
		tx_end = sw_ring[tx_last].last_id;

		/*
		 * The next descriptor following that "last descriptor" in the
		 * ring.
		 */
		tx_end = sw_ring[tx_end].next_id;

		/*
		 * The "last descriptor" associated with that next descriptor.
		 */
		tx_end = sw_ring[tx_end].last_id;

		/*
		 * Check that this descriptor is free.
		 */
		if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
			if (nb_tx == 0)
				return 0;
			goto end_of_tx;
		}

		/*
		 * Set common flags of all TX Data Descriptors.
		 *
		 * The following bits must be set in all Data Descriptors:
		 *   - E1000_ADVTXD_DTYP_DATA
		 *   - E1000_ADVTXD_DCMD_DEXT
		 *
		 * The following bits must be set in the first Data Descriptor
		 * and are ignored in the other ones:
		 *   - E1000_ADVTXD_DCMD_IFCS
		 *   - E1000_ADVTXD_MAC_1588
		 *   - E1000_ADVTXD_DCMD_VLE
		 *
		 * The following bits must only be set in the last Data
		 * Descriptor:
		 *   - E1000_TXD_CMD_EOP
		 *
		 * The following bits can be set in any Data Descriptor, but
		 * are only set in the last Data Descriptor:
		 *   - E1000_TXD_CMD_RS
		 */
		cmd_type_len = txq->txd_type |
			E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
		if (tx_ol_req & PKT_TX_TCP_SEG)
			pkt_len -= (tx_pkt->l2_len + tx_pkt->l3_len + tx_pkt->l4_len);
		olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
#if defined(RTE_LIBRTE_IEEE1588)
		if (ol_flags & PKT_TX_IEEE1588_TMST)
			cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
#endif
		if (tx_ol_req) {
			/* Setup TX Advanced context descriptor if required */
			if (new_ctx) {
				volatile struct e1000_adv_tx_context_desc *
				    ctx_txd;

				ctx_txd = (volatile struct
				    e1000_adv_tx_context_desc *)
				    &txr[tx_id];

				txn = &sw_ring[txe->next_id];
				RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);

				if (txe->mbuf != NULL) {
					rte_pktmbuf_free_seg(txe->mbuf);
					txe->mbuf = NULL;
				}

				igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req, tx_offload);

				txe->last_id = tx_last;
				tx_id = txe->next_id;
				txe = txn;
			}

			/* Setup the TX Advanced Data Descriptor */
			cmd_type_len  |= tx_desc_vlan_flags_to_cmdtype(tx_ol_req);
			olinfo_status |= tx_desc_cksum_flags_to_olinfo(tx_ol_req);
			olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
		}

		m_seg = tx_pkt;
		do {
			txn = &sw_ring[txe->next_id];
			txd = &txr[tx_id];

			if (txe->mbuf != NULL)
				rte_pktmbuf_free_seg(txe->mbuf);
			txe->mbuf = m_seg;

			/*
			 * Set up transmit descriptor.
			 */
			slen = (uint16_t) m_seg->data_len;
			buf_dma_addr = rte_mbuf_data_iova(m_seg);
			txd->read.buffer_addr =
				rte_cpu_to_le_64(buf_dma_addr);
			txd->read.cmd_type_len =
				rte_cpu_to_le_32(cmd_type_len | slen);
			txd->read.olinfo_status =
				rte_cpu_to_le_32(olinfo_status);
			txe->last_id = tx_last;
			tx_id = txe->next_id;
			txe = txn;
			m_seg = m_seg->next;
		} while (m_seg != NULL);

		/*
		 * The last packet data descriptor needs End Of Packet (EOP)
		 * and Report Status (RS).
		 */
		txd->read.cmd_type_len |=
			rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
	}
 end_of_tx:
	rte_wmb();

	/*
	 * Set the Transmit Descriptor Tail (TDT).
	 */
	E1000_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
	PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
		   (unsigned) txq->port_id, (unsigned) txq->queue_id,
		   (unsigned) tx_id, (unsigned) nb_tx);
	txq->tx_tail = tx_id;

	return nb_tx;
}

/*********************************************************************
 *
 *  TX prep functions
 *
 **********************************************************************/
uint16_t
eth_igb_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
		uint16_t nb_pkts)
{
	int i, ret;
	struct rte_mbuf *m;

	for (i = 0; i < nb_pkts; i++) {
		m = tx_pkts[i];

		/* Check some limitations for TSO in hardware */
		if (m->ol_flags & PKT_TX_TCP_SEG)
			if ((m->tso_segsz > IGB_TSO_MAX_MSS) ||
					(m->l2_len + m->l3_len + m->l4_len >
					IGB_TSO_MAX_HDRLEN)) {
				rte_errno = -EINVAL;
				return i;
			}

		if (m->ol_flags & IGB_TX_OFFLOAD_NOTSUP_MASK) {
			rte_errno = -ENOTSUP;
			return i;
		}

#ifdef RTE_LIBRTE_ETHDEV_DEBUG
		ret = rte_validate_tx_offload(m);
		if (ret != 0) {
			rte_errno = ret;
			return i;
		}
#endif
		ret = rte_net_intel_cksum_prepare(m);
		if (ret != 0) {
			rte_errno = ret;
			return i;
		}
	}

	return i;
}

/*********************************************************************
 *
 *  RX functions
 *
 **********************************************************************/
#define IGB_PACKET_TYPE_IPV4              0X01
#define IGB_PACKET_TYPE_IPV4_TCP          0X11
#define IGB_PACKET_TYPE_IPV4_UDP          0X21
#define IGB_PACKET_TYPE_IPV4_SCTP         0X41
#define IGB_PACKET_TYPE_IPV4_EXT          0X03
#define IGB_PACKET_TYPE_IPV4_EXT_SCTP     0X43
#define IGB_PACKET_TYPE_IPV6              0X04
#define IGB_PACKET_TYPE_IPV6_TCP          0X14
#define IGB_PACKET_TYPE_IPV6_UDP          0X24
#define IGB_PACKET_TYPE_IPV6_EXT          0X0C
#define IGB_PACKET_TYPE_IPV6_EXT_TCP      0X1C
#define IGB_PACKET_TYPE_IPV6_EXT_UDP      0X2C
#define IGB_PACKET_TYPE_IPV4_IPV6         0X05
#define IGB_PACKET_TYPE_IPV4_IPV6_TCP     0X15
#define IGB_PACKET_TYPE_IPV4_IPV6_UDP     0X25
#define IGB_PACKET_TYPE_IPV4_IPV6_EXT     0X0D
#define IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D
#define IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D
#define IGB_PACKET_TYPE_MAX               0X80
#define IGB_PACKET_TYPE_MASK              0X7F
#define IGB_PACKET_TYPE_SHIFT             0X04
static inline uint32_t
igb_rxd_pkt_info_to_pkt_type(uint16_t pkt_info)
{
	static const uint32_t
		ptype_table[IGB_PACKET_TYPE_MAX] __rte_cache_aligned = {
		[IGB_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
			RTE_PTYPE_L3_IPV4,
		[IGB_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
			RTE_PTYPE_L3_IPV4_EXT,
		[IGB_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
			RTE_PTYPE_L3_IPV6,
		[IGB_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
			RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
			RTE_PTYPE_INNER_L3_IPV6,
		[IGB_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
			RTE_PTYPE_L3_IPV6_EXT,
		[IGB_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
			RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
			RTE_PTYPE_INNER_L3_IPV6_EXT,
		[IGB_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
			RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
		[IGB_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
			RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
		[IGB_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
			RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
			RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
		[IGB_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
			RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
		[IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
			RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
			RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
		[IGB_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
			RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
		[IGB_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
			RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
		[IGB_PACKET_TYPE_IPV4_IPV6_UDP] =  RTE_PTYPE_L2_ETHER |
			RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
			RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
		[IGB_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
			RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
		[IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
			RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
			RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
		[IGB_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
			RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
		[IGB_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
			RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
	};
	if (unlikely(pkt_info & E1000_RXDADV_PKTTYPE_ETQF))
		return RTE_PTYPE_UNKNOWN;

	pkt_info = (pkt_info >> IGB_PACKET_TYPE_SHIFT) & IGB_PACKET_TYPE_MASK;

	return ptype_table[pkt_info];
}

static inline uint64_t
rx_desc_hlen_type_rss_to_pkt_flags(struct igb_rx_queue *rxq, uint32_t hl_tp_rs)
{
	uint64_t pkt_flags = ((hl_tp_rs & 0x0F) == 0) ?  0 : PKT_RX_RSS_HASH;

#if defined(RTE_LIBRTE_IEEE1588)
	static uint32_t ip_pkt_etqf_map[8] = {
		0, 0, 0, PKT_RX_IEEE1588_PTP,
		0, 0, 0, 0,
	};

	struct rte_eth_dev dev = rte_eth_devices[rxq->port_id];
	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev.data->dev_private);

	/* EtherType is in bits 8:10 in Packet Type, and not in the default 0:2 */
	if (hw->mac.type == e1000_i210)
		pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 12) & 0x07];
	else
		pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07];
#else
	RTE_SET_USED(rxq);
#endif

	return pkt_flags;
}

static inline uint64_t
rx_desc_status_to_pkt_flags(uint32_t rx_status)
{
	uint64_t pkt_flags;

	/* Check if VLAN present */
	pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ?
		PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED : 0);

#if defined(RTE_LIBRTE_IEEE1588)
	if (rx_status & E1000_RXD_STAT_TMST)
		pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
#endif
	return pkt_flags;
}

static inline uint64_t
rx_desc_error_to_pkt_flags(uint32_t rx_status)
{
	/*
	 * Bit 30: IPE, IPv4 checksum error
	 * Bit 29: L4I, L4I integrity error
	 */

	static uint64_t error_to_pkt_flags_map[4] = {
		PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
		PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
		PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
		PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
	};
	return error_to_pkt_flags_map[(rx_status >>
		E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
}

uint16_t
eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
	       uint16_t nb_pkts)
{
	struct igb_rx_queue *rxq;
	volatile union e1000_adv_rx_desc *rx_ring;
	volatile union e1000_adv_rx_desc *rxdp;
	struct igb_rx_entry *sw_ring;
	struct igb_rx_entry *rxe;
	struct rte_mbuf *rxm;
	struct rte_mbuf *nmb;
	union e1000_adv_rx_desc rxd;
	uint64_t dma_addr;
	uint32_t staterr;
	uint32_t hlen_type_rss;
	uint16_t pkt_len;
	uint16_t rx_id;
	uint16_t nb_rx;
	uint16_t nb_hold;
	uint64_t pkt_flags;

	nb_rx = 0;
	nb_hold = 0;
	rxq = rx_queue;
	rx_id = rxq->rx_tail;
	rx_ring = rxq->rx_ring;
	sw_ring = rxq->sw_ring;
	while (nb_rx < nb_pkts) {
		/*
		 * The order of operations here is important as the DD status
		 * bit must not be read after any other descriptor fields.
		 * rx_ring and rxdp are pointing to volatile data so the order
		 * of accesses cannot be reordered by the compiler. If they were
		 * not volatile, they could be reordered which could lead to
		 * using invalid descriptor fields when read from rxd.
		 */
		rxdp = &rx_ring[rx_id];
		staterr = rxdp->wb.upper.status_error;
		if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
			break;
		rxd = *rxdp;

		/*
		 * End of packet.
		 *
		 * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
		 * likely to be invalid and to be dropped by the various
		 * validation checks performed by the network stack.
		 *
		 * Allocate a new mbuf to replenish the RX ring descriptor.
		 * If the allocation fails:
		 *    - arrange for that RX descriptor to be the first one
		 *      being parsed the next time the receive function is
		 *      invoked [on the same queue].
		 *
		 *    - Stop parsing the RX ring and return immediately.
		 *
		 * This policy do not drop the packet received in the RX
		 * descriptor for which the allocation of a new mbuf failed.
		 * Thus, it allows that packet to be later retrieved if
		 * mbuf have been freed in the mean time.
		 * As a side effect, holding RX descriptors instead of
		 * systematically giving them back to the NIC may lead to
		 * RX ring exhaustion situations.
		 * However, the NIC can gracefully prevent such situations
		 * to happen by sending specific "back-pressure" flow control
		 * frames to its peer(s).
		 */
		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
			   "staterr=0x%x pkt_len=%u",
			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
			   (unsigned) rx_id, (unsigned) staterr,
			   (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));

		nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
		if (nmb == NULL) {
			PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
				   "queue_id=%u", (unsigned) rxq->port_id,
				   (unsigned) rxq->queue_id);
			rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
			break;
		}

		nb_hold++;
		rxe = &sw_ring[rx_id];
		rx_id++;
		if (rx_id == rxq->nb_rx_desc)
			rx_id = 0;

		/* Prefetch next mbuf while processing current one. */
		rte_igb_prefetch(sw_ring[rx_id].mbuf);

		/*
		 * When next RX descriptor is on a cache-line boundary,
		 * prefetch the next 4 RX descriptors and the next 8 pointers
		 * to mbufs.
		 */
		if ((rx_id & 0x3) == 0) {
			rte_igb_prefetch(&rx_ring[rx_id]);
			rte_igb_prefetch(&sw_ring[rx_id]);
		}

		rxm = rxe->mbuf;
		rxe->mbuf = nmb;
		dma_addr =
			rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
		rxdp->read.hdr_addr = 0;
		rxdp->read.pkt_addr = dma_addr;

		/*
		 * Initialize the returned mbuf.
		 * 1) setup generic mbuf fields:
		 *    - number of segments,
		 *    - next segment,
		 *    - packet length,
		 *    - RX port identifier.
		 * 2) integrate hardware offload data, if any:
		 *    - RSS flag & hash,
		 *    - IP checksum flag,
		 *    - VLAN TCI, if any,
		 *    - error flags.
		 */
		pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
				      rxq->crc_len);
		rxm->data_off = RTE_PKTMBUF_HEADROOM;
		rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
		rxm->nb_segs = 1;
		rxm->next = NULL;
		rxm->pkt_len = pkt_len;
		rxm->data_len = pkt_len;
		rxm->port = rxq->port_id;

		rxm->hash.rss = rxd.wb.lower.hi_dword.rss;
		hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);

		/*
		 * The vlan_tci field is only valid when PKT_RX_VLAN is
		 * set in the pkt_flags field and must be in CPU byte order.
		 */
		if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) &&
				(rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) {
			rxm->vlan_tci = rte_be_to_cpu_16(rxd.wb.upper.vlan);
		} else {
			rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
		}
		pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
		pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
		pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
		rxm->ol_flags = pkt_flags;
		rxm->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.lower.
						lo_dword.hs_rss.pkt_info);

		/*
		 * Store the mbuf address into the next entry of the array
		 * of returned packets.
		 */
		rx_pkts[nb_rx++] = rxm;
	}
	rxq->rx_tail = rx_id;

	/*
	 * If the number of free RX descriptors is greater than the RX free
	 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
	 * register.
	 * Update the RDT with the value of the last processed RX descriptor
	 * minus 1, to guarantee that the RDT register is never equal to the
	 * RDH register, which creates a "full" ring situtation from the
	 * hardware point of view...
	 */
	nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
	if (nb_hold > rxq->rx_free_thresh) {
		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
			   "nb_hold=%u nb_rx=%u",
			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
			   (unsigned) rx_id, (unsigned) nb_hold,
			   (unsigned) nb_rx);
		rx_id = (uint16_t) ((rx_id == 0) ?
				     (rxq->nb_rx_desc - 1) : (rx_id - 1));
		E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
		nb_hold = 0;
	}
	rxq->nb_rx_hold = nb_hold;
	return nb_rx;
}

uint16_t
eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
			 uint16_t nb_pkts)
{
	struct igb_rx_queue *rxq;
	volatile union e1000_adv_rx_desc *rx_ring;
	volatile union e1000_adv_rx_desc *rxdp;
	struct igb_rx_entry *sw_ring;
	struct igb_rx_entry *rxe;
	struct rte_mbuf *first_seg;
	struct rte_mbuf *last_seg;
	struct rte_mbuf *rxm;
	struct rte_mbuf *nmb;
	union e1000_adv_rx_desc rxd;
	uint64_t dma; /* Physical address of mbuf data buffer */
	uint32_t staterr;
	uint32_t hlen_type_rss;
	uint16_t rx_id;
	uint16_t nb_rx;
	uint16_t nb_hold;
	uint16_t data_len;
	uint64_t pkt_flags;

	nb_rx = 0;
	nb_hold = 0;
	rxq = rx_queue;
	rx_id = rxq->rx_tail;
	rx_ring = rxq->rx_ring;
	sw_ring = rxq->sw_ring;

	/*
	 * Retrieve RX context of current packet, if any.
	 */
	first_seg = rxq->pkt_first_seg;
	last_seg = rxq->pkt_last_seg;

	while (nb_rx < nb_pkts) {
	next_desc:
		/*
		 * The order of operations here is important as the DD status
		 * bit must not be read after any other descriptor fields.
		 * rx_ring and rxdp are pointing to volatile data so the order
		 * of accesses cannot be reordered by the compiler. If they were
		 * not volatile, they could be reordered which could lead to
		 * using invalid descriptor fields when read from rxd.
		 */
		rxdp = &rx_ring[rx_id];
		staterr = rxdp->wb.upper.status_error;
		if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
			break;
		rxd = *rxdp;

		/*
		 * Descriptor done.
		 *
		 * Allocate a new mbuf to replenish the RX ring descriptor.
		 * If the allocation fails:
		 *    - arrange for that RX descriptor to be the first one
		 *      being parsed the next time the receive function is
		 *      invoked [on the same queue].
		 *
		 *    - Stop parsing the RX ring and return immediately.
		 *
		 * This policy does not drop the packet received in the RX
		 * descriptor for which the allocation of a new mbuf failed.
		 * Thus, it allows that packet to be later retrieved if
		 * mbuf have been freed in the mean time.
		 * As a side effect, holding RX descriptors instead of
		 * systematically giving them back to the NIC may lead to
		 * RX ring exhaustion situations.
		 * However, the NIC can gracefully prevent such situations
		 * to happen by sending specific "back-pressure" flow control
		 * frames to its peer(s).
		 */
		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
			   "staterr=0x%x data_len=%u",
			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
			   (unsigned) rx_id, (unsigned) staterr,
			   (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));

		nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
		if (nmb == NULL) {
			PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
				   "queue_id=%u", (unsigned) rxq->port_id,
				   (unsigned) rxq->queue_id);
			rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
			break;
		}

		nb_hold++;
		rxe = &sw_ring[rx_id];
		rx_id++;
		if (rx_id == rxq->nb_rx_desc)
			rx_id = 0;

		/* Prefetch next mbuf while processing current one. */
		rte_igb_prefetch(sw_ring[rx_id].mbuf);

		/*
		 * When next RX descriptor is on a cache-line boundary,
		 * prefetch the next 4 RX descriptors and the next 8 pointers
		 * to mbufs.
		 */
		if ((rx_id & 0x3) == 0) {
			rte_igb_prefetch(&rx_ring[rx_id]);
			rte_igb_prefetch(&sw_ring[rx_id]);
		}

		/*
		 * Update RX descriptor with the physical address of the new
		 * data buffer of the new allocated mbuf.
		 */
		rxm = rxe->mbuf;
		rxe->mbuf = nmb;
		dma = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
		rxdp->read.pkt_addr = dma;
		rxdp->read.hdr_addr = 0;

		/*
		 * Set data length & data buffer address of mbuf.
		 */
		data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
		rxm->data_len = data_len;
		rxm->data_off = RTE_PKTMBUF_HEADROOM;

		/*
		 * If this is the first buffer of the received packet,
		 * set the pointer to the first mbuf of the packet and
		 * initialize its context.
		 * Otherwise, update the total length and the number of segments
		 * of the current scattered packet, and update the pointer to
		 * the last mbuf of the current packet.
		 */
		if (first_seg == NULL) {
			first_seg = rxm;
			first_seg->pkt_len = data_len;
			first_seg->nb_segs = 1;
		} else {
			first_seg->pkt_len += data_len;
			first_seg->nb_segs++;
			last_seg->next = rxm;
		}

		/*
		 * If this is not the last buffer of the received packet,
		 * update the pointer to the last mbuf of the current scattered
		 * packet and continue to parse the RX ring.
		 */
		if (! (staterr & E1000_RXD_STAT_EOP)) {
			last_seg = rxm;
			goto next_desc;
		}

		/*
		 * This is the last buffer of the received packet.
		 * If the CRC is not stripped by the hardware:
		 *   - Subtract the CRC	length from the total packet length.
		 *   - If the last buffer only contains the whole CRC or a part
		 *     of it, free the mbuf associated to the last buffer.
		 *     If part of the CRC is also contained in the previous
		 *     mbuf, subtract the length of that CRC part from the
		 *     data length of the previous mbuf.
		 */
		rxm->next = NULL;
		if (unlikely(rxq->crc_len > 0)) {
			first_seg->pkt_len -= ETHER_CRC_LEN;
			if (data_len <= ETHER_CRC_LEN) {
				rte_pktmbuf_free_seg(rxm);
				first_seg->nb_segs--;
				last_seg->data_len = (uint16_t)
					(last_seg->data_len -
					 (ETHER_CRC_LEN - data_len));
				last_seg->next = NULL;
			} else
				rxm->data_len =
					(uint16_t) (data_len - ETHER_CRC_LEN);
		}

		/*
		 * Initialize the first mbuf of the returned packet:
		 *    - RX port identifier,
		 *    - hardware offload data, if any:
		 *      - RSS flag & hash,
		 *      - IP checksum flag,
		 *      - VLAN TCI, if any,
		 *      - error flags.
		 */
		first_seg->port = rxq->port_id;
		first_seg->hash.rss = rxd.wb.lower.hi_dword.rss;

		/*
		 * The vlan_tci field is only valid when PKT_RX_VLAN is
		 * set in the pkt_flags field and must be in CPU byte order.
		 */
		if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) &&
				(rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) {
			first_seg->vlan_tci =
				rte_be_to_cpu_16(rxd.wb.upper.vlan);
		} else {
			first_seg->vlan_tci =
				rte_le_to_cpu_16(rxd.wb.upper.vlan);
		}
		hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
		pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
		pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
		pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
		first_seg->ol_flags = pkt_flags;
		first_seg->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.
					lower.lo_dword.hs_rss.pkt_info);

		/* Prefetch data of first segment, if configured to do so. */
		rte_packet_prefetch((char *)first_seg->buf_addr +
			first_seg->data_off);

		/*
		 * Store the mbuf address into the next entry of the array
		 * of returned packets.
		 */
		rx_pkts[nb_rx++] = first_seg;

		/*
		 * Setup receipt context for a new packet.
		 */
		first_seg = NULL;
	}

	/*
	 * Record index of the next RX descriptor to probe.
	 */
	rxq->rx_tail = rx_id;

	/*
	 * Save receive context.
	 */
	rxq->pkt_first_seg = first_seg;
	rxq->pkt_last_seg = last_seg;

	/*
	 * If the number of free RX descriptors is greater than the RX free
	 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
	 * register.
	 * Update the RDT with the value of the last processed RX descriptor
	 * minus 1, to guarantee that the RDT register is never equal to the
	 * RDH register, which creates a "full" ring situtation from the
	 * hardware point of view...
	 */
	nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
	if (nb_hold > rxq->rx_free_thresh) {
		PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
			   "nb_hold=%u nb_rx=%u",
			   (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
			   (unsigned) rx_id, (unsigned) nb_hold,
			   (unsigned) nb_rx);
		rx_id = (uint16_t) ((rx_id == 0) ?
				     (rxq->nb_rx_desc - 1) : (rx_id - 1));
		E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
		nb_hold = 0;
	}
	rxq->nb_rx_hold = nb_hold;
	return nb_rx;
}

/*
 * Maximum number of Ring Descriptors.
 *
 * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
 * desscriptors should meet the following condition:
 *      (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
 */

static void
igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
{
	unsigned i;

	if (txq->sw_ring != NULL) {
		for (i = 0; i < txq->nb_tx_desc; i++) {
			if (txq->sw_ring[i].mbuf != NULL) {
				rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
				txq->sw_ring[i].mbuf = NULL;
			}
		}
	}
}

static void
igb_tx_queue_release(struct igb_tx_queue *txq)
{
	if (txq != NULL) {
		igb_tx_queue_release_mbufs(txq);
		rte_free(txq->sw_ring);
		rte_free(txq);
	}
}

void
eth_igb_tx_queue_release(void *txq)
{
	igb_tx_queue_release(txq);
}

static int
igb_tx_done_cleanup(struct igb_tx_queue *txq, uint32_t free_cnt)
{
	struct igb_tx_entry *sw_ring;
	volatile union e1000_adv_tx_desc *txr;
	uint16_t tx_first; /* First segment analyzed. */
	uint16_t tx_id;    /* Current segment being processed. */
	uint16_t tx_last;  /* Last segment in the current packet. */
	uint16_t tx_next;  /* First segment of the next packet. */
	int count;

	if (txq != NULL) {
		count = 0;
		sw_ring = txq->sw_ring;
		txr = txq->tx_ring;

		/*
		 * tx_tail is the last sent packet on the sw_ring. Goto the end
		 * of that packet (the last segment in the packet chain) and
		 * then the next segment will be the start of the oldest segment
		 * in the sw_ring. This is the first packet that will be
		 * attempted to be freed.
		 */

		/* Get last segment in most recently added packet. */
		tx_first = sw_ring[txq->tx_tail].last_id;

		/* Get the next segment, which is the oldest segment in ring. */
		tx_first = sw_ring[tx_first].next_id;

		/* Set the current index to the first. */
		tx_id = tx_first;

		/*
		 * Loop through each packet. For each packet, verify that an
		 * mbuf exists and that the last segment is free. If so, free
		 * it and move on.
		 */
		while (1) {
			tx_last = sw_ring[tx_id].last_id;

			if (sw_ring[tx_last].mbuf) {
				if (txr[tx_last].wb.status &
						E1000_TXD_STAT_DD) {
					/*
					 * Increment the number of packets
					 * freed.
					 */
					count++;

					/* Get the start of the next packet. */
					tx_next = sw_ring[tx_last].next_id;

					/*
					 * Loop through all segments in a
					 * packet.
					 */
					do {
						rte_pktmbuf_free_seg(sw_ring[tx_id].mbuf);
						sw_ring[tx_id].mbuf = NULL;
						sw_ring[tx_id].last_id = tx_id;

						/* Move to next segemnt. */
						tx_id = sw_ring[tx_id].next_id;

					} while (tx_id != tx_next);

					if (unlikely(count == (int)free_cnt))
						break;
				} else
					/*
					 * mbuf still in use, nothing left to
					 * free.
					 */
					break;
			} else {
				/*
				 * There are multiple reasons to be here:
				 * 1) All the packets on the ring have been
				 *    freed - tx_id is equal to tx_first
				 *    and some packets have been freed.
				 *    - Done, exit
				 * 2) Interfaces has not sent a rings worth of
				 *    packets yet, so the segment after tail is
				 *    still empty. Or a previous call to this
				 *    function freed some of the segments but
				 *    not all so there is a hole in the list.
				 *    Hopefully this is a rare case.
				 *    - Walk the list and find the next mbuf. If
				 *      there isn't one, then done.
				 */
				if (likely((tx_id == tx_first) && (count != 0)))
					break;

				/*
				 * Walk the list and find the next mbuf, if any.
				 */
				do {
					/* Move to next segemnt. */
					tx_id = sw_ring[tx_id].next_id;

					if (sw_ring[tx_id].mbuf)
						break;

				} while (tx_id != tx_first);

				/*
				 * Determine why previous loop bailed. If there
				 * is not an mbuf, done.
				 */
				if (sw_ring[tx_id].mbuf == NULL)
					break;
			}
		}
	} else
		count = -ENODEV;

	return count;
}

int
eth_igb_tx_done_cleanup(void *txq, uint32_t free_cnt)
{
	return igb_tx_done_cleanup(txq, free_cnt);
}

static void
igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
{
	txq->tx_head = 0;
	txq->tx_tail = 0;
	txq->ctx_curr = 0;
	memset((void*)&txq->ctx_cache, 0,
		IGB_CTX_NUM * sizeof(struct igb_advctx_info));
}

static void
igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
{
	static const union e1000_adv_tx_desc zeroed_desc = {{0}};
	struct igb_tx_entry *txe = txq->sw_ring;
	uint16_t i, prev;
	struct e1000_hw *hw;

	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
	/* Zero out HW ring memory */
	for (i = 0; i < txq->nb_tx_desc; i++) {
		txq->tx_ring[i] = zeroed_desc;
	}

	/* Initialize ring entries */
	prev = (uint16_t)(txq->nb_tx_desc - 1);
	for (i = 0; i < txq->nb_tx_desc; i++) {
		volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);

		txd->wb.status = E1000_TXD_STAT_DD;
		txe[i].mbuf = NULL;
		txe[i].last_id = i;
		txe[prev].next_id = i;
		prev = i;
	}

	txq->txd_type = E1000_ADVTXD_DTYP_DATA;
	/* 82575 specific, each tx queue will use 2 hw contexts */
	if (hw->mac.type == e1000_82575)
		txq->ctx_start = txq->queue_id * IGB_CTX_NUM;

	igb_reset_tx_queue_stat(txq);
}

int
eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
			 uint16_t queue_idx,
			 uint16_t nb_desc,
			 unsigned int socket_id,
			 const struct rte_eth_txconf *tx_conf)
{
	const struct rte_memzone *tz;
	struct igb_tx_queue *txq;
	struct e1000_hw     *hw;
	uint32_t size;

	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);

	/*
	 * Validate number of transmit descriptors.
	 * It must not exceed hardware maximum, and must be multiple
	 * of E1000_ALIGN.
	 */
	if (nb_desc % IGB_TXD_ALIGN != 0 ||
			(nb_desc > E1000_MAX_RING_DESC) ||
			(nb_desc < E1000_MIN_RING_DESC)) {
		return -EINVAL;
	}

	/*
	 * The tx_free_thresh and tx_rs_thresh values are not used in the 1G
	 * driver.
	 */
	if (tx_conf->tx_free_thresh != 0)
		PMD_INIT_LOG(INFO, "The tx_free_thresh parameter is not "
			     "used for the 1G driver.");
	if (tx_conf->tx_rs_thresh != 0)
		PMD_INIT_LOG(INFO, "The tx_rs_thresh parameter is not "
			     "used for the 1G driver.");
	if (tx_conf->tx_thresh.wthresh == 0 && hw->mac.type != e1000_82576)
		PMD_INIT_LOG(INFO, "To improve 1G driver performance, "
			     "consider setting the TX WTHRESH value to 4, 8, "
			     "or 16.");

	/* Free memory prior to re-allocation if needed */
	if (dev->data->tx_queues[queue_idx] != NULL) {
		igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
		dev->data->tx_queues[queue_idx] = NULL;
	}

	/* First allocate the tx queue data structure */
	txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
							RTE_CACHE_LINE_SIZE);
	if (txq == NULL)
		return -ENOMEM;

	/*
	 * Allocate TX ring hardware descriptors. A memzone large enough to
	 * handle the maximum ring size is allocated in order to allow for
	 * resizing in later calls to the queue setup function.
	 */
	size = sizeof(union e1000_adv_tx_desc) * E1000_MAX_RING_DESC;
	tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, size,
				      E1000_ALIGN, socket_id);
	if (tz == NULL) {
		igb_tx_queue_release(txq);
		return -ENOMEM;
	}

	txq->nb_tx_desc = nb_desc;
	txq->pthresh = tx_conf->tx_thresh.pthresh;
	txq->hthresh = tx_conf->tx_thresh.hthresh;
	txq->wthresh = tx_conf->tx_thresh.wthresh;
	if (txq->wthresh > 0 && hw->mac.type == e1000_82576)
		txq->wthresh = 1;
	txq->queue_id = queue_idx;
	txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
		queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
	txq->port_id = dev->data->port_id;

	txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx));
	txq->tx_ring_phys_addr = tz->iova;

	txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
	/* Allocate software ring */
	txq->sw_ring = rte_zmalloc("txq->sw_ring",
				   sizeof(struct igb_tx_entry) * nb_desc,
				   RTE_CACHE_LINE_SIZE);
	if (txq->sw_ring == NULL) {
		igb_tx_queue_release(txq);
		return -ENOMEM;
	}
	PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
		     txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);

	igb_reset_tx_queue(txq, dev);
	dev->tx_pkt_burst = eth_igb_xmit_pkts;
	dev->tx_pkt_prepare = &eth_igb_prep_pkts;
	dev->data->tx_queues[queue_idx] = txq;

	return 0;
}

static void
igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
{
	unsigned i;

	if (rxq->sw_ring != NULL) {
		for (i = 0; i < rxq->nb_rx_desc; i++) {
			if (rxq->sw_ring[i].mbuf != NULL) {
				rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
				rxq->sw_ring[i].mbuf = NULL;
			}
		}
	}
}

static void
igb_rx_queue_release(struct igb_rx_queue *rxq)
{
	if (rxq != NULL) {
		igb_rx_queue_release_mbufs(rxq);
		rte_free(rxq->sw_ring);
		rte_free(rxq);
	}
}

void
eth_igb_rx_queue_release(void *rxq)
{
	igb_rx_queue_release(rxq);
}

static void
igb_reset_rx_queue(struct igb_rx_queue *rxq)
{
	static const union e1000_adv_rx_desc zeroed_desc = {{0}};
	unsigned i;

	/* Zero out HW ring memory */
	for (i = 0; i < rxq->nb_rx_desc; i++) {
		rxq->rx_ring[i] = zeroed_desc;
	}

	rxq->rx_tail = 0;
	rxq->pkt_first_seg = NULL;
	rxq->pkt_last_seg = NULL;
}

int
eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
			 uint16_t queue_idx,
			 uint16_t nb_desc,
			 unsigned int socket_id,
			 const struct rte_eth_rxconf *rx_conf,
			 struct rte_mempool *mp)
{
	const struct rte_memzone *rz;
	struct igb_rx_queue *rxq;
	struct e1000_hw     *hw;
	unsigned int size;

	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);

	/*
	 * Validate number of receive descriptors.
	 * It must not exceed hardware maximum, and must be multiple
	 * of E1000_ALIGN.
	 */
	if (nb_desc % IGB_RXD_ALIGN != 0 ||
			(nb_desc > E1000_MAX_RING_DESC) ||
			(nb_desc < E1000_MIN_RING_DESC)) {
		return -EINVAL;
	}

	/* Free memory prior to re-allocation if needed */
	if (dev->data->rx_queues[queue_idx] != NULL) {
		igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
		dev->data->rx_queues[queue_idx] = NULL;
	}

	/* First allocate the RX queue data structure. */
	rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
			  RTE_CACHE_LINE_SIZE);
	if (rxq == NULL)
		return -ENOMEM;
	rxq->mb_pool = mp;
	rxq->nb_rx_desc = nb_desc;
	rxq->pthresh = rx_conf->rx_thresh.pthresh;
	rxq->hthresh = rx_conf->rx_thresh.hthresh;
	rxq->wthresh = rx_conf->rx_thresh.wthresh;
	if (rxq->wthresh > 0 &&
	    (hw->mac.type == e1000_82576 || hw->mac.type == e1000_vfadapt_i350))
		rxq->wthresh = 1;
	rxq->drop_en = rx_conf->rx_drop_en;
	rxq->rx_free_thresh = rx_conf->rx_free_thresh;
	rxq->queue_id = queue_idx;
	rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
		queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
	rxq->port_id = dev->data->port_id;
	rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0 :
				  ETHER_CRC_LEN);

	/*
	 *  Allocate RX ring hardware descriptors. A memzone large enough to
	 *  handle the maximum ring size is allocated in order to allow for
	 *  resizing in later calls to the queue setup function.
	 */
	size = sizeof(union e1000_adv_rx_desc) * E1000_MAX_RING_DESC;
	rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, size,
				      E1000_ALIGN, socket_id);
	if (rz == NULL) {
		igb_rx_queue_release(rxq);
		return -ENOMEM;
	}
	rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx));
	rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx));
	rxq->rx_ring_phys_addr = rz->iova;
	rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;

	/* Allocate software ring. */
	rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
				   sizeof(struct igb_rx_entry) * nb_desc,
				   RTE_CACHE_LINE_SIZE);
	if (rxq->sw_ring == NULL) {
		igb_rx_queue_release(rxq);
		return -ENOMEM;
	}
	PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
		     rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);

	dev->data->rx_queues[queue_idx] = rxq;
	igb_reset_rx_queue(rxq);

	return 0;
}

uint32_t
eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
#define IGB_RXQ_SCAN_INTERVAL 4
	volatile union e1000_adv_rx_desc *rxdp;
	struct igb_rx_queue *rxq;
	uint32_t desc = 0;

	rxq = dev->data->rx_queues[rx_queue_id];
	rxdp = &(rxq->rx_ring[rxq->rx_tail]);

	while ((desc < rxq->nb_rx_desc) &&
		(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) {
		desc += IGB_RXQ_SCAN_INTERVAL;
		rxdp += IGB_RXQ_SCAN_INTERVAL;
		if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
			rxdp = &(rxq->rx_ring[rxq->rx_tail +
				desc - rxq->nb_rx_desc]);
	}

	return desc;
}

int
eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset)
{
	volatile union e1000_adv_rx_desc *rxdp;
	struct igb_rx_queue *rxq = rx_queue;
	uint32_t desc;

	if (unlikely(offset >= rxq->nb_rx_desc))
		return 0;
	desc = rxq->rx_tail + offset;
	if (desc >= rxq->nb_rx_desc)
		desc -= rxq->nb_rx_desc;

	rxdp = &rxq->rx_ring[desc];
	return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD);
}

int
eth_igb_rx_descriptor_status(void *rx_queue, uint16_t offset)
{
	struct igb_rx_queue *rxq = rx_queue;
	volatile uint32_t *status;
	uint32_t desc;

	if (unlikely(offset >= rxq->nb_rx_desc))
		return -EINVAL;

	if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
		return RTE_ETH_RX_DESC_UNAVAIL;

	desc = rxq->rx_tail + offset;
	if (desc >= rxq->nb_rx_desc)
		desc -= rxq->nb_rx_desc;

	status = &rxq->rx_ring[desc].wb.upper.status_error;
	if (*status & rte_cpu_to_le_32(E1000_RXD_STAT_DD))
		return RTE_ETH_RX_DESC_DONE;

	return RTE_ETH_RX_DESC_AVAIL;
}

int
eth_igb_tx_descriptor_status(void *tx_queue, uint16_t offset)
{
	struct igb_tx_queue *txq = tx_queue;
	volatile uint32_t *status;
	uint32_t desc;

	if (unlikely(offset >= txq->nb_tx_desc))
		return -EINVAL;

	desc = txq->tx_tail + offset;
	if (desc >= txq->nb_tx_desc)
		desc -= txq->nb_tx_desc;

	status = &txq->tx_ring[desc].wb.status;
	if (*status & rte_cpu_to_le_32(E1000_TXD_STAT_DD))
		return RTE_ETH_TX_DESC_DONE;

	return RTE_ETH_TX_DESC_FULL;
}

void
igb_dev_clear_queues(struct rte_eth_dev *dev)
{
	uint16_t i;
	struct igb_tx_queue *txq;
	struct igb_rx_queue *rxq;

	for (i = 0; i < dev->data->nb_tx_queues; i++) {
		txq = dev->data->tx_queues[i];
		if (txq != NULL) {
			igb_tx_queue_release_mbufs(txq);
			igb_reset_tx_queue(txq, dev);
		}
	}

	for (i = 0; i < dev->data->nb_rx_queues; i++) {
		rxq = dev->data->rx_queues[i];
		if (rxq != NULL) {
			igb_rx_queue_release_mbufs(rxq);
			igb_reset_rx_queue(rxq);
		}
	}
}

void
igb_dev_free_queues(struct rte_eth_dev *dev)
{
	uint16_t i;

	for (i = 0; i < dev->data->nb_rx_queues; i++) {
		eth_igb_rx_queue_release(dev->data->rx_queues[i]);
		dev->data->rx_queues[i] = NULL;
	}
	dev->data->nb_rx_queues = 0;

	for (i = 0; i < dev->data->nb_tx_queues; i++) {
		eth_igb_tx_queue_release(dev->data->tx_queues[i]);
		dev->data->tx_queues[i] = NULL;
	}
	dev->data->nb_tx_queues = 0;
}

/**
 * Receive Side Scaling (RSS).
 * See section 7.1.1.7 in the following document:
 *     "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
 *
 * Principles:
 * The source and destination IP addresses of the IP header and the source and
 * destination ports of TCP/UDP headers, if any, of received packets are hashed
 * against a configurable random key to compute a 32-bit RSS hash result.
 * The seven (7) LSBs of the 32-bit hash result are used as an index into a
 * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
 * RSS output index which is used as the RX queue index where to store the
 * received packets.
 * The following output is supplied in the RX write-back descriptor:
 *     - 32-bit result of the Microsoft RSS hash function,
 *     - 4-bit RSS type field.
 */

/*
 * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
 * Used as the default key.
 */
static uint8_t rss_intel_key[40] = {
	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
};

static void
igb_rss_disable(struct rte_eth_dev *dev)
{
	struct e1000_hw *hw;
	uint32_t mrqc;

	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
	mrqc = E1000_READ_REG(hw, E1000_MRQC);
	mrqc &= ~E1000_MRQC_ENABLE_MASK;
	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
}

static void
igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf)
{
	uint8_t  *hash_key;
	uint32_t rss_key;
	uint32_t mrqc;
	uint64_t rss_hf;
	uint16_t i;

	hash_key = rss_conf->rss_key;
	if (hash_key != NULL) {
		/* Fill in RSS hash key */
		for (i = 0; i < 10; i++) {
			rss_key  = hash_key[(i * 4)];
			rss_key |= hash_key[(i * 4) + 1] << 8;
			rss_key |= hash_key[(i * 4) + 2] << 16;
			rss_key |= hash_key[(i * 4) + 3] << 24;
			E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
		}
	}

	/* Set configured hashing protocols in MRQC register */
	rss_hf = rss_conf->rss_hf;
	mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
	if (rss_hf & ETH_RSS_IPV4)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
	if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
	if (rss_hf & ETH_RSS_IPV6)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
	if (rss_hf & ETH_RSS_IPV6_EX)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
	if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
	if (rss_hf & ETH_RSS_IPV6_TCP_EX)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
	if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
	if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
	if (rss_hf & ETH_RSS_IPV6_UDP_EX)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
}

int
eth_igb_rss_hash_update(struct rte_eth_dev *dev,
			struct rte_eth_rss_conf *rss_conf)
{
	struct e1000_hw *hw;
	uint32_t mrqc;
	uint64_t rss_hf;

	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);

	/*
	 * Before changing anything, first check that the update RSS operation
	 * does not attempt to disable RSS, if RSS was enabled at
	 * initialization time, or does not attempt to enable RSS, if RSS was
	 * disabled at initialization time.
	 */
	rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL;
	mrqc = E1000_READ_REG(hw, E1000_MRQC);
	if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */
		if (rss_hf != 0) /* Enable RSS */
			return -(EINVAL);
		return 0; /* Nothing to do */
	}
	/* RSS enabled */
	if (rss_hf == 0) /* Disable RSS */
		return -(EINVAL);
	igb_hw_rss_hash_set(hw, rss_conf);
	return 0;
}

int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
			      struct rte_eth_rss_conf *rss_conf)
{
	struct e1000_hw *hw;
	uint8_t *hash_key;
	uint32_t rss_key;
	uint32_t mrqc;
	uint64_t rss_hf;
	uint16_t i;

	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
	hash_key = rss_conf->rss_key;
	if (hash_key != NULL) {
		/* Return RSS hash key */
		for (i = 0; i < 10; i++) {
			rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i);
			hash_key[(i * 4)] = rss_key & 0x000000FF;
			hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
			hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
			hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
		}
	}

	/* Get RSS functions configured in MRQC register */
	mrqc = E1000_READ_REG(hw, E1000_MRQC);
	if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */
		rss_conf->rss_hf = 0;
		return 0;
	}
	rss_hf = 0;
	if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
		rss_hf |= ETH_RSS_IPV4;
	if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
		rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
	if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
		rss_hf |= ETH_RSS_IPV6;
	if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX)
		rss_hf |= ETH_RSS_IPV6_EX;
	if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
		rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
	if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX)
		rss_hf |= ETH_RSS_IPV6_TCP_EX;
	if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP)
		rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
	if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP)
		rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
	if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX)
		rss_hf |= ETH_RSS_IPV6_UDP_EX;
	rss_conf->rss_hf = rss_hf;
	return 0;
}

static void
igb_rss_configure(struct rte_eth_dev *dev)
{
	struct rte_eth_rss_conf rss_conf;
	struct e1000_hw *hw;
	uint32_t shift;
	uint16_t i;

	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);

	/* Fill in redirection table. */
	shift = (hw->mac.type == e1000_82575) ? 6 : 0;
	for (i = 0; i < 128; i++) {
		union e1000_reta {
			uint32_t dword;
			uint8_t  bytes[4];
		} reta;
		uint8_t q_idx;

		q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
				   i % dev->data->nb_rx_queues : 0);
		reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
		if ((i & 3) == 3)
			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
	}

	/*
	 * Configure the RSS key and the RSS protocols used to compute
	 * the RSS hash of input packets.
	 */
	rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
	if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
		igb_rss_disable(dev);
		return;
	}
	if (rss_conf.rss_key == NULL)
		rss_conf.rss_key = rss_intel_key; /* Default hash key */
	igb_hw_rss_hash_set(hw, &rss_conf);
}

/*
 * Check if the mac type support VMDq or not.
 * Return 1 if it supports, otherwise, return 0.
 */
static int
igb_is_vmdq_supported(const struct rte_eth_dev *dev)
{
	const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_82580:
	case e1000_i350:
		return 1;
	case e1000_82540:
	case e1000_82541:
	case e1000_82542:
	case e1000_82543:
	case e1000_82544:
	case e1000_82545:
	case e1000_82546:
	case e1000_82547:
	case e1000_82571:
	case e1000_82572:
	case e1000_82573:
	case e1000_82574:
	case e1000_82583:
	case e1000_i210:
	case e1000_i211:
	default:
		PMD_INIT_LOG(ERR, "Cannot support VMDq feature");
		return 0;
	}
}

static int
igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
{
	struct rte_eth_vmdq_rx_conf *cfg;
	struct e1000_hw *hw;
	uint32_t mrqc, vt_ctl, vmolr, rctl;
	int i;

	PMD_INIT_FUNC_TRACE();

	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
	cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;

	/* Check if mac type can support VMDq, return value of 0 means NOT support */
	if (igb_is_vmdq_supported(dev) == 0)
		return -1;

	igb_rss_disable(dev);

	/* RCTL: eanble VLAN filter */
	rctl = E1000_READ_REG(hw, E1000_RCTL);
	rctl |= E1000_RCTL_VFE;
	E1000_WRITE_REG(hw, E1000_RCTL, rctl);

	/* MRQC: enable vmdq */
	mrqc = E1000_READ_REG(hw, E1000_MRQC);
	mrqc |= E1000_MRQC_ENABLE_VMDQ;
	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);

	/* VTCTL:  pool selection according to VLAN tag */
	vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
	if (cfg->enable_default_pool)
		vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT);
	vt_ctl |= E1000_VT_CTL_IGNORE_MAC;
	E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);

	for (i = 0; i < E1000_VMOLR_SIZE; i++) {
		vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
		vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE |
			E1000_VMOLR_ROPE | E1000_VMOLR_BAM |
			E1000_VMOLR_MPME);

		if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG)
			vmolr |= E1000_VMOLR_AUPE;
		if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC)
			vmolr |= E1000_VMOLR_ROMPE;
		if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC)
			vmolr |= E1000_VMOLR_ROPE;
		if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST)
			vmolr |= E1000_VMOLR_BAM;
		if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST)
			vmolr |= E1000_VMOLR_MPME;

		E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
	}

	/*
	 * VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1
	 * Both 82576 and 82580 support it
	 */
	if (hw->mac.type != e1000_i350) {
		for (i = 0; i < E1000_VMOLR_SIZE; i++) {
			vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
			vmolr |= E1000_VMOLR_STRVLAN;
			E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
		}
	}

	/* VFTA - enable all vlan filters */
	for (i = 0; i < IGB_VFTA_SIZE; i++)
		E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX);

	/* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */
	if (hw->mac.type != e1000_82580)
		E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK);

	/*
	 * RAH/RAL - allow pools to read specific mac addresses
	 * In this case, all pools should be able to read from mac addr 0
	 */
	E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX));
	E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX);

	/* VLVF: set up filters for vlan tags as configured */
	for (i = 0; i < cfg->nb_pool_maps; i++) {
		/* set vlan id in VF register and set the valid bit */
		E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \
                        (cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \
			((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \
			E1000_VLVF_POOLSEL_MASK)));
	}

	E1000_WRITE_FLUSH(hw);

	return 0;
}


/*********************************************************************
 *
 *  Enable receive unit.
 *
 **********************************************************************/

static int
igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
{
	struct igb_rx_entry *rxe = rxq->sw_ring;
	uint64_t dma_addr;
	unsigned i;

	/* Initialize software ring entries. */
	for (i = 0; i < rxq->nb_rx_desc; i++) {
		volatile union e1000_adv_rx_desc *rxd;
		struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);

		if (mbuf == NULL) {
			PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
				     "queue_id=%hu", rxq->queue_id);
			return -ENOMEM;
		}
		dma_addr =
			rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
		rxd = &rxq->rx_ring[i];
		rxd->read.hdr_addr = 0;
		rxd->read.pkt_addr = dma_addr;
		rxe[i].mbuf = mbuf;
	}

	return 0;
}

#define E1000_MRQC_DEF_Q_SHIFT               (3)
static int
igb_dev_mq_rx_configure(struct rte_eth_dev *dev)
{
	struct e1000_hw *hw =
		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
	uint32_t mrqc;

	if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) {
		/*
		 * SRIOV active scheme
		 * FIXME if support RSS together with VMDq & SRIOV
		 */
		mrqc = E1000_MRQC_ENABLE_VMDQ;
		/* 011b Def_Q ignore, according to VT_CTL.DEF_PL */
		mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT;
		E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
	} else if(RTE_ETH_DEV_SRIOV(dev).active == 0) {
		/*
		 * SRIOV inactive scheme
		 */
		switch (dev->data->dev_conf.rxmode.mq_mode) {
			case ETH_MQ_RX_RSS:
				igb_rss_configure(dev);
				break;
			case ETH_MQ_RX_VMDQ_ONLY:
				/*Configure general VMDQ only RX parameters*/
				igb_vmdq_rx_hw_configure(dev);
				break;
			case ETH_MQ_RX_NONE:
				/* if mq_mode is none, disable rss mode.*/
			default:
				igb_rss_disable(dev);
				break;
		}
	}

	return 0;
}

int
eth_igb_rx_init(struct rte_eth_dev *dev)
{
	struct e1000_hw     *hw;
	struct igb_rx_queue *rxq;
	uint32_t rctl;
	uint32_t rxcsum;
	uint32_t srrctl;
	uint16_t buf_size;
	uint16_t rctl_bsize;
	uint16_t i;
	int ret;

	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
	srrctl = 0;

	/*
	 * Make sure receives are disabled while setting
	 * up the descriptor ring.
	 */
	rctl = E1000_READ_REG(hw, E1000_RCTL);
	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);

	/*
	 * Configure support of jumbo frames, if any.
	 */
	if (dev->data->dev_conf.rxmode.jumbo_frame == 1) {
		rctl |= E1000_RCTL_LPE;

		/*
		 * Set maximum packet length by default, and might be updated
		 * together with enabling/disabling dual VLAN.
		 */
		E1000_WRITE_REG(hw, E1000_RLPML,
			dev->data->dev_conf.rxmode.max_rx_pkt_len +
						VLAN_TAG_SIZE);
	} else
		rctl &= ~E1000_RCTL_LPE;

	/* Configure and enable each RX queue. */
	rctl_bsize = 0;
	dev->rx_pkt_burst = eth_igb_recv_pkts;
	for (i = 0; i < dev->data->nb_rx_queues; i++) {
		uint64_t bus_addr;
		uint32_t rxdctl;

		rxq = dev->data->rx_queues[i];

		rxq->flags = 0;
		/*
		 * i350 and i354 vlan packets have vlan tags byte swapped.
		 */
		if (hw->mac.type == e1000_i350 || hw->mac.type == e1000_i354) {
			rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN;
			PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required");
		} else {
			PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required");
		}

		/* Allocate buffers for descriptor rings and set up queue */
		ret = igb_alloc_rx_queue_mbufs(rxq);
		if (ret)
			return ret;

		/*
		 * Reset crc_len in case it was changed after queue setup by a
		 *  call to configure
		 */
		rxq->crc_len =
			(uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ?
							0 : ETHER_CRC_LEN);

		bus_addr = rxq->rx_ring_phys_addr;
		E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx),
				rxq->nb_rx_desc *
				sizeof(union e1000_adv_rx_desc));
		E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx),
				(uint32_t)(bus_addr >> 32));
		E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr);

		srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;

		/*
		 * Configure RX buffer size.
		 */
		buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
			RTE_PKTMBUF_HEADROOM);
		if (buf_size >= 1024) {
			/*
			 * Configure the BSIZEPACKET field of the SRRCTL
			 * register of the queue.
			 * Value is in 1 KB resolution, from 1 KB to 127 KB.
			 * If this field is equal to 0b, then RCTL.BSIZE
			 * determines the RX packet buffer size.
			 */
			srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
				   E1000_SRRCTL_BSIZEPKT_MASK);
			buf_size = (uint16_t) ((srrctl &
						E1000_SRRCTL_BSIZEPKT_MASK) <<
					       E1000_SRRCTL_BSIZEPKT_SHIFT);

			/* It adds dual VLAN length for supporting dual VLAN */
			if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
						2 * VLAN_TAG_SIZE) > buf_size){
				if (!dev->data->scattered_rx)
					PMD_INIT_LOG(DEBUG,
						     "forcing scatter mode");
				dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
				dev->data->scattered_rx = 1;
			}
		} else {
			/*
			 * Use BSIZE field of the device RCTL register.
			 */
			if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
				rctl_bsize = buf_size;
			if (!dev->data->scattered_rx)
				PMD_INIT_LOG(DEBUG, "forcing scatter mode");
			dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
			dev->data->scattered_rx = 1;
		}

		/* Set if packets are dropped when no descriptors available */
		if (rxq->drop_en)
			srrctl |= E1000_SRRCTL_DROP_EN;

		E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl);

		/* Enable this RX queue. */
		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx));
		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
		rxdctl &= 0xFFF00000;
		rxdctl |= (rxq->pthresh & 0x1F);
		rxdctl |= ((rxq->hthresh & 0x1F) << 8);
		rxdctl |= ((rxq->wthresh & 0x1F) << 16);
		E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl);
	}

	if (dev->data->dev_conf.rxmode.enable_scatter) {
		if (!dev->data->scattered_rx)
			PMD_INIT_LOG(DEBUG, "forcing scatter mode");
		dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
		dev->data->scattered_rx = 1;
	}

	/*
	 * Setup BSIZE field of RCTL register, if needed.
	 * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
	 * register, since the code above configures the SRRCTL register of
	 * the RX queue in such a case.
	 * All configurable sizes are:
	 * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
	 *  8192: rctl |= (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX);
	 *  4096: rctl |= (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX);
	 *  2048: rctl |= E1000_RCTL_SZ_2048;
	 *  1024: rctl |= E1000_RCTL_SZ_1024;
	 *   512: rctl |= E1000_RCTL_SZ_512;
	 *   256: rctl |= E1000_RCTL_SZ_256;
	 */
	if (rctl_bsize > 0) {
		if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
			rctl |= E1000_RCTL_SZ_512;
		else /* 256 <= buf_size < 512 - use 256 */
			rctl |= E1000_RCTL_SZ_256;
	}

	/*
	 * Configure RSS if device configured with multiple RX queues.
	 */
	igb_dev_mq_rx_configure(dev);

	/* Update the rctl since igb_dev_mq_rx_configure may change its value */
	rctl |= E1000_READ_REG(hw, E1000_RCTL);

	/*
	 * Setup the Checksum Register.
	 * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
	 */
	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	/* Enable both L3/L4 rx checksum offload */
	if (dev->data->dev_conf.rxmode.hw_ip_checksum)
		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
				E1000_RXCSUM_CRCOFL);
	else
		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
				E1000_RXCSUM_CRCOFL);
	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);

	/* Setup the Receive Control Register. */
	if (dev->data->dev_conf.rxmode.hw_strip_crc) {
		rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */

		/* set STRCRC bit in all queues */
		if (hw->mac.type == e1000_i350 ||
		    hw->mac.type == e1000_i210 ||
		    hw->mac.type == e1000_i211 ||
		    hw->mac.type == e1000_i354) {
			for (i = 0; i < dev->data->nb_rx_queues; i++) {
				rxq = dev->data->rx_queues[i];
				uint32_t dvmolr = E1000_READ_REG(hw,
					E1000_DVMOLR(rxq->reg_idx));
				dvmolr |= E1000_DVMOLR_STRCRC;
				E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
			}
		}
	} else {
		rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */

		/* clear STRCRC bit in all queues */
		if (hw->mac.type == e1000_i350 ||
		    hw->mac.type == e1000_i210 ||
		    hw->mac.type == e1000_i211 ||
		    hw->mac.type == e1000_i354) {
			for (i = 0; i < dev->data->nb_rx_queues; i++) {
				rxq = dev->data->rx_queues[i];
				uint32_t dvmolr = E1000_READ_REG(hw,
					E1000_DVMOLR(rxq->reg_idx));
				dvmolr &= ~E1000_DVMOLR_STRCRC;
				E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
			}
		}
	}

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
		E1000_RCTL_RDMTS_HALF |
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);

	/* Make sure VLAN Filters are off. */
	if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY)
		rctl &= ~E1000_RCTL_VFE;
	/* Don't store bad packets. */
	rctl &= ~E1000_RCTL_SBP;

	/* Enable Receives. */
	E1000_WRITE_REG(hw, E1000_RCTL, rctl);

	/*
	 * Setup the HW Rx Head and Tail Descriptor Pointers.
	 * This needs to be done after enable.
	 */
	for (i = 0; i < dev->data->nb_rx_queues; i++) {
		rxq = dev->data->rx_queues[i];
		E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0);
		E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
	}

	return 0;
}

/*********************************************************************
 *
 *  Enable transmit unit.
 *
 **********************************************************************/
void
eth_igb_tx_init(struct rte_eth_dev *dev)
{
	struct e1000_hw     *hw;
	struct igb_tx_queue *txq;
	uint32_t tctl;
	uint32_t txdctl;
	uint16_t i;

	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);

	/* Setup the Base and Length of the Tx Descriptor Rings. */
	for (i = 0; i < dev->data->nb_tx_queues; i++) {
		uint64_t bus_addr;
		txq = dev->data->tx_queues[i];
		bus_addr = txq->tx_ring_phys_addr;

		E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx),
				txq->nb_tx_desc *
				sizeof(union e1000_adv_tx_desc));
		E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx),
				(uint32_t)(bus_addr >> 32));
		E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr);

		/* Setup the HW Tx Head and Tail descriptor pointers. */
		E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0);
		E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0);

		/* Setup Transmit threshold registers. */
		txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx));
		txdctl |= txq->pthresh & 0x1F;
		txdctl |= ((txq->hthresh & 0x1F) << 8);
		txdctl |= ((txq->wthresh & 0x1F) << 16);
		txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
		E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl);
	}

	/* Program the Transmit Control Register. */
	tctl = E1000_READ_REG(hw, E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
		 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));

	e1000_config_collision_dist(hw);

	/* This write will effectively turn on the transmit unit. */
	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
}

/*********************************************************************
 *
 *  Enable VF receive unit.
 *
 **********************************************************************/
int
eth_igbvf_rx_init(struct rte_eth_dev *dev)
{
	struct e1000_hw     *hw;
	struct igb_rx_queue *rxq;
	uint32_t srrctl;
	uint16_t buf_size;
	uint16_t rctl_bsize;
	uint16_t i;
	int ret;

	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);

	/* setup MTU */
	e1000_rlpml_set_vf(hw,
		(uint16_t)(dev->data->dev_conf.rxmode.max_rx_pkt_len +
		VLAN_TAG_SIZE));

	/* Configure and enable each RX queue. */
	rctl_bsize = 0;
	dev->rx_pkt_burst = eth_igb_recv_pkts;
	for (i = 0; i < dev->data->nb_rx_queues; i++) {
		uint64_t bus_addr;
		uint32_t rxdctl;

		rxq = dev->data->rx_queues[i];

		rxq->flags = 0;
		/*
		 * i350VF LB vlan packets have vlan tags byte swapped.
		 */
		if (hw->mac.type == e1000_vfadapt_i350) {
			rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN;
			PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required");
		} else {
			PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required");
		}

		/* Allocate buffers for descriptor rings and set up queue */
		ret = igb_alloc_rx_queue_mbufs(rxq);
		if (ret)
			return ret;

		bus_addr = rxq->rx_ring_phys_addr;
		E1000_WRITE_REG(hw, E1000_RDLEN(i),
				rxq->nb_rx_desc *
				sizeof(union e1000_adv_rx_desc));
		E1000_WRITE_REG(hw, E1000_RDBAH(i),
				(uint32_t)(bus_addr >> 32));
		E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);

		srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;

		/*
		 * Configure RX buffer size.
		 */
		buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
			RTE_PKTMBUF_HEADROOM);
		if (buf_size >= 1024) {
			/*
			 * Configure the BSIZEPACKET field of the SRRCTL
			 * register of the queue.
			 * Value is in 1 KB resolution, from 1 KB to 127 KB.
			 * If this field is equal to 0b, then RCTL.BSIZE
			 * determines the RX packet buffer size.
			 */
			srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
				   E1000_SRRCTL_BSIZEPKT_MASK);
			buf_size = (uint16_t) ((srrctl &
						E1000_SRRCTL_BSIZEPKT_MASK) <<
					       E1000_SRRCTL_BSIZEPKT_SHIFT);

			/* It adds dual VLAN length for supporting dual VLAN */
			if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
						2 * VLAN_TAG_SIZE) > buf_size){
				if (!dev->data->scattered_rx)
					PMD_INIT_LOG(DEBUG,
						     "forcing scatter mode");
				dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
				dev->data->scattered_rx = 1;
			}
		} else {
			/*
			 * Use BSIZE field of the device RCTL register.
			 */
			if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
				rctl_bsize = buf_size;
			if (!dev->data->scattered_rx)
				PMD_INIT_LOG(DEBUG, "forcing scatter mode");
			dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
			dev->data->scattered_rx = 1;
		}

		/* Set if packets are dropped when no descriptors available */
		if (rxq->drop_en)
			srrctl |= E1000_SRRCTL_DROP_EN;

		E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);

		/* Enable this RX queue. */
		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
		rxdctl &= 0xFFF00000;
		rxdctl |= (rxq->pthresh & 0x1F);
		rxdctl |= ((rxq->hthresh & 0x1F) << 8);
		if (hw->mac.type == e1000_vfadapt) {
			/*
			 * Workaround of 82576 VF Erratum
			 * force set WTHRESH to 1
			 * to avoid Write-Back not triggered sometimes
			 */
			rxdctl |= 0x10000;
			PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !");
		}
		else
			rxdctl |= ((rxq->wthresh & 0x1F) << 16);
		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
	}

	if (dev->data->dev_conf.rxmode.enable_scatter) {
		if (!dev->data->scattered_rx)
			PMD_INIT_LOG(DEBUG, "forcing scatter mode");
		dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
		dev->data->scattered_rx = 1;
	}

	/*
	 * Setup the HW Rx Head and Tail Descriptor Pointers.
	 * This needs to be done after enable.
	 */
	for (i = 0; i < dev->data->nb_rx_queues; i++) {
		rxq = dev->data->rx_queues[i];
		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
		E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
	}

	return 0;
}

/*********************************************************************
 *
 *  Enable VF transmit unit.
 *
 **********************************************************************/
void
eth_igbvf_tx_init(struct rte_eth_dev *dev)
{
	struct e1000_hw     *hw;
	struct igb_tx_queue *txq;
	uint32_t txdctl;
	uint16_t i;

	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);

	/* Setup the Base and Length of the Tx Descriptor Rings. */
	for (i = 0; i < dev->data->nb_tx_queues; i++) {
		uint64_t bus_addr;

		txq = dev->data->tx_queues[i];
		bus_addr = txq->tx_ring_phys_addr;
		E1000_WRITE_REG(hw, E1000_TDLEN(i),
				txq->nb_tx_desc *
				sizeof(union e1000_adv_tx_desc));
		E1000_WRITE_REG(hw, E1000_TDBAH(i),
				(uint32_t)(bus_addr >> 32));
		E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);

		/* Setup the HW Tx Head and Tail descriptor pointers. */
		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
		E1000_WRITE_REG(hw, E1000_TDH(i), 0);

		/* Setup Transmit threshold registers. */
		txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
		txdctl |= txq->pthresh & 0x1F;
		txdctl |= ((txq->hthresh & 0x1F) << 8);
		if (hw->mac.type == e1000_82576) {
			/*
			 * Workaround of 82576 VF Erratum
			 * force set WTHRESH to 1
			 * to avoid Write-Back not triggered sometimes
			 */
			txdctl |= 0x10000;
			PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !");
		}
		else
			txdctl |= ((txq->wthresh & 0x1F) << 16);
		txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
	}

}

void
igb_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
	struct rte_eth_rxq_info *qinfo)
{
	struct igb_rx_queue *rxq;

	rxq = dev->data->rx_queues[queue_id];

	qinfo->mp = rxq->mb_pool;
	qinfo->scattered_rx = dev->data->scattered_rx;
	qinfo->nb_desc = rxq->nb_rx_desc;

	qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
	qinfo->conf.rx_drop_en = rxq->drop_en;
}

void
igb_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
	struct rte_eth_txq_info *qinfo)
{
	struct igb_tx_queue *txq;

	txq = dev->data->tx_queues[queue_id];

	qinfo->nb_desc = txq->nb_tx_desc;

	qinfo->conf.tx_thresh.pthresh = txq->pthresh;
	qinfo->conf.tx_thresh.hthresh = txq->hthresh;
	qinfo->conf.tx_thresh.wthresh = txq->wthresh;
}

int
igb_config_rss_filter(struct rte_eth_dev *dev,
		struct igb_rte_flow_rss_conf *conf, bool add)
{
	uint32_t shift;
	uint16_t i, j;
	struct rte_eth_rss_conf rss_conf = conf->rss_conf;
	struct e1000_filter_info *filter_info =
		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);

	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);

	if (!add) {
		if (memcmp(conf, &filter_info->rss_info,
			sizeof(struct igb_rte_flow_rss_conf)) == 0) {
			igb_rss_disable(dev);
			memset(&filter_info->rss_info, 0,
				sizeof(struct igb_rte_flow_rss_conf));
			return 0;
		}
		return -EINVAL;
	}

	if (filter_info->rss_info.num)
		return -EINVAL;

	/* Fill in redirection table. */
	shift = (hw->mac.type == e1000_82575) ? 6 : 0;
	for (i = 0, j = 0; i < 128; i++, j++) {
		union e1000_reta {
			uint32_t dword;
			uint8_t  bytes[4];
		} reta;
		uint8_t q_idx;

		q_idx = conf->queue[j];
		if (j == conf->num)
			j = 0;
		reta.bytes[i & 3] = (uint8_t)(q_idx << shift);
		if ((i & 3) == 3)
			E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
	}

	/* Configure the RSS key and the RSS protocols used to compute
	 * the RSS hash of input packets.
	 */
	if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
		igb_rss_disable(dev);
		return 0;
	}
	if (rss_conf.rss_key == NULL)
		rss_conf.rss_key = rss_intel_key; /* Default hash key */
	igb_hw_rss_hash_set(hw, &rss_conf);

	rte_memcpy(&filter_info->rss_info,
		conf, sizeof(struct igb_rte_flow_rss_conf));

	return 0;
}