aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/enic/enic_rxtx.c
blob: f8dd09c35ff1aa6788ea00cc0476619135ed5175 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
/* Copyright 2008-2016 Cisco Systems, Inc.  All rights reserved.
 * Copyright 2007 Nuova Systems, Inc.  All rights reserved.
 *
 * Copyright (c) 2014, Cisco Systems, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <rte_mbuf.h>
#include <rte_ethdev.h>
#include <rte_prefetch.h>

#include "enic_compat.h"
#include "rq_enet_desc.h"
#include "enic.h"
#include <rte_ether.h>
#include <rte_ip.h>
#include <rte_tcp.h>

#define RTE_PMD_USE_PREFETCH

#ifdef RTE_PMD_USE_PREFETCH
/*Prefetch a cache line into all cache levels. */
#define rte_enic_prefetch(p) rte_prefetch0(p)
#else
#define rte_enic_prefetch(p) do {} while (0)
#endif

#ifdef RTE_PMD_PACKET_PREFETCH
#define rte_packet_prefetch(p) rte_prefetch1(p)
#else
#define rte_packet_prefetch(p) do {} while (0)
#endif

static inline uint16_t
enic_cq_rx_desc_ciflags(struct cq_enet_rq_desc *crd)
{
	return le16_to_cpu(crd->completed_index_flags) & ~CQ_DESC_COMP_NDX_MASK;
}

static inline uint16_t
enic_cq_rx_desc_bwflags(struct cq_enet_rq_desc *crd)
{
	return le16_to_cpu(crd->bytes_written_flags) &
			   ~CQ_ENET_RQ_DESC_BYTES_WRITTEN_MASK;
}

static inline uint8_t
enic_cq_rx_desc_packet_error(uint16_t bwflags)
{
	return (bwflags & CQ_ENET_RQ_DESC_FLAGS_TRUNCATED) ==
		CQ_ENET_RQ_DESC_FLAGS_TRUNCATED;
}

static inline uint8_t
enic_cq_rx_desc_eop(uint16_t ciflags)
{
	return (ciflags & CQ_ENET_RQ_DESC_FLAGS_EOP)
		== CQ_ENET_RQ_DESC_FLAGS_EOP;
}

static inline uint8_t
enic_cq_rx_desc_csum_not_calc(struct cq_enet_rq_desc *cqrd)
{
	return (le16_to_cpu(cqrd->q_number_rss_type_flags) &
		CQ_ENET_RQ_DESC_FLAGS_CSUM_NOT_CALC) ==
		CQ_ENET_RQ_DESC_FLAGS_CSUM_NOT_CALC;
}

static inline uint8_t
enic_cq_rx_desc_ipv4_csum_ok(struct cq_enet_rq_desc *cqrd)
{
	return (cqrd->flags & CQ_ENET_RQ_DESC_FLAGS_IPV4_CSUM_OK) ==
		CQ_ENET_RQ_DESC_FLAGS_IPV4_CSUM_OK;
}

static inline uint8_t
enic_cq_rx_desc_tcp_udp_csum_ok(struct cq_enet_rq_desc *cqrd)
{
	return (cqrd->flags & CQ_ENET_RQ_DESC_FLAGS_TCP_UDP_CSUM_OK) ==
		CQ_ENET_RQ_DESC_FLAGS_TCP_UDP_CSUM_OK;
}

static inline uint8_t
enic_cq_rx_desc_rss_type(struct cq_enet_rq_desc *cqrd)
{
	return (uint8_t)((le16_to_cpu(cqrd->q_number_rss_type_flags) >>
		CQ_DESC_Q_NUM_BITS) & CQ_ENET_RQ_DESC_RSS_TYPE_MASK);
}

static inline uint32_t
enic_cq_rx_desc_rss_hash(struct cq_enet_rq_desc *cqrd)
{
	return le32_to_cpu(cqrd->rss_hash);
}

static inline uint16_t
enic_cq_rx_desc_vlan(struct cq_enet_rq_desc *cqrd)
{
	return le16_to_cpu(cqrd->vlan);
}

static inline uint16_t
enic_cq_rx_desc_n_bytes(struct cq_desc *cqd)
{
	struct cq_enet_rq_desc *cqrd = (struct cq_enet_rq_desc *)cqd;
	return le16_to_cpu(cqrd->bytes_written_flags) &
		CQ_ENET_RQ_DESC_BYTES_WRITTEN_MASK;
}

/* Find the offset to L5. This is needed by enic TSO implementation.
 * Return 0 if not a TCP packet or can't figure out the length.
 */
static inline uint8_t tso_header_len(struct rte_mbuf *mbuf)
{
	struct ether_hdr *eh;
	struct vlan_hdr *vh;
	struct ipv4_hdr *ip4;
	struct ipv6_hdr *ip6;
	struct tcp_hdr *th;
	uint8_t hdr_len;
	uint16_t ether_type;

	/* offset past Ethernet header */
	eh = rte_pktmbuf_mtod(mbuf, struct ether_hdr *);
	ether_type = eh->ether_type;
	hdr_len = sizeof(struct ether_hdr);
	if (ether_type == rte_cpu_to_be_16(ETHER_TYPE_VLAN)) {
		vh = rte_pktmbuf_mtod_offset(mbuf, struct vlan_hdr *, hdr_len);
		ether_type = vh->eth_proto;
		hdr_len += sizeof(struct vlan_hdr);
	}

	/* offset past IP header */
	switch (rte_be_to_cpu_16(ether_type)) {
	case ETHER_TYPE_IPv4:
		ip4 = rte_pktmbuf_mtod_offset(mbuf, struct ipv4_hdr *, hdr_len);
		if (ip4->next_proto_id != IPPROTO_TCP)
			return 0;
		hdr_len += (ip4->version_ihl & 0xf) * 4;
		break;
	case ETHER_TYPE_IPv6:
		ip6 = rte_pktmbuf_mtod_offset(mbuf, struct ipv6_hdr *, hdr_len);
		if (ip6->proto != IPPROTO_TCP)
			return 0;
		hdr_len += sizeof(struct ipv6_hdr);
		break;
	default:
		return 0;
	}

	if ((hdr_len + sizeof(struct tcp_hdr)) > mbuf->pkt_len)
		return 0;

	/* offset past TCP header */
	th = rte_pktmbuf_mtod_offset(mbuf, struct tcp_hdr *, hdr_len);
	hdr_len += (th->data_off >> 4) * 4;

	if (hdr_len > mbuf->pkt_len)
		return 0;

	return hdr_len;
}

static inline uint8_t
enic_cq_rx_check_err(struct cq_desc *cqd)
{
	struct cq_enet_rq_desc *cqrd = (struct cq_enet_rq_desc *)cqd;
	uint16_t bwflags;

	bwflags = enic_cq_rx_desc_bwflags(cqrd);
	if (unlikely(enic_cq_rx_desc_packet_error(bwflags)))
		return 1;
	return 0;
}

/* Lookup table to translate RX CQ flags to mbuf flags. */
static inline uint32_t
enic_cq_rx_flags_to_pkt_type(struct cq_desc *cqd)
{
	struct cq_enet_rq_desc *cqrd = (struct cq_enet_rq_desc *)cqd;
	uint8_t cqrd_flags = cqrd->flags;
	static const uint32_t cq_type_table[128] __rte_cache_aligned = {
		[0x00] = RTE_PTYPE_UNKNOWN,
		[0x20] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_NONFRAG,
		[0x22] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP,
		[0x24] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP,
		[0x60] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG,
		[0x62] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP,
		[0x64] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP,
		[0x10] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_NONFRAG,
		[0x12] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP,
		[0x14] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP,
		[0x50] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG,
		[0x52] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP,
		[0x54] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP,
		/* All others reserved */
	};
	cqrd_flags &= CQ_ENET_RQ_DESC_FLAGS_IPV4_FRAGMENT
		| CQ_ENET_RQ_DESC_FLAGS_IPV4 | CQ_ENET_RQ_DESC_FLAGS_IPV6
		| CQ_ENET_RQ_DESC_FLAGS_TCP | CQ_ENET_RQ_DESC_FLAGS_UDP;
	return cq_type_table[cqrd_flags];
}

static inline void
enic_cq_rx_to_pkt_flags(struct cq_desc *cqd, struct rte_mbuf *mbuf)
{
	struct cq_enet_rq_desc *cqrd = (struct cq_enet_rq_desc *)cqd;
	uint16_t ciflags, bwflags, pkt_flags = 0, vlan_tci;
	ciflags = enic_cq_rx_desc_ciflags(cqrd);
	bwflags = enic_cq_rx_desc_bwflags(cqrd);
	vlan_tci = enic_cq_rx_desc_vlan(cqrd);

	mbuf->ol_flags = 0;

	/* flags are meaningless if !EOP */
	if (unlikely(!enic_cq_rx_desc_eop(ciflags)))
		goto mbuf_flags_done;

	/* VLAN STRIPPED flag. The L2 packet type updated here also */
	if (bwflags & CQ_ENET_RQ_DESC_FLAGS_VLAN_STRIPPED) {
		pkt_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
		mbuf->packet_type |= RTE_PTYPE_L2_ETHER;
	} else {
		if (vlan_tci != 0) {
			pkt_flags |= PKT_RX_VLAN;
			mbuf->packet_type |= RTE_PTYPE_L2_ETHER_VLAN;
		} else {
			mbuf->packet_type |= RTE_PTYPE_L2_ETHER;
		}
	}
	mbuf->vlan_tci = vlan_tci;

	if ((cqd->type_color & CQ_DESC_TYPE_MASK) == CQ_DESC_TYPE_CLASSIFIER) {
		struct cq_enet_rq_clsf_desc *clsf_cqd;
		uint16_t filter_id;
		clsf_cqd = (struct cq_enet_rq_clsf_desc *)cqd;
		filter_id = clsf_cqd->filter_id;
		if (filter_id) {
			pkt_flags |= PKT_RX_FDIR;
			if (filter_id != ENIC_MAGIC_FILTER_ID) {
				mbuf->hash.fdir.hi = clsf_cqd->filter_id;
				pkt_flags |= PKT_RX_FDIR_ID;
			}
		}
	} else if (enic_cq_rx_desc_rss_type(cqrd)) {
		/* RSS flag */
		pkt_flags |= PKT_RX_RSS_HASH;
		mbuf->hash.rss = enic_cq_rx_desc_rss_hash(cqrd);
	}

	/* checksum flags */
	if (mbuf->packet_type & RTE_PTYPE_L3_IPV4) {
		if (enic_cq_rx_desc_csum_not_calc(cqrd))
			pkt_flags |= (PKT_RX_IP_CKSUM_UNKNOWN &
				     PKT_RX_L4_CKSUM_UNKNOWN);
		else {
			uint32_t l4_flags;
			l4_flags = mbuf->packet_type & RTE_PTYPE_L4_MASK;

			if (enic_cq_rx_desc_ipv4_csum_ok(cqrd))
				pkt_flags |= PKT_RX_IP_CKSUM_GOOD;
			else
				pkt_flags |= PKT_RX_IP_CKSUM_BAD;

			if (l4_flags == RTE_PTYPE_L4_UDP ||
			    l4_flags == RTE_PTYPE_L4_TCP) {
				if (enic_cq_rx_desc_tcp_udp_csum_ok(cqrd))
					pkt_flags |= PKT_RX_L4_CKSUM_GOOD;
				else
					pkt_flags |= PKT_RX_L4_CKSUM_BAD;
			}
		}
	}

 mbuf_flags_done:
	mbuf->ol_flags = pkt_flags;
}

/* dummy receive function to replace actual function in
 * order to do safe reconfiguration operations.
 */
uint16_t
enic_dummy_recv_pkts(__rte_unused void *rx_queue,
		     __rte_unused struct rte_mbuf **rx_pkts,
		     __rte_unused uint16_t nb_pkts)
{
	return 0;
}

uint16_t
enic_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
	       uint16_t nb_pkts)
{
	struct vnic_rq *sop_rq = rx_queue;
	struct vnic_rq *data_rq;
	struct vnic_rq *rq;
	struct enic *enic = vnic_dev_priv(sop_rq->vdev);
	uint16_t cq_idx;
	uint16_t rq_idx;
	uint16_t rq_num;
	struct rte_mbuf *nmb, *rxmb;
	uint16_t nb_rx = 0;
	struct vnic_cq *cq;
	volatile struct cq_desc *cqd_ptr;
	uint8_t color;
	uint16_t seg_length;
	struct rte_mbuf *first_seg = sop_rq->pkt_first_seg;
	struct rte_mbuf *last_seg = sop_rq->pkt_last_seg;

	cq = &enic->cq[enic_cq_rq(enic, sop_rq->index)];
	cq_idx = cq->to_clean;		/* index of cqd, rqd, mbuf_table */
	cqd_ptr = (struct cq_desc *)(cq->ring.descs) + cq_idx;

	data_rq = &enic->rq[sop_rq->data_queue_idx];

	while (nb_rx < nb_pkts) {
		volatile struct rq_enet_desc *rqd_ptr;
		dma_addr_t dma_addr;
		struct cq_desc cqd;
		uint8_t packet_error;
		uint16_t ciflags;

		/* Check for pkts available */
		color = (cqd_ptr->type_color >> CQ_DESC_COLOR_SHIFT)
			& CQ_DESC_COLOR_MASK;
		if (color == cq->last_color)
			break;

		/* Get the cq descriptor and extract rq info from it */
		cqd = *cqd_ptr;
		rq_num = cqd.q_number & CQ_DESC_Q_NUM_MASK;
		rq_idx = cqd.completed_index & CQ_DESC_COMP_NDX_MASK;

		rq = &enic->rq[rq_num];
		rqd_ptr = ((struct rq_enet_desc *)rq->ring.descs) + rq_idx;

		/* allocate a new mbuf */
		nmb = rte_mbuf_raw_alloc(rq->mp);
		if (nmb == NULL) {
			rte_atomic64_inc(&enic->soft_stats.rx_nombuf);
			break;
		}

		/* A packet error means descriptor and data are untrusted */
		packet_error = enic_cq_rx_check_err(&cqd);

		/* Get the mbuf to return and replace with one just allocated */
		rxmb = rq->mbuf_ring[rq_idx];
		rq->mbuf_ring[rq_idx] = nmb;

		/* Increment cqd, rqd, mbuf_table index */
		cq_idx++;
		if (unlikely(cq_idx == cq->ring.desc_count)) {
			cq_idx = 0;
			cq->last_color = cq->last_color ? 0 : 1;
		}

		/* Prefetch next mbuf & desc while processing current one */
		cqd_ptr = (struct cq_desc *)(cq->ring.descs) + cq_idx;
		rte_enic_prefetch(cqd_ptr);

		ciflags = enic_cq_rx_desc_ciflags(
			(struct cq_enet_rq_desc *)&cqd);

		/* Push descriptor for newly allocated mbuf */
		nmb->data_off = RTE_PKTMBUF_HEADROOM;
		dma_addr = (dma_addr_t)(nmb->buf_iova +
					RTE_PKTMBUF_HEADROOM);
		rq_enet_desc_enc(rqd_ptr, dma_addr,
				(rq->is_sop ? RQ_ENET_TYPE_ONLY_SOP
				: RQ_ENET_TYPE_NOT_SOP),
				nmb->buf_len - RTE_PKTMBUF_HEADROOM);

		/* Fill in the rest of the mbuf */
		seg_length = enic_cq_rx_desc_n_bytes(&cqd);

		if (rq->is_sop) {
			first_seg = rxmb;
			first_seg->pkt_len = seg_length;
		} else {
			first_seg->pkt_len = (uint16_t)(first_seg->pkt_len
							+ seg_length);
			first_seg->nb_segs++;
			last_seg->next = rxmb;
		}

		rxmb->port = enic->port_id;
		rxmb->data_len = seg_length;

		rq->rx_nb_hold++;

		if (!(enic_cq_rx_desc_eop(ciflags))) {
			last_seg = rxmb;
			continue;
		}

		/* cq rx flags are only valid if eop bit is set */
		first_seg->packet_type = enic_cq_rx_flags_to_pkt_type(&cqd);
		enic_cq_rx_to_pkt_flags(&cqd, first_seg);

		if (unlikely(packet_error)) {
			rte_pktmbuf_free(first_seg);
			rte_atomic64_inc(&enic->soft_stats.rx_packet_errors);
			continue;
		}


		/* prefetch mbuf data for caller */
		rte_packet_prefetch(RTE_PTR_ADD(first_seg->buf_addr,
				    RTE_PKTMBUF_HEADROOM));

		/* store the mbuf address into the next entry of the array */
		rx_pkts[nb_rx++] = first_seg;
	}

	sop_rq->pkt_first_seg = first_seg;
	sop_rq->pkt_last_seg = last_seg;

	cq->to_clean = cq_idx;

	if ((sop_rq->rx_nb_hold + data_rq->rx_nb_hold) >
	    sop_rq->rx_free_thresh) {
		if (data_rq->in_use) {
			data_rq->posted_index =
				enic_ring_add(data_rq->ring.desc_count,
					      data_rq->posted_index,
					      data_rq->rx_nb_hold);
			data_rq->rx_nb_hold = 0;
		}
		sop_rq->posted_index = enic_ring_add(sop_rq->ring.desc_count,
						     sop_rq->posted_index,
						     sop_rq->rx_nb_hold);
		sop_rq->rx_nb_hold = 0;

		rte_mb();
		if (data_rq->in_use)
			iowrite32_relaxed(data_rq->posted_index,
					  &data_rq->ctrl->posted_index);
		rte_compiler_barrier();
		iowrite32_relaxed(sop_rq->posted_index,
				  &sop_rq->ctrl->posted_index);
	}


	return nb_rx;
}

static inline void enic_free_wq_bufs(struct vnic_wq *wq, u16 completed_index)
{
	struct vnic_wq_buf *buf;
	struct rte_mbuf *m, *free[ENIC_MAX_WQ_DESCS];
	unsigned int nb_to_free, nb_free = 0, i;
	struct rte_mempool *pool;
	unsigned int tail_idx;
	unsigned int desc_count = wq->ring.desc_count;

	nb_to_free = enic_ring_sub(desc_count, wq->tail_idx, completed_index)
				   + 1;
	tail_idx = wq->tail_idx;
	buf = &wq->bufs[tail_idx];
	pool = ((struct rte_mbuf *)buf->mb)->pool;
	for (i = 0; i < nb_to_free; i++) {
		buf = &wq->bufs[tail_idx];
		m = rte_pktmbuf_prefree_seg((struct rte_mbuf *)(buf->mb));
		buf->mb = NULL;

		if (unlikely(m == NULL)) {
			tail_idx = enic_ring_incr(desc_count, tail_idx);
			continue;
		}

		if (likely(m->pool == pool)) {
			RTE_ASSERT(nb_free < ENIC_MAX_WQ_DESCS);
			free[nb_free++] = m;
		} else {
			rte_mempool_put_bulk(pool, (void *)free, nb_free);
			free[0] = m;
			nb_free = 1;
			pool = m->pool;
		}
		tail_idx = enic_ring_incr(desc_count, tail_idx);
	}

	if (nb_free > 0)
		rte_mempool_put_bulk(pool, (void **)free, nb_free);

	wq->tail_idx = tail_idx;
	wq->ring.desc_avail += nb_to_free;
}

unsigned int enic_cleanup_wq(__rte_unused struct enic *enic, struct vnic_wq *wq)
{
	u16 completed_index;

	completed_index = *((uint32_t *)wq->cqmsg_rz->addr) & 0xffff;

	if (wq->last_completed_index != completed_index) {
		enic_free_wq_bufs(wq, completed_index);
		wq->last_completed_index = completed_index;
	}
	return 0;
}

uint16_t enic_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
	uint16_t nb_pkts)
{
	uint16_t index;
	unsigned int pkt_len, data_len;
	unsigned int nb_segs;
	struct rte_mbuf *tx_pkt;
	struct vnic_wq *wq = (struct vnic_wq *)tx_queue;
	struct enic *enic = vnic_dev_priv(wq->vdev);
	unsigned short vlan_id;
	uint64_t ol_flags;
	uint64_t ol_flags_mask;
	unsigned int wq_desc_avail;
	int head_idx;
	struct vnic_wq_buf *buf;
	unsigned int desc_count;
	struct wq_enet_desc *descs, *desc_p, desc_tmp;
	uint16_t mss;
	uint8_t vlan_tag_insert;
	uint8_t eop;
	uint64_t bus_addr;
	uint8_t offload_mode;
	uint16_t header_len;
	uint64_t tso;
	rte_atomic64_t *tx_oversized;

	enic_cleanup_wq(enic, wq);
	wq_desc_avail = vnic_wq_desc_avail(wq);
	head_idx = wq->head_idx;
	desc_count = wq->ring.desc_count;
	ol_flags_mask = PKT_TX_VLAN_PKT | PKT_TX_IP_CKSUM | PKT_TX_L4_MASK;
	tx_oversized = &enic->soft_stats.tx_oversized;

	nb_pkts = RTE_MIN(nb_pkts, ENIC_TX_XMIT_MAX);

	for (index = 0; index < nb_pkts; index++) {
		tx_pkt = *tx_pkts++;
		pkt_len = tx_pkt->pkt_len;
		data_len = tx_pkt->data_len;
		ol_flags = tx_pkt->ol_flags;
		nb_segs = tx_pkt->nb_segs;
		tso = ol_flags & PKT_TX_TCP_SEG;

		/* drop packet if it's too big to send */
		if (unlikely(!tso && pkt_len > ENIC_TX_MAX_PKT_SIZE)) {
			rte_pktmbuf_free(tx_pkt);
			rte_atomic64_inc(tx_oversized);
			continue;
		}

		if (nb_segs > wq_desc_avail) {
			if (index > 0)
				goto post;
			goto done;
		}

		mss = 0;
		vlan_id = 0;
		vlan_tag_insert = 0;
		bus_addr = (dma_addr_t)
			   (tx_pkt->buf_iova + tx_pkt->data_off);

		descs = (struct wq_enet_desc *)wq->ring.descs;
		desc_p = descs + head_idx;

		eop = (data_len == pkt_len);
		offload_mode = WQ_ENET_OFFLOAD_MODE_CSUM;
		header_len = 0;

		if (tso) {
			header_len = tso_header_len(tx_pkt);

			/* Drop if non-TCP packet or TSO seg size is too big */
			if (unlikely(header_len == 0 || ((tx_pkt->tso_segsz +
			    header_len) > ENIC_TX_MAX_PKT_SIZE))) {
				rte_pktmbuf_free(tx_pkt);
				rte_atomic64_inc(tx_oversized);
				continue;
			}

			offload_mode = WQ_ENET_OFFLOAD_MODE_TSO;
			mss = tx_pkt->tso_segsz;
		}

		if ((ol_flags & ol_flags_mask) && (header_len == 0)) {
			if (ol_flags & PKT_TX_IP_CKSUM)
				mss |= ENIC_CALC_IP_CKSUM;

			/* Nic uses just 1 bit for UDP and TCP */
			switch (ol_flags & PKT_TX_L4_MASK) {
			case PKT_TX_TCP_CKSUM:
			case PKT_TX_UDP_CKSUM:
				mss |= ENIC_CALC_TCP_UDP_CKSUM;
				break;
			}
		}

		if (ol_flags & PKT_TX_VLAN_PKT) {
			vlan_tag_insert = 1;
			vlan_id = tx_pkt->vlan_tci;
		}

		wq_enet_desc_enc(&desc_tmp, bus_addr, data_len, mss, header_len,
				 offload_mode, eop, eop, 0, vlan_tag_insert,
				 vlan_id, 0);

		*desc_p = desc_tmp;
		buf = &wq->bufs[head_idx];
		buf->mb = (void *)tx_pkt;
		head_idx = enic_ring_incr(desc_count, head_idx);
		wq_desc_avail--;

		if (!eop) {
			for (tx_pkt = tx_pkt->next; tx_pkt; tx_pkt =
			    tx_pkt->next) {
				data_len = tx_pkt->data_len;

				if (tx_pkt->next == NULL)
					eop = 1;
				desc_p = descs + head_idx;
				bus_addr = (dma_addr_t)(tx_pkt->buf_iova
					   + tx_pkt->data_off);
				wq_enet_desc_enc((struct wq_enet_desc *)
						 &desc_tmp, bus_addr, data_len,
						 mss, 0, offload_mode, eop, eop,
						 0, vlan_tag_insert, vlan_id,
						 0);

				*desc_p = desc_tmp;
				buf = &wq->bufs[head_idx];
				buf->mb = (void *)tx_pkt;
				head_idx = enic_ring_incr(desc_count, head_idx);
				wq_desc_avail--;
			}
		}
	}
 post:
	rte_wmb();
	iowrite32_relaxed(head_idx, &wq->ctrl->posted_index);
 done:
	wq->ring.desc_avail = wq_desc_avail;
	wq->head_idx = head_idx;

	return index;
}