summaryrefslogtreecommitdiffstats
path: root/drivers/net/fm10k/fm10k_rxtx_vec.c
blob: 498a17815bbc231fbd62596cf9b18abee133e704 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2013-2015 Intel Corporation
 */

#include <inttypes.h>

#include <rte_ethdev_driver.h>
#include <rte_common.h>
#include "fm10k.h"
#include "base/fm10k_type.h"

#include <tmmintrin.h>

#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif

static void
fm10k_reset_tx_queue(struct fm10k_tx_queue *txq);

/* Handling the offload flags (olflags) field takes computation
 * time when receiving packets. Therefore we provide a flag to disable
 * the processing of the olflags field when they are not needed. This
 * gives improved performance, at the cost of losing the offload info
 * in the received packet
 */
#ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE

/* Vlan present flag shift */
#define VP_SHIFT     (2)
/* L3 type shift */
#define L3TYPE_SHIFT     (4)
/* L4 type shift */
#define L4TYPE_SHIFT     (7)
/* HBO flag shift */
#define HBOFLAG_SHIFT     (10)
/* RXE flag shift */
#define RXEFLAG_SHIFT     (13)
/* IPE/L4E flag shift */
#define L3L4EFLAG_SHIFT     (14)
/* shift PKT_RX_L4_CKSUM_GOOD into one byte by 1 bit */
#define CKSUM_SHIFT     (1)

static inline void
fm10k_desc_to_olflags_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
{
	__m128i ptype0, ptype1, vtag0, vtag1, eflag0, eflag1, cksumflag;
	union {
		uint16_t e[4];
		uint64_t dword;
	} vol;

	const __m128i pkttype_msk = _mm_set_epi16(
			0x0000, 0x0000, 0x0000, 0x0000,
			PKT_RX_VLAN, PKT_RX_VLAN,
			PKT_RX_VLAN, PKT_RX_VLAN);

	/* mask everything except rss type */
	const __m128i rsstype_msk = _mm_set_epi16(
			0x0000, 0x0000, 0x0000, 0x0000,
			0x000F, 0x000F, 0x000F, 0x000F);

	/* mask for HBO and RXE flag flags */
	const __m128i rxe_msk = _mm_set_epi16(
			0x0000, 0x0000, 0x0000, 0x0000,
			0x0001, 0x0001, 0x0001, 0x0001);

	/* mask the lower byte of ol_flags */
	const __m128i ol_flags_msk = _mm_set_epi16(
			0x0000, 0x0000, 0x0000, 0x0000,
			0x00FF, 0x00FF, 0x00FF, 0x00FF);

	const __m128i l3l4cksum_flag = _mm_set_epi8(0, 0, 0, 0,
			0, 0, 0, 0,
			0, 0, 0, 0,
			(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT,
			(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT,
			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT,
			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT);

	const __m128i rxe_flag = _mm_set_epi8(0, 0, 0, 0,
			0, 0, 0, 0,
			0, 0, 0, 0,
			0, 0, 0, 0);

	/* map rss type to rss hash flag */
	const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
			0, 0, 0, PKT_RX_RSS_HASH,
			PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH, 0,
			PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, 0);

	/* Calculate RSS_hash and Vlan fields */
	ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]);
	ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]);
	vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]);
	vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]);

	ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
	ptype0 = _mm_and_si128(ptype0, rsstype_msk);
	ptype0 = _mm_shuffle_epi8(rss_flags, ptype0);

	vtag1 = _mm_unpacklo_epi32(vtag0, vtag1);
	eflag0 = vtag1;
	cksumflag = vtag1;
	vtag1 = _mm_srli_epi16(vtag1, VP_SHIFT);
	vtag1 = _mm_and_si128(vtag1, pkttype_msk);

	vtag1 = _mm_or_si128(ptype0, vtag1);

	/* Process err flags, simply set RECIP_ERR bit if HBO/IXE is set */
	eflag1 = _mm_srli_epi16(eflag0, RXEFLAG_SHIFT);
	eflag0 = _mm_srli_epi16(eflag0, HBOFLAG_SHIFT);
	eflag0 = _mm_or_si128(eflag0, eflag1);
	eflag0 = _mm_and_si128(eflag0, rxe_msk);
	eflag0 = _mm_shuffle_epi8(rxe_flag, eflag0);

	vtag1 = _mm_or_si128(eflag0, vtag1);

	/* Process L4/L3 checksum error flags */
	cksumflag = _mm_srli_epi16(cksumflag, L3L4EFLAG_SHIFT);
	cksumflag = _mm_shuffle_epi8(l3l4cksum_flag, cksumflag);

	/* clean the higher byte and shift back the flag bits */
	cksumflag = _mm_and_si128(cksumflag, ol_flags_msk);
	cksumflag = _mm_slli_epi16(cksumflag, CKSUM_SHIFT);
	vtag1 = _mm_or_si128(cksumflag, vtag1);

	vol.dword = _mm_cvtsi128_si64(vtag1);

	rx_pkts[0]->ol_flags = vol.e[0];
	rx_pkts[1]->ol_flags = vol.e[1];
	rx_pkts[2]->ol_flags = vol.e[2];
	rx_pkts[3]->ol_flags = vol.e[3];
}

/* @note: When this function is changed, make corresponding change to
 * fm10k_dev_supported_ptypes_get().
 */
static inline void
fm10k_desc_to_pktype_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
{
	__m128i l3l4type0, l3l4type1, l3type, l4type;
	union {
		uint16_t e[4];
		uint64_t dword;
	} vol;

	/* L3 pkt type mask  Bit4 to Bit6 */
	const __m128i l3type_msk = _mm_set_epi16(
			0x0000, 0x0000, 0x0000, 0x0000,
			0x0070, 0x0070, 0x0070, 0x0070);

	/* L4 pkt type mask  Bit7 to Bit9 */
	const __m128i l4type_msk = _mm_set_epi16(
			0x0000, 0x0000, 0x0000, 0x0000,
			0x0380, 0x0380, 0x0380, 0x0380);

	/* convert RRC l3 type to mbuf format */
	const __m128i l3type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
			0, 0, 0, RTE_PTYPE_L3_IPV6_EXT,
			RTE_PTYPE_L3_IPV6, RTE_PTYPE_L3_IPV4_EXT,
			RTE_PTYPE_L3_IPV4, 0);

	/* Convert RRC l4 type to mbuf format l4type_flags shift-left 8 bits
	 * to fill into8 bits length.
	 */
	const __m128i l4type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
			RTE_PTYPE_TUNNEL_GENEVE >> 8,
			RTE_PTYPE_TUNNEL_NVGRE >> 8,
			RTE_PTYPE_TUNNEL_VXLAN >> 8,
			RTE_PTYPE_TUNNEL_GRE >> 8,
			RTE_PTYPE_L4_UDP >> 8,
			RTE_PTYPE_L4_TCP >> 8,
			0);

	l3l4type0 = _mm_unpacklo_epi16(descs[0], descs[1]);
	l3l4type1 = _mm_unpacklo_epi16(descs[2], descs[3]);
	l3l4type0 = _mm_unpacklo_epi32(l3l4type0, l3l4type1);

	l3type = _mm_and_si128(l3l4type0, l3type_msk);
	l4type = _mm_and_si128(l3l4type0, l4type_msk);

	l3type = _mm_srli_epi16(l3type, L3TYPE_SHIFT);
	l4type = _mm_srli_epi16(l4type, L4TYPE_SHIFT);

	l3type = _mm_shuffle_epi8(l3type_flags, l3type);
	/* l4type_flags shift-left for 8 bits, need shift-right back */
	l4type = _mm_shuffle_epi8(l4type_flags, l4type);

	l4type = _mm_slli_epi16(l4type, 8);
	l3l4type0 = _mm_or_si128(l3type, l4type);
	vol.dword = _mm_cvtsi128_si64(l3l4type0);

	rx_pkts[0]->packet_type = vol.e[0];
	rx_pkts[1]->packet_type = vol.e[1];
	rx_pkts[2]->packet_type = vol.e[2];
	rx_pkts[3]->packet_type = vol.e[3];
}
#else
#define fm10k_desc_to_olflags_v(desc, rx_pkts) do {} while (0)
#define fm10k_desc_to_pktype_v(desc, rx_pkts) do {} while (0)
#endif

int __attribute__((cold))
fm10k_rx_vec_condition_check(struct rte_eth_dev *dev)
{
#ifndef RTE_LIBRTE_IEEE1588
	struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
	struct rte_fdir_conf *fconf = &dev->data->dev_conf.fdir_conf;

#ifndef RTE_FM10K_RX_OLFLAGS_ENABLE
	/* whithout rx ol_flags, no VP flag report */
	if (rxmode->hw_vlan_extend != 0)
		return -1;
#endif

	/* no fdir support */
	if (fconf->mode != RTE_FDIR_MODE_NONE)
		return -1;

	/* no header split support */
	if (rxmode->header_split == 1)
		return -1;

	return 0;
#else
	RTE_SET_USED(dev);
	return -1;
#endif
}

int __attribute__((cold))
fm10k_rxq_vec_setup(struct fm10k_rx_queue *rxq)
{
	uintptr_t p;
	struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */

	mb_def.nb_segs = 1;
	/* data_off will be ajusted after new mbuf allocated for 512-byte
	 * alignment.
	 */
	mb_def.data_off = RTE_PKTMBUF_HEADROOM;
	mb_def.port = rxq->port_id;
	rte_mbuf_refcnt_set(&mb_def, 1);

	/* prevent compiler reordering: rearm_data covers previous fields */
	rte_compiler_barrier();
	p = (uintptr_t)&mb_def.rearm_data;
	rxq->mbuf_initializer = *(uint64_t *)p;
	return 0;
}

static inline void
fm10k_rxq_rearm(struct fm10k_rx_queue *rxq)
{
	int i;
	uint16_t rx_id;
	volatile union fm10k_rx_desc *rxdp;
	struct rte_mbuf **mb_alloc = &rxq->sw_ring[rxq->rxrearm_start];
	struct rte_mbuf *mb0, *mb1;
	__m128i head_off = _mm_set_epi64x(
			RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1,
			RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1);
	__m128i dma_addr0, dma_addr1;
	/* Rx buffer need to be aligned with 512 byte */
	const __m128i hba_msk = _mm_set_epi64x(0,
				UINT64_MAX - FM10K_RX_DATABUF_ALIGN + 1);

	rxdp = rxq->hw_ring + rxq->rxrearm_start;

	/* Pull 'n' more MBUFs into the software ring */
	if (rte_mempool_get_bulk(rxq->mp,
				 (void *)mb_alloc,
				 RTE_FM10K_RXQ_REARM_THRESH) < 0) {
		dma_addr0 = _mm_setzero_si128();
		/* Clean up all the HW/SW ring content */
		for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i++) {
			mb_alloc[i] = &rxq->fake_mbuf;
			_mm_store_si128((__m128i *)&rxdp[i].q,
						dma_addr0);
		}

		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
			RTE_FM10K_RXQ_REARM_THRESH;
		return;
	}

	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
	for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i += 2, mb_alloc += 2) {
		__m128i vaddr0, vaddr1;
		uintptr_t p0, p1;

		mb0 = mb_alloc[0];
		mb1 = mb_alloc[1];

		/* Flush mbuf with pkt template.
		 * Data to be rearmed is 6 bytes long.
		 */
		p0 = (uintptr_t)&mb0->rearm_data;
		*(uint64_t *)p0 = rxq->mbuf_initializer;
		p1 = (uintptr_t)&mb1->rearm_data;
		*(uint64_t *)p1 = rxq->mbuf_initializer;

		/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
				offsetof(struct rte_mbuf, buf_addr) + 8);
		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);

		/* convert pa to dma_addr hdr/data */
		dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
		dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);

		/* add headroom to pa values */
		dma_addr0 = _mm_add_epi64(dma_addr0, head_off);
		dma_addr1 = _mm_add_epi64(dma_addr1, head_off);

		/* Do 512 byte alignment to satisfy HW requirement, in the
		 * meanwhile, set Header Buffer Address to zero.
		 */
		dma_addr0 = _mm_and_si128(dma_addr0, hba_msk);
		dma_addr1 = _mm_and_si128(dma_addr1, hba_msk);

		/* flush desc with pa dma_addr */
		_mm_store_si128((__m128i *)&rxdp++->q, dma_addr0);
		_mm_store_si128((__m128i *)&rxdp++->q, dma_addr1);

		/* enforce 512B alignment on default Rx virtual addresses */
		mb0->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb0->buf_addr
				+ RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
				- (char *)mb0->buf_addr);
		mb1->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb1->buf_addr
				+ RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
				- (char *)mb1->buf_addr);
	}

	rxq->rxrearm_start += RTE_FM10K_RXQ_REARM_THRESH;
	if (rxq->rxrearm_start >= rxq->nb_desc)
		rxq->rxrearm_start = 0;

	rxq->rxrearm_nb -= RTE_FM10K_RXQ_REARM_THRESH;

	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
			(rxq->nb_desc - 1) : (rxq->rxrearm_start - 1));

	/* Update the tail pointer on the NIC */
	FM10K_PCI_REG_WRITE(rxq->tail_ptr, rx_id);
}

void __attribute__((cold))
fm10k_rx_queue_release_mbufs_vec(struct fm10k_rx_queue *rxq)
{
	const unsigned mask = rxq->nb_desc - 1;
	unsigned i;

	if (rxq->sw_ring == NULL || rxq->rxrearm_nb >= rxq->nb_desc)
		return;

	/* free all mbufs that are valid in the ring */
	for (i = rxq->next_dd; i != rxq->rxrearm_start; i = (i + 1) & mask)
		rte_pktmbuf_free_seg(rxq->sw_ring[i]);
	rxq->rxrearm_nb = rxq->nb_desc;

	/* set all entries to NULL */
	memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_desc);
}

static inline uint16_t
fm10k_recv_raw_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
		uint16_t nb_pkts, uint8_t *split_packet)
{
	volatile union fm10k_rx_desc *rxdp;
	struct rte_mbuf **mbufp;
	uint16_t nb_pkts_recd;
	int pos;
	struct fm10k_rx_queue *rxq = rx_queue;
	uint64_t var;
	__m128i shuf_msk;
	__m128i dd_check, eop_check;
	uint16_t next_dd;

	next_dd = rxq->next_dd;

	/* Just the act of getting into the function from the application is
	 * going to cost about 7 cycles
	 */
	rxdp = rxq->hw_ring + next_dd;

	rte_prefetch0(rxdp);

	/* See if we need to rearm the RX queue - gives the prefetch a bit
	 * of time to act
	 */
	if (rxq->rxrearm_nb > RTE_FM10K_RXQ_REARM_THRESH)
		fm10k_rxq_rearm(rxq);

	/* Before we start moving massive data around, check to see if
	 * there is actually a packet available
	 */
	if (!(rxdp->d.staterr & FM10K_RXD_STATUS_DD))
		return 0;

	/* Vecotr RX will process 4 packets at a time, strip the unaligned
	 * tails in case it's not multiple of 4.
	 */
	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_FM10K_DESCS_PER_LOOP);

	/* 4 packets DD mask */
	dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);

	/* 4 packets EOP mask */
	eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);

	/* mask to shuffle from desc. to mbuf */
	shuf_msk = _mm_set_epi8(
		7, 6, 5, 4,  /* octet 4~7, 32bits rss */
		15, 14,      /* octet 14~15, low 16 bits vlan_macip */
		13, 12,      /* octet 12~13, 16 bits data_len */
		0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
		13, 12,      /* octet 12~13, low 16 bits pkt_len */
		0xFF, 0xFF,  /* skip high 16 bits pkt_type */
		0xFF, 0xFF   /* Skip pkt_type field in shuffle operation */
		);
	/*
	 * Compile-time verify the shuffle mask
	 * NOTE: some field positions already verified above, but duplicated
	 * here for completeness in case of future modifications.
	 */
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);

	/* Cache is empty -> need to scan the buffer rings, but first move
	 * the next 'n' mbufs into the cache
	 */
	mbufp = &rxq->sw_ring[next_dd];

	/* A. load 4 packet in one loop
	 * [A*. mask out 4 unused dirty field in desc]
	 * B. copy 4 mbuf point from swring to rx_pkts
	 * C. calc the number of DD bits among the 4 packets
	 * [C*. extract the end-of-packet bit, if requested]
	 * D. fill info. from desc to mbuf
	 */
	for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
			pos += RTE_FM10K_DESCS_PER_LOOP,
			rxdp += RTE_FM10K_DESCS_PER_LOOP) {
		__m128i descs0[RTE_FM10K_DESCS_PER_LOOP];
		__m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
		__m128i zero, staterr, sterr_tmp1, sterr_tmp2;
		__m128i mbp1;
		/* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
#if defined(RTE_ARCH_X86_64)
		__m128i mbp2;
#endif

		/* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
		mbp1 = _mm_loadu_si128((__m128i *)&mbufp[pos]);

		/* Read desc statuses backwards to avoid race condition */
		/* A.1 load 4 pkts desc */
		descs0[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
		rte_compiler_barrier();

		/* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
		_mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);

#if defined(RTE_ARCH_X86_64)
		/* B.1 load 2 64 bit mbuf poitns */
		mbp2 = _mm_loadu_si128((__m128i *)&mbufp[pos+2]);
#endif

		descs0[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
		rte_compiler_barrier();
		/* B.1 load 2 mbuf point */
		descs0[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
		rte_compiler_barrier();
		descs0[0] = _mm_loadu_si128((__m128i *)(rxdp));

#if defined(RTE_ARCH_X86_64)
		/* B.2 copy 2 mbuf point into rx_pkts  */
		_mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
#endif

		/* avoid compiler reorder optimization */
		rte_compiler_barrier();

		if (split_packet) {
			rte_mbuf_prefetch_part2(rx_pkts[pos]);
			rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
			rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
			rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
		}

		/* D.1 pkt 3,4 convert format from desc to pktmbuf */
		pkt_mb4 = _mm_shuffle_epi8(descs0[3], shuf_msk);
		pkt_mb3 = _mm_shuffle_epi8(descs0[2], shuf_msk);

		/* C.1 4=>2 filter staterr info only */
		sterr_tmp2 = _mm_unpackhi_epi32(descs0[3], descs0[2]);
		/* C.1 4=>2 filter staterr info only */
		sterr_tmp1 = _mm_unpackhi_epi32(descs0[1], descs0[0]);

		/* set ol_flags with vlan packet type */
		fm10k_desc_to_olflags_v(descs0, &rx_pkts[pos]);

		/* D.1 pkt 1,2 convert format from desc to pktmbuf */
		pkt_mb2 = _mm_shuffle_epi8(descs0[1], shuf_msk);
		pkt_mb1 = _mm_shuffle_epi8(descs0[0], shuf_msk);

		/* C.2 get 4 pkts staterr value  */
		zero = _mm_xor_si128(dd_check, dd_check);
		staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);

		/* D.3 copy final 3,4 data to rx_pkts */
		_mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
				pkt_mb4);
		_mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
				pkt_mb3);

		/* C* extract and record EOP bit */
		if (split_packet) {
			__m128i eop_shuf_mask = _mm_set_epi8(
					0xFF, 0xFF, 0xFF, 0xFF,
					0xFF, 0xFF, 0xFF, 0xFF,
					0xFF, 0xFF, 0xFF, 0xFF,
					0x04, 0x0C, 0x00, 0x08
					);

			/* and with mask to extract bits, flipping 1-0 */
			__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
			/* the staterr values are not in order, as the count
			 * count of dd bits doesn't care. However, for end of
			 * packet tracking, we do care, so shuffle. This also
			 * compresses the 32-bit values to 8-bit
			 */
			eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
			/* store the resulting 32-bit value */
			*(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
			split_packet += RTE_FM10K_DESCS_PER_LOOP;

			/* zero-out next pointers */
			rx_pkts[pos]->next = NULL;
			rx_pkts[pos + 1]->next = NULL;
			rx_pkts[pos + 2]->next = NULL;
			rx_pkts[pos + 3]->next = NULL;
		}

		/* C.3 calc available number of desc */
		staterr = _mm_and_si128(staterr, dd_check);
		staterr = _mm_packs_epi32(staterr, zero);

		/* D.3 copy final 1,2 data to rx_pkts */
		_mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
				pkt_mb2);
		_mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
				pkt_mb1);

		fm10k_desc_to_pktype_v(descs0, &rx_pkts[pos]);

		/* C.4 calc avaialbe number of desc */
		var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
		nb_pkts_recd += var;
		if (likely(var != RTE_FM10K_DESCS_PER_LOOP))
			break;
	}

	/* Update our internal tail pointer */
	rxq->next_dd = (uint16_t)(rxq->next_dd + nb_pkts_recd);
	rxq->next_dd = (uint16_t)(rxq->next_dd & (rxq->nb_desc - 1));
	rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);

	return nb_pkts_recd;
}

/* vPMD receive routine
 *
 * Notice:
 * - don't support ol_flags for rss and csum err
 */
uint16_t
fm10k_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
		uint16_t nb_pkts)
{
	return fm10k_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
}

static inline uint16_t
fm10k_reassemble_packets(struct fm10k_rx_queue *rxq,
		struct rte_mbuf **rx_bufs,
		uint16_t nb_bufs, uint8_t *split_flags)
{
	struct rte_mbuf *pkts[RTE_FM10K_MAX_RX_BURST]; /*finished pkts*/
	struct rte_mbuf *start = rxq->pkt_first_seg;
	struct rte_mbuf *end =  rxq->pkt_last_seg;
	unsigned pkt_idx, buf_idx;

	for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) {
		if (end != NULL) {
			/* processing a split packet */
			end->next = rx_bufs[buf_idx];
			start->nb_segs++;
			start->pkt_len += rx_bufs[buf_idx]->data_len;
			end = end->next;

			if (!split_flags[buf_idx]) {
				/* it's the last packet of the set */
#ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
				start->hash = end->hash;
				start->ol_flags = end->ol_flags;
				start->packet_type = end->packet_type;
#endif
				pkts[pkt_idx++] = start;
				start = end = NULL;
			}
		} else {
			/* not processing a split packet */
			if (!split_flags[buf_idx]) {
				/* not a split packet, save and skip */
				pkts[pkt_idx++] = rx_bufs[buf_idx];
				continue;
			}
			end = start = rx_bufs[buf_idx];
		}
	}

	/* save the partial packet for next time */
	rxq->pkt_first_seg = start;
	rxq->pkt_last_seg = end;
	memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts)));
	return pkt_idx;
}

/*
 * vPMD receive routine that reassembles scattered packets
 *
 * Notice:
 * - don't support ol_flags for rss and csum err
 * - nb_pkts > RTE_FM10K_MAX_RX_BURST, only scan RTE_FM10K_MAX_RX_BURST
 *   numbers of DD bit
 */
uint16_t
fm10k_recv_scattered_pkts_vec(void *rx_queue,
				struct rte_mbuf **rx_pkts,
				uint16_t nb_pkts)
{
	struct fm10k_rx_queue *rxq = rx_queue;
	uint8_t split_flags[RTE_FM10K_MAX_RX_BURST] = {0};
	unsigned i = 0;

	/* Split_flags only can support max of RTE_FM10K_MAX_RX_BURST */
	nb_pkts = RTE_MIN(nb_pkts, RTE_FM10K_MAX_RX_BURST);
	/* get some new buffers */
	uint16_t nb_bufs = fm10k_recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
			split_flags);
	if (nb_bufs == 0)
		return 0;

	/* happy day case, full burst + no packets to be joined */
	const uint64_t *split_fl64 = (uint64_t *)split_flags;

	if (rxq->pkt_first_seg == NULL &&
			split_fl64[0] == 0 && split_fl64[1] == 0 &&
			split_fl64[2] == 0 && split_fl64[3] == 0)
		return nb_bufs;

	/* reassemble any packets that need reassembly*/
	if (rxq->pkt_first_seg == NULL) {
		/* find the first split flag, and only reassemble then*/
		while (i < nb_bufs && !split_flags[i])
			i++;
		if (i == nb_bufs)
			return nb_bufs;
	}
	return i + fm10k_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
		&split_flags[i]);
}

static const struct fm10k_txq_ops vec_txq_ops = {
	.reset = fm10k_reset_tx_queue,
};

void __attribute__((cold))
fm10k_txq_vec_setup(struct fm10k_tx_queue *txq)
{
	txq->ops = &vec_txq_ops;
}

int __attribute__((cold))
fm10k_tx_vec_condition_check(struct fm10k_tx_queue *txq)
{
	/* Vector TX can't offload any features yet */
	if ((txq->txq_flags & FM10K_SIMPLE_TX_FLAG) != FM10K_SIMPLE_TX_FLAG)
		return -1;

	if (txq->tx_ftag_en)
		return -1;

	return 0;
}

static inline void
vtx1(volatile struct fm10k_tx_desc *txdp,
		struct rte_mbuf *pkt, uint64_t flags)
{
	__m128i descriptor = _mm_set_epi64x(flags << 56 |
			pkt->vlan_tci << 16 | pkt->data_len,
			MBUF_DMA_ADDR(pkt));
	_mm_store_si128((__m128i *)txdp, descriptor);
}

static inline void
vtx(volatile struct fm10k_tx_desc *txdp,
		struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
{
	int i;

	for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
		vtx1(txdp, *pkt, flags);
}

static __rte_always_inline int
fm10k_tx_free_bufs(struct fm10k_tx_queue *txq)
{
	struct rte_mbuf **txep;
	uint8_t flags;
	uint32_t n;
	uint32_t i;
	int nb_free = 0;
	struct rte_mbuf *m, *free[RTE_FM10K_TX_MAX_FREE_BUF_SZ];

	/* check DD bit on threshold descriptor */
	flags = txq->hw_ring[txq->next_dd].flags;
	if (!(flags & FM10K_TXD_FLAG_DONE))
		return 0;

	n = txq->rs_thresh;

	/* First buffer to free from S/W ring is at index
	 * next_dd - (rs_thresh-1)
	 */
	txep = &txq->sw_ring[txq->next_dd - (n - 1)];
	m = rte_pktmbuf_prefree_seg(txep[0]);
	if (likely(m != NULL)) {
		free[0] = m;
		nb_free = 1;
		for (i = 1; i < n; i++) {
			m = rte_pktmbuf_prefree_seg(txep[i]);
			if (likely(m != NULL)) {
				if (likely(m->pool == free[0]->pool))
					free[nb_free++] = m;
				else {
					rte_mempool_put_bulk(free[0]->pool,
							(void *)free, nb_free);
					free[0] = m;
					nb_free = 1;
				}
			}
		}
		rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
	} else {
		for (i = 1; i < n; i++) {
			m = rte_pktmbuf_prefree_seg(txep[i]);
			if (m != NULL)
				rte_mempool_put(m->pool, m);
		}
	}

	/* buffers were freed, update counters */
	txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh);
	txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh);
	if (txq->next_dd >= txq->nb_desc)
		txq->next_dd = (uint16_t)(txq->rs_thresh - 1);

	return txq->rs_thresh;
}

static __rte_always_inline void
tx_backlog_entry(struct rte_mbuf **txep,
		 struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
	int i;

	for (i = 0; i < (int)nb_pkts; ++i)
		txep[i] = tx_pkts[i];
}

uint16_t
fm10k_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
			   uint16_t nb_pkts)
{
	struct fm10k_tx_queue *txq = (struct fm10k_tx_queue *)tx_queue;
	volatile struct fm10k_tx_desc *txdp;
	struct rte_mbuf **txep;
	uint16_t n, nb_commit, tx_id;
	uint64_t flags = FM10K_TXD_FLAG_LAST;
	uint64_t rs = FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_LAST;
	int i;

	/* cross rx_thresh boundary is not allowed */
	nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);

	if (txq->nb_free < txq->free_thresh)
		fm10k_tx_free_bufs(txq);

	nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
	if (unlikely(nb_pkts == 0))
		return 0;

	tx_id = txq->next_free;
	txdp = &txq->hw_ring[tx_id];
	txep = &txq->sw_ring[tx_id];

	txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);

	n = (uint16_t)(txq->nb_desc - tx_id);
	if (nb_commit >= n) {
		tx_backlog_entry(txep, tx_pkts, n);

		for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
			vtx1(txdp, *tx_pkts, flags);

		vtx1(txdp, *tx_pkts++, rs);

		nb_commit = (uint16_t)(nb_commit - n);

		tx_id = 0;
		txq->next_rs = (uint16_t)(txq->rs_thresh - 1);

		/* avoid reach the end of ring */
		txdp = &(txq->hw_ring[tx_id]);
		txep = &txq->sw_ring[tx_id];
	}

	tx_backlog_entry(txep, tx_pkts, nb_commit);

	vtx(txdp, tx_pkts, nb_commit, flags);

	tx_id = (uint16_t)(tx_id + nb_commit);
	if (tx_id > txq->next_rs) {
		txq->hw_ring[txq->next_rs].flags |= FM10K_TXD_FLAG_RS;
		txq->next_rs = (uint16_t)(txq->next_rs + txq->rs_thresh);
	}

	txq->next_free = tx_id;

	FM10K_PCI_REG_WRITE(txq->tail_ptr, txq->next_free);

	return nb_pkts;
}

static void __attribute__((cold))
fm10k_reset_tx_queue(struct fm10k_tx_queue *txq)
{
	static const struct fm10k_tx_desc zeroed_desc = {0};
	struct rte_mbuf **txe = txq->sw_ring;
	uint16_t i;

	/* Zero out HW ring memory */
	for (i = 0; i < txq->nb_desc; i++)
		txq->hw_ring[i] = zeroed_desc;

	/* Initialize SW ring entries */
	for (i = 0; i < txq->nb_desc; i++)
		txe[i] = NULL;

	txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
	txq->next_rs = (uint16_t)(txq->rs_thresh - 1);

	txq->next_free = 0;
	txq->nb_used = 0;
	/* Always allow 1 descriptor to be un-allocated to avoid
	 * a H/W race condition
	 */
	txq->nb_free = (uint16_t)(txq->nb_desc - 1);
	FM10K_PCI_REG_WRITE(txq->tail_ptr, 0);
}