summaryrefslogtreecommitdiffstats
path: root/drivers/net/i40e/i40e_rxtx_vec.c
blob: 047aff534917e0f1f0fa57febd2a174ac8814c6b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdint.h>
#include <rte_ethdev.h>
#include <rte_malloc.h>

#include "base/i40e_prototype.h"
#include "base/i40e_type.h"
#include "i40e_ethdev.h"
#include "i40e_rxtx.h"

#include <tmmintrin.h>

#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif

static inline void
i40e_rxq_rearm(struct i40e_rx_queue *rxq)
{
	int i;
	uint16_t rx_id;
	volatile union i40e_rx_desc *rxdp;
	struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
	struct rte_mbuf *mb0, *mb1;
	__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
			RTE_PKTMBUF_HEADROOM);
	__m128i dma_addr0, dma_addr1;

	rxdp = rxq->rx_ring + rxq->rxrearm_start;

	/* Pull 'n' more MBUFs into the software ring */
	if (rte_mempool_get_bulk(rxq->mp,
				 (void *)rxep,
				 RTE_I40E_RXQ_REARM_THRESH) < 0) {
		if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
		    rxq->nb_rx_desc) {
			dma_addr0 = _mm_setzero_si128();
			for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
				rxep[i].mbuf = &rxq->fake_mbuf;
				_mm_store_si128((__m128i *)&rxdp[i].read,
						dma_addr0);
			}
		}
		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
			RTE_I40E_RXQ_REARM_THRESH;
		return;
	}

	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
	for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
		__m128i vaddr0, vaddr1;
		uintptr_t p0, p1;

		mb0 = rxep[0].mbuf;
		mb1 = rxep[1].mbuf;

		 /* Flush mbuf with pkt template.
		 * Data to be rearmed is 6 bytes long.
		 * Though, RX will overwrite ol_flags that are coming next
		 * anyway. So overwrite whole 8 bytes with one load:
		 * 6 bytes of rearm_data plus first 2 bytes of ol_flags.
		 */
		p0 = (uintptr_t)&mb0->rearm_data;
		*(uint64_t *)p0 = rxq->mbuf_initializer;
		p1 = (uintptr_t)&mb1->rearm_data;
		*(uint64_t *)p1 = rxq->mbuf_initializer;

		/* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);

		/* convert pa to dma_addr hdr/data */
		dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
		dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);

		/* add headroom to pa values */
		dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
		dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);

		/* flush desc with pa dma_addr */
		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
	}

	rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
	if (rxq->rxrearm_start >= rxq->nb_rx_desc)
		rxq->rxrearm_start = 0;

	rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;

	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
			     (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));

	/* Update the tail pointer on the NIC */
	I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
}

/* Handling the offload flags (olflags) field takes computation
 * time when receiving packets. Therefore we provide a flag to disable
 * the processing of the olflags field when they are not needed. This
 * gives improved performance, at the cost of losing the offload info
 * in the received packet
 */
#ifdef RTE_LIBRTE_I40E_RX_OLFLAGS_ENABLE

static inline void
desc_to_olflags_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
{
	__m128i vlan0, vlan1, rss;
	union {
		uint16_t e[4];
		uint64_t dword;
	} vol;

	/* mask everything except rss and vlan flags
	*bit2 is for vlan tag, bits 13:12 for rss
	*/
	const __m128i rss_vlan_msk = _mm_set_epi16(
			0x0000, 0x0000, 0x0000, 0x0000,
			0x3004, 0x3004, 0x3004, 0x3004);

	/* map rss and vlan type to rss hash and vlan flag */
	const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0,
			0, 0, 0, 0,
			0, 0, 0, PKT_RX_VLAN_PKT,
			0, 0, 0, 0);

	const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
			0, 0, 0, 0,
			0, 0, 0, 0,
			PKT_RX_FDIR, 0, PKT_RX_RSS_HASH, 0);

	vlan0 = _mm_unpackhi_epi16(descs[0], descs[1]);
	vlan1 = _mm_unpackhi_epi16(descs[2], descs[3]);
	vlan0 = _mm_unpacklo_epi32(vlan0, vlan1);

	vlan1 = _mm_and_si128(vlan0, rss_vlan_msk);
	vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1);

	rss = _mm_srli_epi16(vlan1, 12);
	rss = _mm_shuffle_epi8(rss_flags, rss);

	vlan0 = _mm_or_si128(vlan0, rss);
	vol.dword = _mm_cvtsi128_si64(vlan0);

	rx_pkts[0]->ol_flags = vol.e[0];
	rx_pkts[1]->ol_flags = vol.e[1];
	rx_pkts[2]->ol_flags = vol.e[2];
	rx_pkts[3]->ol_flags = vol.e[3];
}
#else
#define desc_to_olflags_v(desc, rx_pkts) do {} while (0)
#endif

#define PKTLEN_SHIFT     (6)
#define PKTLEN_MASK      (0x3FFF)
/* Handling the pkt len field is not aligned with 1byte, so shift is
 * needed to let it align
 */
static inline void
desc_pktlen_align(__m128i descs[4])
{
	__m128i pktlen0, pktlen1, zero;
	union {
		uint16_t e[4];
		uint64_t dword;
	} vol;

	/* mask everything except pktlen field*/
	const __m128i pktlen_msk = _mm_set_epi32(PKTLEN_MASK, PKTLEN_MASK,
						PKTLEN_MASK, PKTLEN_MASK);

	pktlen0 = _mm_unpackhi_epi32(descs[0], descs[2]);
	pktlen1 = _mm_unpackhi_epi32(descs[1], descs[3]);
	pktlen0 = _mm_unpackhi_epi32(pktlen0, pktlen1);

	zero = _mm_xor_si128(pktlen0, pktlen0);

	pktlen0 = _mm_srli_epi32(pktlen0, PKTLEN_SHIFT);
	pktlen0 = _mm_and_si128(pktlen0, pktlen_msk);

	pktlen0 = _mm_packs_epi32(pktlen0, zero);
	vol.dword = _mm_cvtsi128_si64(pktlen0);
	/* let the descriptor byte 15-14 store the pkt len */
	*((uint16_t *)&descs[0]+7) = vol.e[0];
	*((uint16_t *)&descs[1]+7) = vol.e[1];
	*((uint16_t *)&descs[2]+7) = vol.e[2];
	*((uint16_t *)&descs[3]+7) = vol.e[3];
}

 /*
 * Notice:
 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
 * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
 *   numbers of DD bits
 */
static inline uint16_t
_recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
		   uint16_t nb_pkts, uint8_t *split_packet)
{
	volatile union i40e_rx_desc *rxdp;
	struct i40e_rx_entry *sw_ring;
	uint16_t nb_pkts_recd;
	int pos;
	uint64_t var;
	__m128i shuf_msk;

	__m128i crc_adjust = _mm_set_epi16(
				0, 0, 0,    /* ignore non-length fields */
				-rxq->crc_len, /* sub crc on data_len */
				0,          /* ignore high-16bits of pkt_len */
				-rxq->crc_len, /* sub crc on pkt_len */
				0, 0            /* ignore pkt_type field */
			);
	__m128i dd_check, eop_check;

	/* nb_pkts shall be less equal than RTE_I40E_MAX_RX_BURST */
	nb_pkts = RTE_MIN(nb_pkts, RTE_I40E_MAX_RX_BURST);

	/* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);

	/* Just the act of getting into the function from the application is
	 * going to cost about 7 cycles
	 */
	rxdp = rxq->rx_ring + rxq->rx_tail;

	_mm_prefetch((const void *)rxdp, _MM_HINT_T0);

	/* See if we need to rearm the RX queue - gives the prefetch a bit
	 * of time to act
	 */
	if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
		i40e_rxq_rearm(rxq);

	/* Before we start moving massive data around, check to see if
	 * there is actually a packet available
	 */
	if (!(rxdp->wb.qword1.status_error_len &
			rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
		return 0;

	/* 4 packets DD mask */
	dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);

	/* 4 packets EOP mask */
	eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);

	/* mask to shuffle from desc. to mbuf */
	shuf_msk = _mm_set_epi8(
		7, 6, 5, 4,  /* octet 4~7, 32bits rss */
		3, 2,        /* octet 2~3, low 16 bits vlan_macip */
		15, 14,      /* octet 15~14, 16 bits data_len */
		0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
		15, 14,      /* octet 15~14, low 16 bits pkt_len */
		0xFF, 0xFF,  /* pkt_type set as unknown */
		0xFF, 0xFF  /*pkt_type set as unknown */
		);

	/* Cache is empty -> need to scan the buffer rings, but first move
	 * the next 'n' mbufs into the cache
	 */
	sw_ring = &rxq->sw_ring[rxq->rx_tail];

	/* A. load 4 packet in one loop
	 * [A*. mask out 4 unused dirty field in desc]
	 * B. copy 4 mbuf point from swring to rx_pkts
	 * C. calc the number of DD bits among the 4 packets
	 * [C*. extract the end-of-packet bit, if requested]
	 * D. fill info. from desc to mbuf
	 */

	for (pos = 0, nb_pkts_recd = 0; pos < RTE_I40E_VPMD_RX_BURST;
			pos += RTE_I40E_DESCS_PER_LOOP,
			rxdp += RTE_I40E_DESCS_PER_LOOP) {
		__m128i descs[RTE_I40E_DESCS_PER_LOOP];
		__m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
		__m128i zero, staterr, sterr_tmp1, sterr_tmp2;
		__m128i mbp1, mbp2; /* two mbuf pointer in one XMM reg. */

		/* B.1 load 1 mbuf point */
		mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
		/* Read desc statuses backwards to avoid race condition */
		/* A.1 load 4 pkts desc */
		descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));

		/* B.2 copy 2 mbuf point into rx_pkts  */
		_mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);

		/* B.1 load 1 mbuf point */
		mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos+2]);

		descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
		/* B.1 load 2 mbuf point */
		descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
		descs[0] = _mm_loadu_si128((__m128i *)(rxdp));

		/* B.2 copy 2 mbuf point into rx_pkts  */
		_mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);

		if (split_packet) {
			rte_prefetch0(&rx_pkts[pos]->cacheline1);
			rte_prefetch0(&rx_pkts[pos + 1]->cacheline1);
			rte_prefetch0(&rx_pkts[pos + 2]->cacheline1);
			rte_prefetch0(&rx_pkts[pos + 3]->cacheline1);
		}

		/*shift the pktlen field*/
		desc_pktlen_align(descs);

		/* avoid compiler reorder optimization */
		rte_compiler_barrier();

		/* D.1 pkt 3,4 convert format from desc to pktmbuf */
		pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
		pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);

		/* C.1 4=>2 filter staterr info only */
		sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
		/* C.1 4=>2 filter staterr info only */
		sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);

		desc_to_olflags_v(descs, &rx_pkts[pos]);

		/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
		pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
		pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);

		/* D.1 pkt 1,2 convert format from desc to pktmbuf */
		pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
		pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);

		/* C.2 get 4 pkts staterr value  */
		zero = _mm_xor_si128(dd_check, dd_check);
		staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);

		/* D.3 copy final 3,4 data to rx_pkts */
		_mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
				 pkt_mb4);
		_mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
				 pkt_mb3);

		/* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
		pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
		pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);

		/* C* extract and record EOP bit */
		if (split_packet) {
			__m128i eop_shuf_mask = _mm_set_epi8(
					0xFF, 0xFF, 0xFF, 0xFF,
					0xFF, 0xFF, 0xFF, 0xFF,
					0xFF, 0xFF, 0xFF, 0xFF,
					0x04, 0x0C, 0x00, 0x08
					);

			/* and with mask to extract bits, flipping 1-0 */
			__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
			/* the staterr values are not in order, as the count
			 * count of dd bits doesn't care. However, for end of
			 * packet tracking, we do care, so shuffle. This also
			 * compresses the 32-bit values to 8-bit
			 */
			eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
			/* store the resulting 32-bit value */
			*(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
			split_packet += RTE_I40E_DESCS_PER_LOOP;

			/* zero-out next pointers */
			rx_pkts[pos]->next = NULL;
			rx_pkts[pos + 1]->next = NULL;
			rx_pkts[pos + 2]->next = NULL;
			rx_pkts[pos + 3]->next = NULL;
		}

		/* C.3 calc available number of desc */
		staterr = _mm_and_si128(staterr, dd_check);
		staterr = _mm_packs_epi32(staterr, zero);

		/* D.3 copy final 1,2 data to rx_pkts */
		_mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
				 pkt_mb2);
		_mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
				 pkt_mb1);
		/* C.4 calc avaialbe number of desc */
		var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
		nb_pkts_recd += var;
		if (likely(var != RTE_I40E_DESCS_PER_LOOP))
			break;
	}

	/* Update our internal tail pointer */
	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
	rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
	rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);

	return nb_pkts_recd;
}

 /*
 * Notice:
 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
 * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
 *   numbers of DD bits
 */
uint16_t
i40e_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
		   uint16_t nb_pkts)
{
	return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
}

static inline uint16_t
reassemble_packets(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_bufs,
		   uint16_t nb_bufs, uint8_t *split_flags)
{
	struct rte_mbuf *pkts[RTE_I40E_VPMD_RX_BURST]; /*finished pkts*/
	struct rte_mbuf *start = rxq->pkt_first_seg;
	struct rte_mbuf *end =  rxq->pkt_last_seg;
	unsigned pkt_idx, buf_idx;

	for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) {
		if (end != NULL) {
			/* processing a split packet */
			end->next = rx_bufs[buf_idx];
			rx_bufs[buf_idx]->data_len += rxq->crc_len;

			start->nb_segs++;
			start->pkt_len += rx_bufs[buf_idx]->data_len;
			end = end->next;

			if (!split_flags[buf_idx]) {
				/* it's the last packet of the set */
				start->hash = end->hash;
				start->ol_flags = end->ol_flags;
				/* we need to strip crc for the whole packet */
				start->pkt_len -= rxq->crc_len;
				if (end->data_len > rxq->crc_len) {
					end->data_len -= rxq->crc_len;
				} else {
					/* free up last mbuf */
					struct rte_mbuf *secondlast = start;

					while (secondlast->next != end)
						secondlast = secondlast->next;
					secondlast->data_len -= (rxq->crc_len -
							end->data_len);
					secondlast->next = NULL;
					rte_pktmbuf_free_seg(end);
					end = secondlast;
				}
				pkts[pkt_idx++] = start;
				start = end = NULL;
			}
		} else {
			/* not processing a split packet */
			if (!split_flags[buf_idx]) {
				/* not a split packet, save and skip */
				pkts[pkt_idx++] = rx_bufs[buf_idx];
				continue;
			}
			end = start = rx_bufs[buf_idx];
			rx_bufs[buf_idx]->data_len += rxq->crc_len;
			rx_bufs[buf_idx]->pkt_len += rxq->crc_len;
		}
	}

	/* save the partial packet for next time */
	rxq->pkt_first_seg = start;
	rxq->pkt_last_seg = end;
	memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts)));
	return pkt_idx;
}

 /* vPMD receive routine that reassembles scattered packets
 * Notice:
 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
 * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
 *   numbers of DD bits
 */
uint16_t
i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
			     uint16_t nb_pkts)
{

	struct i40e_rx_queue *rxq = rx_queue;
	uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};

	/* get some new buffers */
	uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
			split_flags);
	if (nb_bufs == 0)
		return 0;

	/* happy day case, full burst + no packets to be joined */
	const uint64_t *split_fl64 = (uint64_t *)split_flags;

	if (rxq->pkt_first_seg == NULL &&
			split_fl64[0] == 0 && split_fl64[1] == 0 &&
			split_fl64[2] == 0 && split_fl64[3] == 0)
		return nb_bufs;

	/* reassemble any packets that need reassembly*/
	unsigned i = 0;

	if (rxq->pkt_first_seg == NULL) {
		/* find the first split flag, and only reassemble then*/
		while (i < nb_bufs && !split_flags[i])
			i++;
		if (i == nb_bufs)
			return nb_bufs;
	}
	return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
		&split_flags[i]);
}

static inline void
vtx1(volatile struct i40e_tx_desc *txdp,
		struct rte_mbuf *pkt, uint64_t flags)
{
	uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
			((uint64_t)flags  << I40E_TXD_QW1_CMD_SHIFT) |
			((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));

	__m128i descriptor = _mm_set_epi64x(high_qw,
				pkt->buf_physaddr + pkt->data_off);
	_mm_store_si128((__m128i *)txdp, descriptor);
}

static inline void
vtx(volatile struct i40e_tx_desc *txdp,
		struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
{
	int i;

	for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
		vtx1(txdp, *pkt, flags);
}

static inline int __attribute__((always_inline))
i40e_tx_free_bufs(struct i40e_tx_queue *txq)
{
	struct i40e_tx_entry *txep;
	uint32_t n;
	uint32_t i;
	int nb_free = 0;
	struct rte_mbuf *m, *free[RTE_I40E_TX_MAX_FREE_BUF_SZ];

	/* check DD bits on threshold descriptor */
	if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
			rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
			rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
		return 0;

	n = txq->tx_rs_thresh;

	 /* first buffer to free from S/W ring is at index
	  * tx_next_dd - (tx_rs_thresh-1)
	  */
	txep = &txq->sw_ring[txq->tx_next_dd - (n - 1)];
	m = __rte_pktmbuf_prefree_seg(txep[0].mbuf);
	if (likely(m != NULL)) {
		free[0] = m;
		nb_free = 1;
		for (i = 1; i < n; i++) {
			m = __rte_pktmbuf_prefree_seg(txep[i].mbuf);
			if (likely(m != NULL)) {
				if (likely(m->pool == free[0]->pool)) {
					free[nb_free++] = m;
				} else {
					rte_mempool_put_bulk(free[0]->pool,
							     (void *)free,
							     nb_free);
					free[0] = m;
					nb_free = 1;
				}
			}
		}
		rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
	} else {
		for (i = 1; i < n; i++) {
			m = __rte_pktmbuf_prefree_seg(txep[i].mbuf);
			if (m != NULL)
				rte_mempool_put(m->pool, m);
		}
	}

	/* buffers were freed, update counters */
	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
	txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
	if (txq->tx_next_dd >= txq->nb_tx_desc)
		txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);

	return txq->tx_rs_thresh;
}

static inline void __attribute__((always_inline))
tx_backlog_entry(struct i40e_tx_entry *txep,
		 struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
	int i;

	for (i = 0; i < (int)nb_pkts; ++i)
		txep[i].mbuf = tx_pkts[i];
}

uint16_t
i40e_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
		   uint16_t nb_pkts)
{
	struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
	volatile struct i40e_tx_desc *txdp;
	struct i40e_tx_entry *txep;
	uint16_t n, nb_commit, tx_id;
	uint64_t flags = I40E_TD_CMD;
	uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
	int i;

	/* cross rx_thresh boundary is not allowed */
	nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);

	if (txq->nb_tx_free < txq->tx_free_thresh)
		i40e_tx_free_bufs(txq);

	nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
	if (unlikely(nb_pkts == 0))
		return 0;

	tx_id = txq->tx_tail;
	txdp = &txq->tx_ring[tx_id];
	txep = &txq->sw_ring[tx_id];

	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);

	n = (uint16_t)(txq->nb_tx_desc - tx_id);
	if (nb_commit >= n) {
		tx_backlog_entry(txep, tx_pkts, n);

		for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
			vtx1(txdp, *tx_pkts, flags);

		vtx1(txdp, *tx_pkts++, rs);

		nb_commit = (uint16_t)(nb_commit - n);

		tx_id = 0;
		txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);

		/* avoid reach the end of ring */
		txdp = &txq->tx_ring[tx_id];
		txep = &txq->sw_ring[tx_id];
	}

	tx_backlog_entry(txep, tx_pkts, nb_commit);

	vtx(txdp, tx_pkts, nb_commit, flags);

	tx_id = (uint16_t)(tx_id + nb_commit);
	if (tx_id > txq->tx_next_rs) {
		txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
			rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
						I40E_TXD_QW1_CMD_SHIFT);
		txq->tx_next_rs =
			(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
	}

	txq->tx_tail = tx_id;

	I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);

	return nb_pkts;
}

void __attribute__((cold))
i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
{
	const unsigned mask = rxq->nb_rx_desc - 1;
	unsigned i;

	if (rxq->sw_ring == NULL || rxq->rxrearm_nb >= rxq->nb_rx_desc)
		return;

	/* free all mbufs that are valid in the ring */
	for (i = rxq->rx_tail; i != rxq->rxrearm_start; i = (i + 1) & mask)
		rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
	rxq->rxrearm_nb = rxq->nb_rx_desc;

	/* set all entries to NULL */
	memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_rx_desc);
}

int __attribute__((cold))
i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
{
	uintptr_t p;
	struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */

	mb_def.nb_segs = 1;
	mb_def.data_off = RTE_PKTMBUF_HEADROOM;
	mb_def.port = rxq->port_id;
	rte_mbuf_refcnt_set(&mb_def, 1);

	/* prevent compiler reordering: rearm_data covers previous fields */
	rte_compiler_barrier();
	p = (uintptr_t)&mb_def.rearm_data;
	rxq->mbuf_initializer = *(uint64_t *)p;
	return 0;
}

int __attribute__((cold))
i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
{
	return 0;
}

int __attribute__((cold))
i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
{
#ifndef RTE_LIBRTE_IEEE1588
	struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
	struct rte_fdir_conf *fconf = &dev->data->dev_conf.fdir_conf;

#ifndef RTE_LIBRTE_I40E_RX_OLFLAGS_ENABLE
	/* whithout rx ol_flags, no VP flag report */
	if (rxmode->hw_vlan_strip != 0 ||
	    rxmode->hw_vlan_extend != 0)
		return -1;
#endif

	/* no fdir support */
	if (fconf->mode != RTE_FDIR_MODE_NONE)
		return -1;

	 /* - no csum error report support
	 * - no header split support
	 */
	if (rxmode->hw_ip_checksum == 1 ||
	    rxmode->header_split == 1)
		return -1;

	return 0;
#else
	RTE_SET_USED(dev);
	return -1;
#endif
}