1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
|
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2017 6WIND S.A.
* Copyright 2017 Mellanox Technologies, Ltd
*/
/**
* @file
* Memory management functions for mlx4 driver.
*/
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
/* Verbs headers do not support -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
#include <rte_branch_prediction.h>
#include <rte_common.h>
#include <rte_errno.h>
#include <rte_malloc.h>
#include <rte_memory.h>
#include <rte_mempool.h>
#include <rte_rwlock.h>
#include "mlx4_glue.h"
#include "mlx4_mr.h"
#include "mlx4_rxtx.h"
#include "mlx4_utils.h"
struct mr_find_contig_memsegs_data {
uintptr_t addr;
uintptr_t start;
uintptr_t end;
const struct rte_memseg_list *msl;
};
struct mr_update_mp_data {
struct rte_eth_dev *dev;
struct mlx4_mr_ctrl *mr_ctrl;
int ret;
};
/**
* Expand B-tree table to a given size. Can't be called with holding
* memory_hotplug_lock or priv->mr.rwlock due to rte_realloc().
*
* @param bt
* Pointer to B-tree structure.
* @param n
* Number of entries for expansion.
*
* @return
* 0 on success, -1 on failure.
*/
static int
mr_btree_expand(struct mlx4_mr_btree *bt, int n)
{
void *mem;
int ret = 0;
if (n <= bt->size)
return ret;
/*
* Downside of directly using rte_realloc() is that SOCKET_ID_ANY is
* used inside if there's no room to expand. Because this is a quite
* rare case and a part of very slow path, it is very acceptable.
* Initially cache_bh[] will be given practically enough space and once
* it is expanded, expansion wouldn't be needed again ever.
*/
mem = rte_realloc(bt->table, n * sizeof(struct mlx4_mr_cache), 0);
if (mem == NULL) {
/* Not an error, B-tree search will be skipped. */
WARN("failed to expand MR B-tree (%p) table", (void *)bt);
ret = -1;
} else {
DEBUG("expanded MR B-tree table (size=%u)", n);
bt->table = mem;
bt->size = n;
}
return ret;
}
/**
* Look up LKey from given B-tree lookup table, store the last index and return
* searched LKey.
*
* @param bt
* Pointer to B-tree structure.
* @param[out] idx
* Pointer to index. Even on search failure, returns index where it stops
* searching so that index can be used when inserting a new entry.
* @param addr
* Search key.
*
* @return
* Searched LKey on success, UINT32_MAX on no match.
*/
static uint32_t
mr_btree_lookup(struct mlx4_mr_btree *bt, uint16_t *idx, uintptr_t addr)
{
struct mlx4_mr_cache *lkp_tbl;
uint16_t n;
uint16_t base = 0;
assert(bt != NULL);
lkp_tbl = *bt->table;
n = bt->len;
/* First entry must be NULL for comparison. */
assert(bt->len > 0 || (lkp_tbl[0].start == 0 &&
lkp_tbl[0].lkey == UINT32_MAX));
/* Binary search. */
do {
register uint16_t delta = n >> 1;
if (addr < lkp_tbl[base + delta].start) {
n = delta;
} else {
base += delta;
n -= delta;
}
} while (n > 1);
assert(addr >= lkp_tbl[base].start);
*idx = base;
if (addr < lkp_tbl[base].end)
return lkp_tbl[base].lkey;
/* Not found. */
return UINT32_MAX;
}
/**
* Insert an entry to B-tree lookup table.
*
* @param bt
* Pointer to B-tree structure.
* @param entry
* Pointer to new entry to insert.
*
* @return
* 0 on success, -1 on failure.
*/
static int
mr_btree_insert(struct mlx4_mr_btree *bt, struct mlx4_mr_cache *entry)
{
struct mlx4_mr_cache *lkp_tbl;
uint16_t idx = 0;
size_t shift;
assert(bt != NULL);
assert(bt->len <= bt->size);
assert(bt->len > 0);
lkp_tbl = *bt->table;
/* Find out the slot for insertion. */
if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) {
DEBUG("abort insertion to B-tree(%p): already exist at"
" idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
(void *)bt, idx, entry->start, entry->end, entry->lkey);
/* Already exist, return. */
return 0;
}
/* If table is full, return error. */
if (unlikely(bt->len == bt->size)) {
bt->overflow = 1;
return -1;
}
/* Insert entry. */
++idx;
shift = (bt->len - idx) * sizeof(struct mlx4_mr_cache);
if (shift)
memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift);
lkp_tbl[idx] = *entry;
bt->len++;
DEBUG("inserted B-tree(%p)[%u],"
" [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
(void *)bt, idx, entry->start, entry->end, entry->lkey);
return 0;
}
/**
* Initialize B-tree and allocate memory for lookup table.
*
* @param bt
* Pointer to B-tree structure.
* @param n
* Number of entries to allocate.
* @param socket
* NUMA socket on which memory must be allocated.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx4_mr_btree_init(struct mlx4_mr_btree *bt, int n, int socket)
{
if (bt == NULL) {
rte_errno = EINVAL;
return -rte_errno;
}
memset(bt, 0, sizeof(*bt));
bt->table = rte_calloc_socket("B-tree table",
n, sizeof(struct mlx4_mr_cache),
0, socket);
if (bt->table == NULL) {
rte_errno = ENOMEM;
ERROR("failed to allocate memory for btree cache on socket %d",
socket);
return -rte_errno;
}
bt->size = n;
/* First entry must be NULL for binary search. */
(*bt->table)[bt->len++] = (struct mlx4_mr_cache) {
.lkey = UINT32_MAX,
};
DEBUG("initialized B-tree %p with table %p",
(void *)bt, (void *)bt->table);
return 0;
}
/**
* Free B-tree resources.
*
* @param bt
* Pointer to B-tree structure.
*/
void
mlx4_mr_btree_free(struct mlx4_mr_btree *bt)
{
if (bt == NULL)
return;
DEBUG("freeing B-tree %p with table %p", (void *)bt, (void *)bt->table);
rte_free(bt->table);
memset(bt, 0, sizeof(*bt));
}
#ifndef NDEBUG
/**
* Dump all the entries in a B-tree
*
* @param bt
* Pointer to B-tree structure.
*/
void
mlx4_mr_btree_dump(struct mlx4_mr_btree *bt)
{
int idx;
struct mlx4_mr_cache *lkp_tbl;
if (bt == NULL)
return;
lkp_tbl = *bt->table;
for (idx = 0; idx < bt->len; ++idx) {
struct mlx4_mr_cache *entry = &lkp_tbl[idx];
DEBUG("B-tree(%p)[%u],"
" [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
(void *)bt, idx, entry->start, entry->end, entry->lkey);
}
}
#endif
/**
* Find virtually contiguous memory chunk in a given MR.
*
* @param dev
* Pointer to MR structure.
* @param[out] entry
* Pointer to returning MR cache entry. If not found, this will not be
* updated.
* @param start_idx
* Start index of the memseg bitmap.
*
* @return
* Next index to go on lookup.
*/
static int
mr_find_next_chunk(struct mlx4_mr *mr, struct mlx4_mr_cache *entry,
int base_idx)
{
uintptr_t start = 0;
uintptr_t end = 0;
uint32_t idx = 0;
/* MR for external memory doesn't have memseg list. */
if (mr->msl == NULL) {
struct ibv_mr *ibv_mr = mr->ibv_mr;
assert(mr->ms_bmp_n == 1);
assert(mr->ms_n == 1);
assert(base_idx == 0);
/*
* Can't search it from memseg list but get it directly from
* verbs MR as there's only one chunk.
*/
entry->start = (uintptr_t)ibv_mr->addr;
entry->end = (uintptr_t)ibv_mr->addr + mr->ibv_mr->length;
entry->lkey = rte_cpu_to_be_32(mr->ibv_mr->lkey);
/* Returning 1 ends iteration. */
return 1;
}
for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) {
if (rte_bitmap_get(mr->ms_bmp, idx)) {
const struct rte_memseg_list *msl;
const struct rte_memseg *ms;
msl = mr->msl;
ms = rte_fbarray_get(&msl->memseg_arr,
mr->ms_base_idx + idx);
assert(msl->page_sz == ms->hugepage_sz);
if (!start)
start = ms->addr_64;
end = ms->addr_64 + ms->hugepage_sz;
} else if (start) {
/* Passed the end of a fragment. */
break;
}
}
if (start) {
/* Found one chunk. */
entry->start = start;
entry->end = end;
entry->lkey = rte_cpu_to_be_32(mr->ibv_mr->lkey);
}
return idx;
}
/**
* Insert a MR to the global B-tree cache. It may fail due to low-on-memory.
* Then, this entry will have to be searched by mr_lookup_dev_list() in
* mlx4_mr_create() on miss.
*
* @param dev
* Pointer to Ethernet device.
* @param mr
* Pointer to MR to insert.
*
* @return
* 0 on success, -1 on failure.
*/
static int
mr_insert_dev_cache(struct rte_eth_dev *dev, struct mlx4_mr *mr)
{
struct priv *priv = dev->data->dev_private;
unsigned int n;
DEBUG("port %u inserting MR(%p) to global cache",
dev->data->port_id, (void *)mr);
for (n = 0; n < mr->ms_bmp_n; ) {
struct mlx4_mr_cache entry = { 0, };
/* Find a contiguous chunk and advance the index. */
n = mr_find_next_chunk(mr, &entry, n);
if (!entry.end)
break;
if (mr_btree_insert(&priv->mr.cache, &entry) < 0) {
/*
* Overflowed, but the global table cannot be expanded
* because of deadlock.
*/
return -1;
}
}
return 0;
}
/**
* Look up address in the original global MR list.
*
* @param dev
* Pointer to Ethernet device.
* @param[out] entry
* Pointer to returning MR cache entry. If no match, this will not be updated.
* @param addr
* Search key.
*
* @return
* Found MR on match, NULL otherwise.
*/
static struct mlx4_mr *
mr_lookup_dev_list(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
uintptr_t addr)
{
struct priv *priv = dev->data->dev_private;
struct mlx4_mr *mr;
/* Iterate all the existing MRs. */
LIST_FOREACH(mr, &priv->mr.mr_list, mr) {
unsigned int n;
if (mr->ms_n == 0)
continue;
for (n = 0; n < mr->ms_bmp_n; ) {
struct mlx4_mr_cache ret = { 0, };
n = mr_find_next_chunk(mr, &ret, n);
if (addr >= ret.start && addr < ret.end) {
/* Found. */
*entry = ret;
return mr;
}
}
}
return NULL;
}
/**
* Look up address on device.
*
* @param dev
* Pointer to Ethernet device.
* @param[out] entry
* Pointer to returning MR cache entry. If no match, this will not be updated.
* @param addr
* Search key.
*
* @return
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
*/
static uint32_t
mr_lookup_dev(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
uintptr_t addr)
{
struct priv *priv = dev->data->dev_private;
uint16_t idx;
uint32_t lkey = UINT32_MAX;
struct mlx4_mr *mr;
/*
* If the global cache has overflowed since it failed to expand the
* B-tree table, it can't have all the existing MRs. Then, the address
* has to be searched by traversing the original MR list instead, which
* is very slow path. Otherwise, the global cache is all inclusive.
*/
if (!unlikely(priv->mr.cache.overflow)) {
lkey = mr_btree_lookup(&priv->mr.cache, &idx, addr);
if (lkey != UINT32_MAX)
*entry = (*priv->mr.cache.table)[idx];
} else {
/* Falling back to the slowest path. */
mr = mr_lookup_dev_list(dev, entry, addr);
if (mr != NULL)
lkey = entry->lkey;
}
assert(lkey == UINT32_MAX || (addr >= entry->start &&
addr < entry->end));
return lkey;
}
/**
* Free MR resources. MR lock must not be held to avoid a deadlock. rte_free()
* can raise memory free event and the callback function will spin on the lock.
*
* @param mr
* Pointer to MR to free.
*/
static void
mr_free(struct mlx4_mr *mr)
{
if (mr == NULL)
return;
DEBUG("freeing MR(%p):", (void *)mr);
if (mr->ibv_mr != NULL)
claim_zero(mlx4_glue->dereg_mr(mr->ibv_mr));
if (mr->ms_bmp != NULL)
rte_bitmap_free(mr->ms_bmp);
rte_free(mr);
}
/**
* Releass resources of detached MR having no online entry.
*
* @param dev
* Pointer to Ethernet device.
*/
static void
mlx4_mr_garbage_collect(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
struct mlx4_mr *mr_next;
struct mlx4_mr_list free_list = LIST_HEAD_INITIALIZER(free_list);
/*
* MR can't be freed with holding the lock because rte_free() could call
* memory free callback function. This will be a deadlock situation.
*/
rte_rwlock_write_lock(&priv->mr.rwlock);
/* Detach the whole free list and release it after unlocking. */
free_list = priv->mr.mr_free_list;
LIST_INIT(&priv->mr.mr_free_list);
rte_rwlock_write_unlock(&priv->mr.rwlock);
/* Release resources. */
mr_next = LIST_FIRST(&free_list);
while (mr_next != NULL) {
struct mlx4_mr *mr = mr_next;
mr_next = LIST_NEXT(mr, mr);
mr_free(mr);
}
}
/* Called during rte_memseg_contig_walk() by mlx4_mr_create(). */
static int
mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl,
const struct rte_memseg *ms, size_t len, void *arg)
{
struct mr_find_contig_memsegs_data *data = arg;
if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len)
return 0;
/* Found, save it and stop walking. */
data->start = ms->addr_64;
data->end = ms->addr_64 + len;
data->msl = msl;
return 1;
}
/**
* Create a new global Memroy Region (MR) for a missing virtual address.
* Register entire virtually contiguous memory chunk around the address.
*
* @param dev
* Pointer to Ethernet device.
* @param[out] entry
* Pointer to returning MR cache entry, found in the global cache or newly
* created. If failed to create one, this will not be updated.
* @param addr
* Target virtual address to register.
*
* @return
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
*/
static uint32_t
mlx4_mr_create(struct rte_eth_dev *dev, struct mlx4_mr_cache *entry,
uintptr_t addr)
{
struct priv *priv = dev->data->dev_private;
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
const struct rte_memseg_list *msl;
const struct rte_memseg *ms;
struct mlx4_mr *mr = NULL;
size_t len;
uint32_t ms_n;
uint32_t bmp_size;
void *bmp_mem;
int ms_idx_shift = -1;
unsigned int n;
struct mr_find_contig_memsegs_data data = {
.addr = addr,
};
struct mr_find_contig_memsegs_data data_re;
DEBUG("port %u creating a MR using address (%p)",
dev->data->port_id, (void *)addr);
/*
* Release detached MRs if any. This can't be called with holding either
* memory_hotplug_lock or priv->mr.rwlock. MRs on the free list have
* been detached by the memory free event but it couldn't be released
* inside the callback due to deadlock. As a result, releasing resources
* is quite opportunistic.
*/
mlx4_mr_garbage_collect(dev);
/*
* Find out a contiguous virtual address chunk in use, to which the
* given address belongs, in order to register maximum range. In the
* best case where mempools are not dynamically recreated and
* '--socket-mem' is speicified as an EAL option, it is very likely to
* have only one MR(LKey) per a socket and per a hugepage-size even
* though the system memory is highly fragmented.
*/
if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) {
WARN("port %u unable to find virtually contiguous"
" chunk for address (%p)."
" rte_memseg_contig_walk() failed.",
dev->data->port_id, (void *)addr);
rte_errno = ENXIO;
goto err_nolock;
}
alloc_resources:
/* Addresses must be page-aligned. */
assert(rte_is_aligned((void *)data.start, data.msl->page_sz));
assert(rte_is_aligned((void *)data.end, data.msl->page_sz));
msl = data.msl;
ms = rte_mem_virt2memseg((void *)data.start, msl);
len = data.end - data.start;
assert(msl->page_sz == ms->hugepage_sz);
/* Number of memsegs in the range. */
ms_n = len / msl->page_sz;
DEBUG("port %u extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
" page_sz=0x%" PRIx64 ", ms_n=%u",
dev->data->port_id, (void *)addr,
data.start, data.end, msl->page_sz, ms_n);
/* Size of memory for bitmap. */
bmp_size = rte_bitmap_get_memory_footprint(ms_n);
mr = rte_zmalloc_socket(NULL,
RTE_ALIGN_CEIL(sizeof(*mr),
RTE_CACHE_LINE_SIZE) +
bmp_size,
RTE_CACHE_LINE_SIZE, msl->socket_id);
if (mr == NULL) {
WARN("port %u unable to allocate memory for a new MR of"
" address (%p).",
dev->data->port_id, (void *)addr);
rte_errno = ENOMEM;
goto err_nolock;
}
mr->msl = msl;
/*
* Save the index of the first memseg and initialize memseg bitmap. To
* see if a memseg of ms_idx in the memseg-list is still valid, check:
* rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx)
*/
mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE);
mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size);
if (mr->ms_bmp == NULL) {
WARN("port %u unable to initialize bitamp for a new MR of"
" address (%p).",
dev->data->port_id, (void *)addr);
rte_errno = EINVAL;
goto err_nolock;
}
/*
* Should recheck whether the extended contiguous chunk is still valid.
* Because memory_hotplug_lock can't be held if there's any memory
* related calls in a critical path, resource allocation above can't be
* locked. If the memory has been changed at this point, try again with
* just single page. If not, go on with the big chunk atomically from
* here.
*/
rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
data_re = data;
if (len > msl->page_sz &&
!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) {
WARN("port %u unable to find virtually contiguous"
" chunk for address (%p)."
" rte_memseg_contig_walk() failed.",
dev->data->port_id, (void *)addr);
rte_errno = ENXIO;
goto err_memlock;
}
if (data.start != data_re.start || data.end != data_re.end) {
/*
* The extended contiguous chunk has been changed. Try again
* with single memseg instead.
*/
data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz);
data.end = data.start + msl->page_sz;
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
mr_free(mr);
goto alloc_resources;
}
assert(data.msl == data_re.msl);
rte_rwlock_write_lock(&priv->mr.rwlock);
/*
* Check the address is really missing. If other thread already created
* one or it is not found due to overflow, abort and return.
*/
if (mr_lookup_dev(dev, entry, addr) != UINT32_MAX) {
/*
* Insert to the global cache table. It may fail due to
* low-on-memory. Then, this entry will have to be searched
* here again.
*/
mr_btree_insert(&priv->mr.cache, entry);
DEBUG("port %u found MR for %p on final lookup, abort",
dev->data->port_id, (void *)addr);
rte_rwlock_write_unlock(&priv->mr.rwlock);
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
/*
* Must be unlocked before calling rte_free() because
* mlx4_mr_mem_event_free_cb() can be called inside.
*/
mr_free(mr);
return entry->lkey;
}
/*
* Trim start and end addresses for verbs MR. Set bits for registering
* memsegs but exclude already registered ones. Bitmap can be
* fragmented.
*/
for (n = 0; n < ms_n; ++n) {
uintptr_t start;
struct mlx4_mr_cache ret = { 0, };
start = data_re.start + n * msl->page_sz;
/* Exclude memsegs already registered by other MRs. */
if (mr_lookup_dev(dev, &ret, start) == UINT32_MAX) {
/*
* Start from the first unregistered memseg in the
* extended range.
*/
if (ms_idx_shift == -1) {
mr->ms_base_idx += n;
data.start = start;
ms_idx_shift = n;
}
data.end = start + msl->page_sz;
rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift);
++mr->ms_n;
}
}
len = data.end - data.start;
mr->ms_bmp_n = len / msl->page_sz;
assert(ms_idx_shift + mr->ms_bmp_n <= ms_n);
/*
* Finally create a verbs MR for the memory chunk. ibv_reg_mr() can be
* called with holding the memory lock because it doesn't use
* mlx4_alloc_buf_extern() which eventually calls rte_malloc_socket()
* through mlx4_alloc_verbs_buf().
*/
mr->ibv_mr = mlx4_glue->reg_mr(priv->pd, (void *)data.start, len,
IBV_ACCESS_LOCAL_WRITE);
if (mr->ibv_mr == NULL) {
WARN("port %u fail to create a verbs MR for address (%p)",
dev->data->port_id, (void *)addr);
rte_errno = EINVAL;
goto err_mrlock;
}
assert((uintptr_t)mr->ibv_mr->addr == data.start);
assert(mr->ibv_mr->length == len);
LIST_INSERT_HEAD(&priv->mr.mr_list, mr, mr);
DEBUG("port %u MR CREATED (%p) for %p:\n"
" [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
" lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
dev->data->port_id, (void *)mr, (void *)addr,
data.start, data.end, rte_cpu_to_be_32(mr->ibv_mr->lkey),
mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
/* Insert to the global cache table. */
mr_insert_dev_cache(dev, mr);
/* Fill in output data. */
mr_lookup_dev(dev, entry, addr);
/* Lookup can't fail. */
assert(entry->lkey != UINT32_MAX);
rte_rwlock_write_unlock(&priv->mr.rwlock);
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
return entry->lkey;
err_mrlock:
rte_rwlock_write_unlock(&priv->mr.rwlock);
err_memlock:
rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
err_nolock:
/*
* In case of error, as this can be called in a datapath, a warning
* message per an error is preferable instead. Must be unlocked before
* calling rte_free() because mlx4_mr_mem_event_free_cb() can be called
* inside.
*/
mr_free(mr);
return UINT32_MAX;
}
/**
* Rebuild the global B-tree cache of device from the original MR list.
*
* @param dev
* Pointer to Ethernet device.
*/
static void
mr_rebuild_dev_cache(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
struct mlx4_mr *mr;
DEBUG("port %u rebuild dev cache[]", dev->data->port_id);
/* Flush cache to rebuild. */
priv->mr.cache.len = 1;
priv->mr.cache.overflow = 0;
/* Iterate all the existing MRs. */
LIST_FOREACH(mr, &priv->mr.mr_list, mr)
if (mr_insert_dev_cache(dev, mr) < 0)
return;
}
/**
* Callback for memory free event. Iterate freed memsegs and check whether it
* belongs to an existing MR. If found, clear the bit from bitmap of MR. As a
* result, the MR would be fragmented. If it becomes empty, the MR will be freed
* later by mlx4_mr_garbage_collect().
*
* The global cache must be rebuilt if there's any change and this event has to
* be propagated to dataplane threads to flush the local caches.
*
* @param dev
* Pointer to Ethernet device.
* @param addr
* Address of freed memory.
* @param len
* Size of freed memory.
*/
static void
mlx4_mr_mem_event_free_cb(struct rte_eth_dev *dev, const void *addr, size_t len)
{
struct priv *priv = dev->data->dev_private;
const struct rte_memseg_list *msl;
struct mlx4_mr *mr;
int ms_n;
int i;
int rebuild = 0;
DEBUG("port %u free callback: addr=%p, len=%zu",
dev->data->port_id, addr, len);
msl = rte_mem_virt2memseg_list(addr);
/* addr and len must be page-aligned. */
assert((uintptr_t)addr == RTE_ALIGN((uintptr_t)addr, msl->page_sz));
assert(len == RTE_ALIGN(len, msl->page_sz));
ms_n = len / msl->page_sz;
rte_rwlock_write_lock(&priv->mr.rwlock);
/* Clear bits of freed memsegs from MR. */
for (i = 0; i < ms_n; ++i) {
const struct rte_memseg *ms;
struct mlx4_mr_cache entry;
uintptr_t start;
int ms_idx;
uint32_t pos;
/* Find MR having this memseg. */
start = (uintptr_t)addr + i * msl->page_sz;
mr = mr_lookup_dev_list(dev, &entry, start);
if (mr == NULL)
continue;
assert(mr->msl); /* Can't be external memory. */
ms = rte_mem_virt2memseg((void *)start, msl);
assert(ms != NULL);
assert(msl->page_sz == ms->hugepage_sz);
ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
pos = ms_idx - mr->ms_base_idx;
assert(rte_bitmap_get(mr->ms_bmp, pos));
assert(pos < mr->ms_bmp_n);
DEBUG("port %u MR(%p): clear bitmap[%u] for addr %p",
dev->data->port_id, (void *)mr, pos, (void *)start);
rte_bitmap_clear(mr->ms_bmp, pos);
if (--mr->ms_n == 0) {
LIST_REMOVE(mr, mr);
LIST_INSERT_HEAD(&priv->mr.mr_free_list, mr, mr);
DEBUG("port %u remove MR(%p) from list",
dev->data->port_id, (void *)mr);
}
/*
* MR is fragmented or will be freed. the global cache must be
* rebuilt.
*/
rebuild = 1;
}
if (rebuild) {
mr_rebuild_dev_cache(dev);
/*
* Flush local caches by propagating invalidation across cores.
* rte_smp_wmb() is enough to synchronize this event. If one of
* freed memsegs is seen by other core, that means the memseg
* has been allocated by allocator, which will come after this
* free call. Therefore, this store instruction (incrementing
* generation below) will be guaranteed to be seen by other core
* before the core sees the newly allocated memory.
*/
++priv->mr.dev_gen;
DEBUG("broadcasting local cache flush, gen=%d",
priv->mr.dev_gen);
rte_smp_wmb();
}
rte_rwlock_write_unlock(&priv->mr.rwlock);
#ifndef NDEBUG
if (rebuild)
mlx4_mr_dump_dev(dev);
#endif
}
/**
* Callback for memory event.
*
* @param event_type
* Memory event type.
* @param addr
* Address of memory.
* @param len
* Size of memory.
*/
void
mlx4_mr_mem_event_cb(enum rte_mem_event event_type, const void *addr,
size_t len, void *arg __rte_unused)
{
struct priv *priv;
switch (event_type) {
case RTE_MEM_EVENT_FREE:
rte_rwlock_read_lock(&mlx4_mem_event_rwlock);
/* Iterate all the existing mlx4 devices. */
LIST_FOREACH(priv, &mlx4_mem_event_cb_list, mem_event_cb)
mlx4_mr_mem_event_free_cb(priv->dev, addr, len);
rte_rwlock_read_unlock(&mlx4_mem_event_rwlock);
break;
case RTE_MEM_EVENT_ALLOC:
default:
break;
}
}
/**
* Look up address in the global MR cache table. If not found, create a new MR.
* Insert the found/created entry to local bottom-half cache table.
*
* @param dev
* Pointer to Ethernet device.
* @param mr_ctrl
* Pointer to per-queue MR control structure.
* @param[out] entry
* Pointer to returning MR cache entry, found in the global cache or newly
* created. If failed to create one, this is not written.
* @param addr
* Search key.
*
* @return
* Searched LKey on success, UINT32_MAX on no match.
*/
static uint32_t
mlx4_mr_lookup_dev(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl,
struct mlx4_mr_cache *entry, uintptr_t addr)
{
struct priv *priv = dev->data->dev_private;
struct mlx4_mr_btree *bt = &mr_ctrl->cache_bh;
uint16_t idx;
uint32_t lkey;
/* If local cache table is full, try to double it. */
if (unlikely(bt->len == bt->size))
mr_btree_expand(bt, bt->size << 1);
/* Look up in the global cache. */
rte_rwlock_read_lock(&priv->mr.rwlock);
lkey = mr_btree_lookup(&priv->mr.cache, &idx, addr);
if (lkey != UINT32_MAX) {
/* Found. */
*entry = (*priv->mr.cache.table)[idx];
rte_rwlock_read_unlock(&priv->mr.rwlock);
/*
* Update local cache. Even if it fails, return the found entry
* to update top-half cache. Next time, this entry will be found
* in the global cache.
*/
mr_btree_insert(bt, entry);
return lkey;
}
rte_rwlock_read_unlock(&priv->mr.rwlock);
/* First time to see the address? Create a new MR. */
lkey = mlx4_mr_create(dev, entry, addr);
/*
* Update the local cache if successfully created a new global MR. Even
* if failed to create one, there's no action to take in this datapath
* code. As returning LKey is invalid, this will eventually make HW
* fail.
*/
if (lkey != UINT32_MAX)
mr_btree_insert(bt, entry);
return lkey;
}
/**
* Bottom-half of LKey search on datapath. Firstly search in cache_bh[] and if
* misses, search in the global MR cache table and update the new entry to
* per-queue local caches.
*
* @param dev
* Pointer to Ethernet device.
* @param mr_ctrl
* Pointer to per-queue MR control structure.
* @param addr
* Search key.
*
* @return
* Searched LKey on success, UINT32_MAX on no match.
*/
static uint32_t
mlx4_mr_addr2mr_bh(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl,
uintptr_t addr)
{
uint32_t lkey;
uint16_t bh_idx = 0;
/* Victim in top-half cache to replace with new entry. */
struct mlx4_mr_cache *repl = &mr_ctrl->cache[mr_ctrl->head];
/* Binary-search MR translation table. */
lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
/* Update top-half cache. */
if (likely(lkey != UINT32_MAX)) {
*repl = (*mr_ctrl->cache_bh.table)[bh_idx];
} else {
/*
* If missed in local lookup table, search in the global cache
* and local cache_bh[] will be updated inside if possible.
* Top-half cache entry will also be updated.
*/
lkey = mlx4_mr_lookup_dev(dev, mr_ctrl, repl, addr);
if (unlikely(lkey == UINT32_MAX))
return UINT32_MAX;
}
/* Update the most recently used entry. */
mr_ctrl->mru = mr_ctrl->head;
/* Point to the next victim, the oldest. */
mr_ctrl->head = (mr_ctrl->head + 1) % MLX4_MR_CACHE_N;
return lkey;
}
/**
* Bottom-half of LKey search on Rx.
*
* @param rxq
* Pointer to Rx queue structure.
* @param addr
* Search key.
*
* @return
* Searched LKey on success, UINT32_MAX on no match.
*/
uint32_t
mlx4_rx_addr2mr_bh(struct rxq *rxq, uintptr_t addr)
{
struct mlx4_mr_ctrl *mr_ctrl = &rxq->mr_ctrl;
struct priv *priv = rxq->priv;
DEBUG("Rx queue %u: miss on top-half, mru=%u, head=%u, addr=%p",
rxq->stats.idx, mr_ctrl->mru, mr_ctrl->head, (void *)addr);
return mlx4_mr_addr2mr_bh(priv->dev, mr_ctrl, addr);
}
/**
* Bottom-half of LKey search on Tx.
*
* @param txq
* Pointer to Tx queue structure.
* @param addr
* Search key.
*
* @return
* Searched LKey on success, UINT32_MAX on no match.
*/
uint32_t
mlx4_tx_addr2mr_bh(struct txq *txq, uintptr_t addr)
{
struct mlx4_mr_ctrl *mr_ctrl = &txq->mr_ctrl;
struct priv *priv = txq->priv;
DEBUG("Tx queue %u: miss on top-half, mru=%u, head=%u, addr=%p",
txq->stats.idx, mr_ctrl->mru, mr_ctrl->head, (void *)addr);
return mlx4_mr_addr2mr_bh(priv->dev, mr_ctrl, addr);
}
/**
* Flush all of the local cache entries.
*
* @param mr_ctrl
* Pointer to per-queue MR control structure.
*/
void
mlx4_mr_flush_local_cache(struct mlx4_mr_ctrl *mr_ctrl)
{
/* Reset the most-recently-used index. */
mr_ctrl->mru = 0;
/* Reset the linear search array. */
mr_ctrl->head = 0;
memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache));
/* Reset the B-tree table. */
mr_ctrl->cache_bh.len = 1;
mr_ctrl->cache_bh.overflow = 0;
/* Update the generation number. */
mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr;
DEBUG("mr_ctrl(%p): flushed, cur_gen=%d",
(void *)mr_ctrl, mr_ctrl->cur_gen);
}
/**
* Called during rte_mempool_mem_iter() by mlx4_mr_update_ext_mp().
*
* Externally allocated chunk is registered and a MR is created for the chunk.
* The MR object is added to the global list. If memseg list of a MR object
* (mr->msl) is null, the MR object can be regarded as externally allocated
* memory.
*
* Once external memory is registered, it should be static. If the memory is
* freed and the virtual address range has different physical memory mapped
* again, it may cause crash on device due to the wrong translation entry. PMD
* can't track the free event of the external memory for now.
*/
static void
mlx4_mr_update_ext_mp_cb(struct rte_mempool *mp, void *opaque,
struct rte_mempool_memhdr *memhdr,
unsigned mem_idx __rte_unused)
{
struct mr_update_mp_data *data = opaque;
struct rte_eth_dev *dev = data->dev;
struct priv *priv = dev->data->dev_private;
struct mlx4_mr_ctrl *mr_ctrl = data->mr_ctrl;
struct mlx4_mr *mr = NULL;
uintptr_t addr = (uintptr_t)memhdr->addr;
size_t len = memhdr->len;
struct mlx4_mr_cache entry;
uint32_t lkey;
/* If already registered, it should return. */
rte_rwlock_read_lock(&priv->mr.rwlock);
lkey = mr_lookup_dev(dev, &entry, addr);
rte_rwlock_read_unlock(&priv->mr.rwlock);
if (lkey != UINT32_MAX)
return;
mr = rte_zmalloc_socket(NULL,
RTE_ALIGN_CEIL(sizeof(*mr),
RTE_CACHE_LINE_SIZE),
RTE_CACHE_LINE_SIZE, mp->socket_id);
if (mr == NULL) {
WARN("port %u unable to allocate memory for a new MR of"
" mempool (%s).",
dev->data->port_id, mp->name);
data->ret = -1;
return;
}
DEBUG("port %u register MR for chunk #%d of mempool (%s)",
dev->data->port_id, mem_idx, mp->name);
mr->ibv_mr = mlx4_glue->reg_mr(priv->pd, (void *)addr, len,
IBV_ACCESS_LOCAL_WRITE);
if (mr->ibv_mr == NULL) {
WARN("port %u fail to create a verbs MR for address (%p)",
dev->data->port_id, (void *)addr);
rte_free(mr);
data->ret = -1;
return;
}
mr->msl = NULL; /* Mark it is external memory. */
mr->ms_bmp = NULL;
mr->ms_n = 1;
mr->ms_bmp_n = 1;
rte_rwlock_write_lock(&priv->mr.rwlock);
LIST_INSERT_HEAD(&priv->mr.mr_list, mr, mr);
DEBUG("port %u MR CREATED (%p) for external memory %p:\n"
" [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
" lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
dev->data->port_id, (void *)mr, (void *)addr,
addr, addr + len, rte_cpu_to_be_32(mr->ibv_mr->lkey),
mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
/* Insert to the global cache table. */
mr_insert_dev_cache(dev, mr);
rte_rwlock_write_unlock(&priv->mr.rwlock);
/* Insert to the local cache table */
mlx4_mr_addr2mr_bh(dev, mr_ctrl, addr);
}
/**
* Register MR for entire memory chunks in a Mempool having externally allocated
* memory and fill in local cache.
*
* @param dev
* Pointer to Ethernet device.
* @param mr_ctrl
* Pointer to per-queue MR control structure.
* @param mp
* Pointer to registering Mempool.
*
* @return
* 0 on success, -1 on failure.
*/
static uint32_t
mlx4_mr_update_ext_mp(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl,
struct rte_mempool *mp)
{
struct mr_update_mp_data data = {
.dev = dev,
.mr_ctrl = mr_ctrl,
.ret = 0,
};
rte_mempool_mem_iter(mp, mlx4_mr_update_ext_mp_cb, &data);
return data.ret;
}
/**
* Register MR entire memory chunks in a Mempool having externally allocated
* memory and search LKey of the address to return.
*
* @param dev
* Pointer to Ethernet device.
* @param addr
* Search key.
* @param mp
* Pointer to registering Mempool where addr belongs.
*
* @return
* LKey for address on success, UINT32_MAX on failure.
*/
uint32_t
mlx4_tx_update_ext_mp(struct txq *txq, uintptr_t addr, struct rte_mempool *mp)
{
struct mlx4_mr_ctrl *mr_ctrl = &txq->mr_ctrl;
struct priv *priv = txq->priv;
mlx4_mr_update_ext_mp(priv->dev, mr_ctrl, mp);
return mlx4_tx_addr2mr_bh(txq, addr);
}
/* Called during rte_mempool_mem_iter() by mlx4_mr_update_mp(). */
static void
mlx4_mr_update_mp_cb(struct rte_mempool *mp __rte_unused, void *opaque,
struct rte_mempool_memhdr *memhdr,
unsigned mem_idx __rte_unused)
{
struct mr_update_mp_data *data = opaque;
uint32_t lkey;
/* Stop iteration if failed in the previous walk. */
if (data->ret < 0)
return;
/* Register address of the chunk and update local caches. */
lkey = mlx4_mr_addr2mr_bh(data->dev, data->mr_ctrl,
(uintptr_t)memhdr->addr);
if (lkey == UINT32_MAX)
data->ret = -1;
}
/**
* Register entire memory chunks in a Mempool.
*
* @param dev
* Pointer to Ethernet device.
* @param mr_ctrl
* Pointer to per-queue MR control structure.
* @param mp
* Pointer to registering Mempool.
*
* @return
* 0 on success, -1 on failure.
*/
int
mlx4_mr_update_mp(struct rte_eth_dev *dev, struct mlx4_mr_ctrl *mr_ctrl,
struct rte_mempool *mp)
{
struct mr_update_mp_data data = {
.dev = dev,
.mr_ctrl = mr_ctrl,
.ret = 0,
};
rte_mempool_mem_iter(mp, mlx4_mr_update_mp_cb, &data);
if (data.ret < 0 && rte_errno == ENXIO) {
/* Mempool may have externally allocated memory. */
return mlx4_mr_update_ext_mp(dev, mr_ctrl, mp);
}
return data.ret;
}
#ifndef NDEBUG
/**
* Dump all the created MRs and the global cache entries.
*
* @param dev
* Pointer to Ethernet device.
*/
void
mlx4_mr_dump_dev(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
struct mlx4_mr *mr;
int mr_n = 0;
int chunk_n = 0;
rte_rwlock_read_lock(&priv->mr.rwlock);
/* Iterate all the existing MRs. */
LIST_FOREACH(mr, &priv->mr.mr_list, mr) {
unsigned int n;
DEBUG("port %u MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u",
dev->data->port_id, mr_n++,
rte_cpu_to_be_32(mr->ibv_mr->lkey),
mr->ms_n, mr->ms_bmp_n);
if (mr->ms_n == 0)
continue;
for (n = 0; n < mr->ms_bmp_n; ) {
struct mlx4_mr_cache ret = { 0, };
n = mr_find_next_chunk(mr, &ret, n);
if (!ret.end)
break;
DEBUG(" chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")",
chunk_n++, ret.start, ret.end);
}
}
DEBUG("port %u dumping global cache", dev->data->port_id);
mlx4_mr_btree_dump(&priv->mr.cache);
rte_rwlock_read_unlock(&priv->mr.rwlock);
}
#endif
/**
* Release all the created MRs and resources. Remove device from memory callback
* list.
*
* @param dev
* Pointer to Ethernet device.
*/
void
mlx4_mr_release(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
struct mlx4_mr *mr_next = LIST_FIRST(&priv->mr.mr_list);
/* Remove from memory callback device list. */
rte_rwlock_write_lock(&mlx4_mem_event_rwlock);
LIST_REMOVE(priv, mem_event_cb);
rte_rwlock_write_unlock(&mlx4_mem_event_rwlock);
#ifndef NDEBUG
mlx4_mr_dump_dev(dev);
#endif
rte_rwlock_write_lock(&priv->mr.rwlock);
/* Detach from MR list and move to free list. */
while (mr_next != NULL) {
struct mlx4_mr *mr = mr_next;
mr_next = LIST_NEXT(mr, mr);
LIST_REMOVE(mr, mr);
LIST_INSERT_HEAD(&priv->mr.mr_free_list, mr, mr);
}
LIST_INIT(&priv->mr.mr_list);
/* Free global cache. */
mlx4_mr_btree_free(&priv->mr.cache);
rte_rwlock_write_unlock(&priv->mr.rwlock);
/* Free all remaining MRs. */
mlx4_mr_garbage_collect(dev);
}
|