summaryrefslogtreecommitdiffstats
path: root/drivers/net/mlx4/mlx4_rxtx.c
blob: 05c4892074333fa74096f25747e4f99e3794b8a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
/*-
 *   BSD LICENSE
 *
 *   Copyright 2017 6WIND S.A.
 *   Copyright 2017 Mellanox
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of 6WIND S.A. nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/**
 * @file
 * Data plane functions for mlx4 driver.
 */

#include <assert.h>
#include <stdint.h>
#include <string.h>

/* Verbs headers do not support -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif

#include <rte_branch_prediction.h>
#include <rte_common.h>
#include <rte_io.h>
#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>

#include "mlx4.h"
#include "mlx4_prm.h"
#include "mlx4_rxtx.h"
#include "mlx4_utils.h"

#define WQE_ONE_DATA_SEG_SIZE \
	(sizeof(struct mlx4_wqe_ctrl_seg) + sizeof(struct mlx4_wqe_data_seg))

/**
 * Pointer-value pair structure used in tx_post_send for saving the first
 * DWORD (32 byte) of a TXBB.
 */
struct pv {
	volatile struct mlx4_wqe_data_seg *dseg;
	uint32_t val;
};

/** A table to translate Rx completion flags to packet type. */
uint32_t mlx4_ptype_table[0x100] __rte_cache_aligned = {
	/*
	 * The index to the array should have:
	 *  bit[7] - MLX4_CQE_L2_TUNNEL
	 *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
	 *  bit[5] - MLX4_CQE_STATUS_UDP
	 *  bit[4] - MLX4_CQE_STATUS_TCP
	 *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
	 *  bit[2] - MLX4_CQE_STATUS_IPV6
	 *  bit[1] - MLX4_CQE_STATUS_IPV4F
	 *  bit[0] - MLX4_CQE_STATUS_IPV4
	 * giving a total of up to 256 entries.
	 */
	[0x00] = RTE_PTYPE_L2_ETHER,
	[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_NONFRAG,
	[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_FRAG,
	[0x03] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_FRAG,
	[0x04] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
	[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT,
	[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
		     RTE_PTYPE_L4_FRAG,
	[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_TCP,
	[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_TCP,
	[0x14] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_L4_TCP,
	[0x18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
		     RTE_PTYPE_L4_TCP,
	[0x19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
		     RTE_PTYPE_L4_TCP,
	[0x1a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
		     RTE_PTYPE_L4_TCP,
	[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_UDP,
	[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_UDP,
	[0x24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_L4_UDP,
	[0x28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
		     RTE_PTYPE_L4_UDP,
	[0x29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
		     RTE_PTYPE_L4_UDP,
	[0x2a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
		     RTE_PTYPE_L4_UDP,
	/* Tunneled - L3 IPV6 */
	[0x80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
	[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
	[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG,
	[0x83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG,
	[0x84] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
	[0x88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT,
	[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT,
	[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG,
	/* Tunneled - L3 IPV6, TCP */
	[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP,
	[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG |
		     RTE_PTYPE_INNER_L4_TCP,
	[0x93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG |
		     RTE_PTYPE_INNER_L4_TCP,
	[0x94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP,
	[0x98] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_TCP,
	[0x99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_TCP,
	[0x9a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
		     RTE_PTYPE_INNER_L4_TCP,
	/* Tunneled - L3 IPV6, UDP */
	[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_UDP,
	[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG |
		     RTE_PTYPE_INNER_L4_UDP,
	[0xa3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG |
		     RTE_PTYPE_INNER_L4_UDP,
	[0xa4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_UDP,
	[0xa8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_UDP,
	[0xa9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_UDP,
	[0xaa] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
		     RTE_PTYPE_INNER_L4_UDP,
	/* Tunneled - L3 IPV4 */
	[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
	[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
	[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG,
	[0xc3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG,
	[0xc4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
	[0xc8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT,
	[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT,
	[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_FRAG,
	/* Tunneled - L3 IPV4, TCP */
	[0xd0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP,
	[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP,
	[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG |
		     RTE_PTYPE_INNER_L4_TCP,
	[0xd3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG |
		     RTE_PTYPE_INNER_L4_TCP,
	[0xd4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP,
	[0xd8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_TCP,
	[0xd9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT |
		     RTE_PTYPE_INNER_L4_TCP,
	[0xda] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
		     RTE_PTYPE_INNER_L4_TCP,
	/* Tunneled - L3 IPV4, UDP */
	[0xe0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_UDP,
	[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_UDP,
	[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG |
		     RTE_PTYPE_INNER_L4_UDP,
	[0xe3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG |
		     RTE_PTYPE_INNER_L4_UDP,
	[0xe4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_UDP,
	[0xe8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
	[0xe9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
	[0xea] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
		     RTE_PTYPE_INNER_L4_UDP,
};

/**
 * Stamp a WQE so it won't be reused by the HW.
 *
 * Routine is used when freeing WQE used by the chip or when failing
 * building an WQ entry has failed leaving partial information on the queue.
 *
 * @param sq
 *   Pointer to the SQ structure.
 * @param index
 *   Index of the freed WQE.
 * @param num_txbbs
 *   Number of blocks to stamp.
 *   If < 0 the routine will use the size written in the WQ entry.
 * @param owner
 *   The value of the WQE owner bit to use in the stamp.
 *
 * @return
 *   The number of Tx basic blocs (TXBB) the WQE contained.
 */
static int
mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, uint16_t index, uint8_t owner)
{
	uint32_t stamp = rte_cpu_to_be_32(MLX4_SQ_STAMP_VAL |
					  (!!owner << MLX4_SQ_STAMP_SHIFT));
	volatile uint8_t *wqe = mlx4_get_send_wqe(sq,
						(index & sq->txbb_cnt_mask));
	volatile uint32_t *ptr = (volatile uint32_t *)wqe;
	int i;
	int txbbs_size;
	int num_txbbs;

	/* Extract the size from the control segment of the WQE. */
	num_txbbs = MLX4_SIZE_TO_TXBBS((((volatile struct mlx4_wqe_ctrl_seg *)
					 wqe)->fence_size & 0x3f) << 4);
	txbbs_size = num_txbbs * MLX4_TXBB_SIZE;
	/* Optimize the common case when there is no wrap-around. */
	if (wqe + txbbs_size <= sq->eob) {
		/* Stamp the freed descriptor. */
		for (i = 0; i < txbbs_size; i += MLX4_SQ_STAMP_STRIDE) {
			*ptr = stamp;
			ptr += MLX4_SQ_STAMP_DWORDS;
		}
	} else {
		/* Stamp the freed descriptor. */
		for (i = 0; i < txbbs_size; i += MLX4_SQ_STAMP_STRIDE) {
			*ptr = stamp;
			ptr += MLX4_SQ_STAMP_DWORDS;
			if ((volatile uint8_t *)ptr >= sq->eob) {
				ptr = (volatile uint32_t *)sq->buf;
				stamp ^= RTE_BE32(0x80000000);
			}
		}
	}
	return num_txbbs;
}

/**
 * Manage Tx completions.
 *
 * When sending a burst, mlx4_tx_burst() posts several WRs.
 * To improve performance, a completion event is only required once every
 * MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
 * for other WRs, but this information would not be used anyway.
 *
 * @param txq
 *   Pointer to Tx queue structure.
 *
 * @return
 *   0 on success, -1 on failure.
 */
static int
mlx4_txq_complete(struct txq *txq, const unsigned int elts_n,
				  struct mlx4_sq *sq)
{
	unsigned int elts_comp = txq->elts_comp;
	unsigned int elts_tail = txq->elts_tail;
	unsigned int sq_tail = sq->tail;
	struct mlx4_cq *cq = &txq->mcq;
	volatile struct mlx4_cqe *cqe;
	uint32_t cons_index = cq->cons_index;
	uint16_t new_index;
	uint16_t nr_txbbs = 0;
	int pkts = 0;

	/*
	 * Traverse over all CQ entries reported and handle each WQ entry
	 * reported by them.
	 */
	do {
		cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cons_index);
		if (unlikely(!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
		    !!(cons_index & cq->cqe_cnt)))
			break;
		/*
		 * Make sure we read the CQE after we read the ownership bit.
		 */
		rte_io_rmb();
#ifndef NDEBUG
		if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
			     MLX4_CQE_OPCODE_ERROR)) {
			volatile struct mlx4_err_cqe *cqe_err =
				(volatile struct mlx4_err_cqe *)cqe;
			ERROR("%p CQE error - vendor syndrome: 0x%x"
			      " syndrome: 0x%x\n",
			      (void *)txq, cqe_err->vendor_err,
			      cqe_err->syndrome);
		}
#endif /* NDEBUG */
		/* Get WQE index reported in the CQE. */
		new_index =
			rte_be_to_cpu_16(cqe->wqe_index) & sq->txbb_cnt_mask;
		do {
			/* Free next descriptor. */
			sq_tail += nr_txbbs;
			nr_txbbs =
				mlx4_txq_stamp_freed_wqe(sq,
				     sq_tail & sq->txbb_cnt_mask,
				     !!(sq_tail & sq->txbb_cnt));
			pkts++;
		} while ((sq_tail & sq->txbb_cnt_mask) != new_index);
		cons_index++;
	} while (1);
	if (unlikely(pkts == 0))
		return 0;
	/* Update CQ. */
	cq->cons_index = cons_index;
	*cq->set_ci_db = rte_cpu_to_be_32(cq->cons_index & MLX4_CQ_DB_CI_MASK);
	sq->tail = sq_tail + nr_txbbs;
	/* Update the list of packets posted for transmission. */
	elts_comp -= pkts;
	assert(elts_comp <= txq->elts_comp);
	/*
	 * Assume completion status is successful as nothing can be done about
	 * it anyway.
	 */
	elts_tail += pkts;
	if (elts_tail >= elts_n)
		elts_tail -= elts_n;
	txq->elts_tail = elts_tail;
	txq->elts_comp = elts_comp;
	return 0;
}

/**
 * Get memory pool (MP) from mbuf. If mbuf is indirect, the pool from which
 * the cloned mbuf is allocated is returned instead.
 *
 * @param buf
 *   Pointer to mbuf.
 *
 * @return
 *   Memory pool where data is located for given mbuf.
 */
static struct rte_mempool *
mlx4_txq_mb2mp(struct rte_mbuf *buf)
{
	if (unlikely(RTE_MBUF_INDIRECT(buf)))
		return rte_mbuf_from_indirect(buf)->pool;
	return buf->pool;
}

static int
mlx4_tx_burst_segs(struct rte_mbuf *buf, struct txq *txq,
		   volatile struct mlx4_wqe_ctrl_seg **pctrl)
{
	int wqe_real_size;
	int nr_txbbs;
	struct pv *pv = (struct pv *)txq->bounce_buf;
	struct mlx4_sq *sq = &txq->msq;
	uint32_t head_idx = sq->head & sq->txbb_cnt_mask;
	volatile struct mlx4_wqe_ctrl_seg *ctrl;
	volatile struct mlx4_wqe_data_seg *dseg;
	struct rte_mbuf *sbuf;
	uint32_t lkey;
	uintptr_t addr;
	uint32_t byte_count;
	int pv_counter = 0;

	/* Calculate the needed work queue entry size for this packet. */
	wqe_real_size = sizeof(volatile struct mlx4_wqe_ctrl_seg) +
		buf->nb_segs * sizeof(volatile struct mlx4_wqe_data_seg);
	nr_txbbs = MLX4_SIZE_TO_TXBBS(wqe_real_size);
	/*
	 * Check that there is room for this WQE in the send queue and that
	 * the WQE size is legal.
	 */
	if (((sq->head - sq->tail) + nr_txbbs +
				sq->headroom_txbbs) >= sq->txbb_cnt ||
			nr_txbbs > MLX4_MAX_WQE_TXBBS) {
		return -1;
	}
	/* Get the control and data entries of the WQE. */
	ctrl = (volatile struct mlx4_wqe_ctrl_seg *)
			mlx4_get_send_wqe(sq, head_idx);
	dseg = (volatile struct mlx4_wqe_data_seg *)
			((uintptr_t)ctrl + sizeof(struct mlx4_wqe_ctrl_seg));
	*pctrl = ctrl;
	/* Fill the data segments with buffer information. */
	for (sbuf = buf; sbuf != NULL; sbuf = sbuf->next, dseg++) {
		addr = rte_pktmbuf_mtod(sbuf, uintptr_t);
		rte_prefetch0((volatile void *)addr);
		/* Handle WQE wraparound. */
		if (dseg >= (volatile struct mlx4_wqe_data_seg *)sq->eob)
			dseg = (volatile struct mlx4_wqe_data_seg *)sq->buf;
		dseg->addr = rte_cpu_to_be_64(addr);
		/* Memory region key (big endian) for this memory pool. */
		lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
		dseg->lkey = rte_cpu_to_be_32(lkey);
		/* Calculate the needed work queue entry size for this packet */
		if (unlikely(dseg->lkey == rte_cpu_to_be_32((uint32_t)-1))) {
			/* MR does not exist. */
			DEBUG("%p: unable to get MP <-> MR association",
					(void *)txq);
			/*
			 * Restamp entry in case of failure.
			 * Make sure that size is written correctly
			 * Note that we give ownership to the SW, not the HW.
			 */
			wqe_real_size = sizeof(struct mlx4_wqe_ctrl_seg) +
				buf->nb_segs * sizeof(struct mlx4_wqe_data_seg);
			ctrl->fence_size = (wqe_real_size >> 4) & 0x3f;
			mlx4_txq_stamp_freed_wqe(sq, head_idx,
					(sq->head & sq->txbb_cnt) ? 0 : 1);
			return -1;
		}
		if (likely(sbuf->data_len)) {
			byte_count = rte_cpu_to_be_32(sbuf->data_len);
		} else {
			/*
			 * Zero length segment is treated as inline segment
			 * with zero data.
			 */
			byte_count = RTE_BE32(0x80000000);
		}
		/*
		 * If the data segment is not at the beginning of a
		 * Tx basic block (TXBB) then write the byte count,
		 * else postpone the writing to just before updating the
		 * control segment.
		 */
		if ((uintptr_t)dseg & (uintptr_t)(MLX4_TXBB_SIZE - 1)) {
#if RTE_CACHE_LINE_SIZE < 64
			/*
			 * Need a barrier here before writing the byte_count
			 * fields to make sure that all the data is visible
			 * before the byte_count field is set.
			 * Otherwise, if the segment begins a new cacheline,
			 * the HCA prefetcher could grab the 64-byte chunk and
			 * get a valid (!= 0xffffffff) byte count but stale
			 * data, and end up sending the wrong data.
			 */
			rte_io_wmb();
#endif /* RTE_CACHE_LINE_SIZE */
			dseg->byte_count = byte_count;
		} else {
			/*
			 * This data segment starts at the beginning of a new
			 * TXBB, so we need to postpone its byte_count writing
			 * for later.
			 */
			pv[pv_counter].dseg = dseg;
			pv[pv_counter++].val = byte_count;
		}
	}
	/* Write the first DWORD of each TXBB save earlier. */
	if (pv_counter) {
		/* Need a barrier here before writing the byte_count. */
		rte_io_wmb();
		for (--pv_counter; pv_counter  >= 0; pv_counter--)
			pv[pv_counter].dseg->byte_count = pv[pv_counter].val;
	}
	/* Fill the control parameters for this packet. */
	ctrl->fence_size = (wqe_real_size >> 4) & 0x3f;
	return nr_txbbs;
}

/**
 * DPDK callback for Tx.
 *
 * @param dpdk_txq
 *   Generic pointer to Tx queue structure.
 * @param[in] pkts
 *   Packets to transmit.
 * @param pkts_n
 *   Number of packets in array.
 *
 * @return
 *   Number of packets successfully transmitted (<= pkts_n).
 */
uint16_t
mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
	struct txq *txq = (struct txq *)dpdk_txq;
	unsigned int elts_head = txq->elts_head;
	const unsigned int elts_n = txq->elts_n;
	unsigned int bytes_sent = 0;
	unsigned int i;
	unsigned int max;
	struct mlx4_sq *sq = &txq->msq;
	int nr_txbbs;

	assert(txq->elts_comp_cd != 0);
	if (likely(txq->elts_comp != 0))
		mlx4_txq_complete(txq, elts_n, sq);
	max = (elts_n - (elts_head - txq->elts_tail));
	if (max > elts_n)
		max -= elts_n;
	assert(max >= 1);
	assert(max <= elts_n);
	/* Always leave one free entry in the ring. */
	--max;
	if (max > pkts_n)
		max = pkts_n;
	for (i = 0; (i != max); ++i) {
		struct rte_mbuf *buf = pkts[i];
		unsigned int elts_head_next =
			(((elts_head + 1) == elts_n) ? 0 : elts_head + 1);
		struct txq_elt *elt_next = &(*txq->elts)[elts_head_next];
		struct txq_elt *elt = &(*txq->elts)[elts_head];
		uint32_t owner_opcode = MLX4_OPCODE_SEND;
		volatile struct mlx4_wqe_ctrl_seg *ctrl;
		volatile struct mlx4_wqe_data_seg *dseg;
		union {
			uint32_t flags;
			uint16_t flags16[2];
		} srcrb;
		uint32_t head_idx = sq->head & sq->txbb_cnt_mask;
		uint32_t lkey;
		uintptr_t addr;

		/* Clean up old buffer. */
		if (likely(elt->buf != NULL)) {
			struct rte_mbuf *tmp = elt->buf;

#ifndef NDEBUG
			/* Poisoning. */
			memset(elt, 0x66, sizeof(*elt));
#endif
			/* Faster than rte_pktmbuf_free(). */
			do {
				struct rte_mbuf *next = tmp->next;

				rte_pktmbuf_free_seg(tmp);
				tmp = next;
			} while (tmp != NULL);
		}
		RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
		if (buf->nb_segs == 1) {
			/*
			 * Check that there is room for this WQE in the send
			 * queue and that the WQE size is legal
			 */
			if (((sq->head - sq->tail) + 1 + sq->headroom_txbbs) >=
			     sq->txbb_cnt || 1 > MLX4_MAX_WQE_TXBBS) {
				elt->buf = NULL;
				break;
			}
			/* Get the control and data entries of the WQE. */
			ctrl = (volatile struct mlx4_wqe_ctrl_seg *)
					mlx4_get_send_wqe(sq, head_idx);
			dseg = (volatile struct mlx4_wqe_data_seg *)
					((uintptr_t)ctrl +
					sizeof(struct mlx4_wqe_ctrl_seg));
			addr = rte_pktmbuf_mtod(buf, uintptr_t);
			rte_prefetch0((volatile void *)addr);
			/* Handle WQE wraparound. */
			if (dseg >=
				(volatile struct mlx4_wqe_data_seg *)sq->eob)
				dseg = (volatile struct mlx4_wqe_data_seg *)
						sq->buf;
			dseg->addr = rte_cpu_to_be_64(addr);
			/* Memory region key (big endian). */
			lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(buf));
			dseg->lkey = rte_cpu_to_be_32(lkey);
			if (unlikely(dseg->lkey ==
				rte_cpu_to_be_32((uint32_t)-1))) {
				/* MR does not exist. */
				DEBUG("%p: unable to get MP <-> MR association",
				      (void *)txq);
				/*
				 * Restamp entry in case of failure.
				 * Make sure that size is written correctly
				 * Note that we give ownership to the SW,
				 * not the HW.
				 */
				ctrl->fence_size =
					(WQE_ONE_DATA_SEG_SIZE >> 4) & 0x3f;
				mlx4_txq_stamp_freed_wqe(sq, head_idx,
					     (sq->head & sq->txbb_cnt) ? 0 : 1);
				elt->buf = NULL;
				break;
			}
			/* Never be TXBB aligned, no need compiler barrier. */
			dseg->byte_count = rte_cpu_to_be_32(buf->data_len);
			/* Fill the control parameters for this packet. */
			ctrl->fence_size = (WQE_ONE_DATA_SEG_SIZE >> 4) & 0x3f;
			nr_txbbs = 1;
		} else {
			nr_txbbs = mlx4_tx_burst_segs(buf, txq, &ctrl);
			if (nr_txbbs < 0) {
				elt->buf = NULL;
				break;
			}
		}
		/*
		 * For raw Ethernet, the SOLICIT flag is used to indicate
		 * that no ICRC should be calculated.
		 */
		txq->elts_comp_cd -= nr_txbbs;
		if (unlikely(txq->elts_comp_cd <= 0)) {
			txq->elts_comp_cd = txq->elts_comp_cd_init;
			srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT |
					       MLX4_WQE_CTRL_CQ_UPDATE);
		} else {
			srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT);
		}
		/* Enable HW checksum offload if requested */
		if (txq->csum &&
		    (buf->ol_flags &
		     (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))) {
			const uint64_t is_tunneled = (buf->ol_flags &
						      (PKT_TX_TUNNEL_GRE |
						       PKT_TX_TUNNEL_VXLAN));

			if (is_tunneled && txq->csum_l2tun) {
				owner_opcode |= MLX4_WQE_CTRL_IIP_HDR_CSUM |
						MLX4_WQE_CTRL_IL4_HDR_CSUM;
				if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
					srcrb.flags |=
					    RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM);
			} else {
				srcrb.flags |=
					RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM |
						MLX4_WQE_CTRL_TCP_UDP_CSUM);
			}
		}
		if (txq->lb) {
			/*
			 * Copy destination MAC address to the WQE, this allows
			 * loopback in eSwitch, so that VFs and PF can
			 * communicate with each other.
			 */
			srcrb.flags16[0] = *(rte_pktmbuf_mtod(buf, uint16_t *));
			ctrl->imm = *(rte_pktmbuf_mtod_offset(buf, uint32_t *,
					      sizeof(uint16_t)));
		} else {
			ctrl->imm = 0;
		}
		ctrl->srcrb_flags = srcrb.flags;
		/*
		 * Make sure descriptor is fully written before
		 * setting ownership bit (because HW can start
		 * executing as soon as we do).
		 */
		rte_io_wmb();
		ctrl->owner_opcode = rte_cpu_to_be_32(owner_opcode |
					      ((sq->head & sq->txbb_cnt) ?
						       MLX4_BIT_WQE_OWN : 0));
		sq->head += nr_txbbs;
		elt->buf = buf;
		bytes_sent += buf->pkt_len;
		elts_head = elts_head_next;
	}
	/* Take a shortcut if nothing must be sent. */
	if (unlikely(i == 0))
		return 0;
	/* Increment send statistics counters. */
	txq->stats.opackets += i;
	txq->stats.obytes += bytes_sent;
	/* Make sure that descriptors are written before doorbell record. */
	rte_wmb();
	/* Ring QP doorbell. */
	rte_write32(txq->msq.doorbell_qpn, txq->msq.db);
	txq->elts_head = elts_head;
	txq->elts_comp += i;
	return i;
}

/**
 * Translate Rx completion flags to packet type.
 *
 * @param[in] cqe
 *   Pointer to CQE.
 *
 * @return
 *   Packet type for struct rte_mbuf.
 */
static inline uint32_t
rxq_cq_to_pkt_type(volatile struct mlx4_cqe *cqe,
		   uint32_t l2tun_offload)
{
	uint8_t idx = 0;
	uint32_t pinfo = rte_be_to_cpu_32(cqe->vlan_my_qpn);
	uint32_t status = rte_be_to_cpu_32(cqe->status);

	/*
	 * The index to the array should have:
	 *  bit[7] - MLX4_CQE_L2_TUNNEL
	 *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
	 */
	if (l2tun_offload && (pinfo & MLX4_CQE_L2_TUNNEL))
		idx |= ((pinfo & MLX4_CQE_L2_TUNNEL) >> 20) |
		       ((pinfo & MLX4_CQE_L2_TUNNEL_IPV4) >> 19);
	/*
	 * The index to the array should have:
	 *  bit[5] - MLX4_CQE_STATUS_UDP
	 *  bit[4] - MLX4_CQE_STATUS_TCP
	 *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
	 *  bit[2] - MLX4_CQE_STATUS_IPV6
	 *  bit[1] - MLX4_CQE_STATUS_IPV4F
	 *  bit[0] - MLX4_CQE_STATUS_IPV4
	 * giving a total of up to 256 entries.
	 */
	idx |= ((status & MLX4_CQE_STATUS_PTYPE_MASK) >> 22);
	return mlx4_ptype_table[idx];
}

/**
 * Translate Rx completion flags to offload flags.
 *
 * @param flags
 *   Rx completion flags returned by mlx4_cqe_flags().
 * @param csum
 *   Whether Rx checksums are enabled.
 * @param csum_l2tun
 *   Whether Rx L2 tunnel checksums are enabled.
 *
 * @return
 *   Offload flags (ol_flags) in mbuf format.
 */
static inline uint32_t
rxq_cq_to_ol_flags(uint32_t flags, int csum, int csum_l2tun)
{
	uint32_t ol_flags = 0;

	if (csum)
		ol_flags |=
			mlx4_transpose(flags,
				       MLX4_CQE_STATUS_IP_HDR_CSUM_OK,
				       PKT_RX_IP_CKSUM_GOOD) |
			mlx4_transpose(flags,
				       MLX4_CQE_STATUS_TCP_UDP_CSUM_OK,
				       PKT_RX_L4_CKSUM_GOOD);
	if ((flags & MLX4_CQE_L2_TUNNEL) && csum_l2tun)
		ol_flags |=
			mlx4_transpose(flags,
				       MLX4_CQE_L2_TUNNEL_IPOK,
				       PKT_RX_IP_CKSUM_GOOD) |
			mlx4_transpose(flags,
				       MLX4_CQE_L2_TUNNEL_L4_CSUM,
				       PKT_RX_L4_CKSUM_GOOD);
	return ol_flags;
}

/**
 * Extract checksum information from CQE flags.
 *
 * @param cqe
 *   Pointer to CQE structure.
 * @param csum
 *   Whether Rx checksums are enabled.
 * @param csum_l2tun
 *   Whether Rx L2 tunnel checksums are enabled.
 *
 * @return
 *   CQE checksum information.
 */
static inline uint32_t
mlx4_cqe_flags(volatile struct mlx4_cqe *cqe, int csum, int csum_l2tun)
{
	uint32_t flags = 0;

	/*
	 * The relevant bits are in different locations on their
	 * CQE fields therefore we can join them in one 32bit
	 * variable.
	 */
	if (csum)
		flags = (rte_be_to_cpu_32(cqe->status) &
			 MLX4_CQE_STATUS_IPV4_CSUM_OK);
	if (csum_l2tun)
		flags |= (rte_be_to_cpu_32(cqe->vlan_my_qpn) &
			  (MLX4_CQE_L2_TUNNEL |
			   MLX4_CQE_L2_TUNNEL_IPOK |
			   MLX4_CQE_L2_TUNNEL_L4_CSUM |
			   MLX4_CQE_L2_TUNNEL_IPV4));
	return flags;
}

/**
 * Poll one CQE from CQ.
 *
 * @param rxq
 *   Pointer to the receive queue structure.
 * @param[out] out
 *   Just polled CQE.
 *
 * @return
 *   Number of bytes of the CQE, 0 in case there is no completion.
 */
static unsigned int
mlx4_cq_poll_one(struct rxq *rxq, volatile struct mlx4_cqe **out)
{
	int ret = 0;
	volatile struct mlx4_cqe *cqe = NULL;
	struct mlx4_cq *cq = &rxq->mcq;

	cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cq->cons_index);
	if (!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
	    !!(cq->cons_index & cq->cqe_cnt))
		goto out;
	/*
	 * Make sure we read CQ entry contents after we've checked the
	 * ownership bit.
	 */
	rte_rmb();
	assert(!(cqe->owner_sr_opcode & MLX4_CQE_IS_SEND_MASK));
	assert((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) !=
	       MLX4_CQE_OPCODE_ERROR);
	ret = rte_be_to_cpu_32(cqe->byte_cnt);
	++cq->cons_index;
out:
	*out = cqe;
	return ret;
}

/**
 * DPDK callback for Rx with scattered packets support.
 *
 * @param dpdk_rxq
 *   Generic pointer to Rx queue structure.
 * @param[out] pkts
 *   Array to store received packets.
 * @param pkts_n
 *   Maximum number of packets in array.
 *
 * @return
 *   Number of packets successfully received (<= pkts_n).
 */
uint16_t
mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
	struct rxq *rxq = dpdk_rxq;
	const uint32_t wr_cnt = (1 << rxq->elts_n) - 1;
	const uint16_t sges_n = rxq->sges_n;
	struct rte_mbuf *pkt = NULL;
	struct rte_mbuf *seg = NULL;
	unsigned int i = 0;
	uint32_t rq_ci = rxq->rq_ci << sges_n;
	int len = 0;

	while (pkts_n) {
		volatile struct mlx4_cqe *cqe;
		uint32_t idx = rq_ci & wr_cnt;
		struct rte_mbuf *rep = (*rxq->elts)[idx];
		volatile struct mlx4_wqe_data_seg *scat = &(*rxq->wqes)[idx];

		/* Update the 'next' pointer of the previous segment. */
		if (pkt)
			seg->next = rep;
		seg = rep;
		rte_prefetch0(seg);
		rte_prefetch0(scat);
		rep = rte_mbuf_raw_alloc(rxq->mp);
		if (unlikely(rep == NULL)) {
			++rxq->stats.rx_nombuf;
			if (!pkt) {
				/*
				 * No buffers before we even started,
				 * bail out silently.
				 */
				break;
			}
			while (pkt != seg) {
				assert(pkt != (*rxq->elts)[idx]);
				rep = pkt->next;
				pkt->next = NULL;
				pkt->nb_segs = 1;
				rte_mbuf_raw_free(pkt);
				pkt = rep;
			}
			break;
		}
		if (!pkt) {
			/* Looking for the new packet. */
			len = mlx4_cq_poll_one(rxq, &cqe);
			if (!len) {
				rte_mbuf_raw_free(rep);
				break;
			}
			if (unlikely(len < 0)) {
				/* Rx error, packet is likely too large. */
				rte_mbuf_raw_free(rep);
				++rxq->stats.idropped;
				goto skip;
			}
			pkt = seg;
			/* Update packet information. */
			pkt->packet_type =
				rxq_cq_to_pkt_type(cqe, rxq->l2tun_offload);
			pkt->ol_flags = PKT_RX_RSS_HASH;
			pkt->hash.rss = cqe->immed_rss_invalid;
			pkt->pkt_len = len;
			if (rxq->csum | rxq->csum_l2tun) {
				uint32_t flags =
					mlx4_cqe_flags(cqe,
						       rxq->csum,
						       rxq->csum_l2tun);

				pkt->ol_flags =
					rxq_cq_to_ol_flags(flags,
							   rxq->csum,
							   rxq->csum_l2tun);
			}
		}
		rep->nb_segs = 1;
		rep->port = rxq->port_id;
		rep->data_len = seg->data_len;
		rep->data_off = seg->data_off;
		(*rxq->elts)[idx] = rep;
		/*
		 * Fill NIC descriptor with the new buffer. The lkey and size
		 * of the buffers are already known, only the buffer address
		 * changes.
		 */
		scat->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
		if (len > seg->data_len) {
			len -= seg->data_len;
			++pkt->nb_segs;
			++rq_ci;
			continue;
		}
		/* The last segment. */
		seg->data_len = len;
		/* Increment bytes counter. */
		rxq->stats.ibytes += pkt->pkt_len;
		/* Return packet. */
		*(pkts++) = pkt;
		pkt = NULL;
		--pkts_n;
		++i;
skip:
		/* Align consumer index to the next stride. */
		rq_ci >>= sges_n;
		++rq_ci;
		rq_ci <<= sges_n;
	}
	if (unlikely(i == 0 && (rq_ci >> sges_n) == rxq->rq_ci))
		return 0;
	/* Update the consumer index. */
	rxq->rq_ci = rq_ci >> sges_n;
	rte_wmb();
	*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
	*rxq->mcq.set_ci_db =
		rte_cpu_to_be_32(rxq->mcq.cons_index & MLX4_CQ_DB_CI_MASK);
	/* Increment packets counter. */
	rxq->stats.ipackets += i;
	return i;
}

/**
 * Dummy DPDK callback for Tx.
 *
 * This function is used to temporarily replace the real callback during
 * unsafe control operations on the queue, or in case of error.
 *
 * @param dpdk_txq
 *   Generic pointer to Tx queue structure.
 * @param[in] pkts
 *   Packets to transmit.
 * @param pkts_n
 *   Number of packets in array.
 *
 * @return
 *   Number of packets successfully transmitted (<= pkts_n).
 */
uint16_t
mlx4_tx_burst_removed(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
	(void)dpdk_txq;
	(void)pkts;
	(void)pkts_n;
	return 0;
}

/**
 * Dummy DPDK callback for Rx.
 *
 * This function is used to temporarily replace the real callback during
 * unsafe control operations on the queue, or in case of error.
 *
 * @param dpdk_rxq
 *   Generic pointer to Rx queue structure.
 * @param[out] pkts
 *   Array to store received packets.
 * @param pkts_n
 *   Maximum number of packets in array.
 *
 * @return
 *   Number of packets successfully received (<= pkts_n).
 */
uint16_t
mlx4_rx_burst_removed(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
	(void)dpdk_rxq;
	(void)pkts;
	(void)pkts_n;
	return 0;
}