summaryrefslogtreecommitdiffstats
path: root/drivers/net/mlx5/mlx5_rxtx.c
blob: 6eceea5fe0f9a86efc66faddc47fda323be12d72 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright 2015 6WIND S.A.
 * Copyright 2015 Mellanox Technologies, Ltd
 */

#include <assert.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>

/* Verbs header. */
/* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#include <infiniband/mlx5dv.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif

#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>
#include <rte_common.h>
#include <rte_branch_prediction.h>
#include <rte_ether.h>

#include "mlx5.h"
#include "mlx5_utils.h"
#include "mlx5_rxtx.h"
#include "mlx5_autoconf.h"
#include "mlx5_defs.h"
#include "mlx5_prm.h"

static __rte_always_inline uint32_t
rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);

static __rte_always_inline int
mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
		 uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe);

static __rte_always_inline uint32_t
rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);

static __rte_always_inline void
rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
	       volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res);

static __rte_always_inline void
mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx);

uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
	[0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
};

uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned;
uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned;

/**
 * Build a table to translate Rx completion flags to packet type.
 *
 * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
 */
void
mlx5_set_ptype_table(void)
{
	unsigned int i;
	uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;

	/* Last entry must not be overwritten, reserved for errored packet. */
	for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
		(*p)[i] = RTE_PTYPE_UNKNOWN;
	/*
	 * The index to the array should have:
	 * bit[1:0] = l3_hdr_type
	 * bit[4:2] = l4_hdr_type
	 * bit[5] = ip_frag
	 * bit[6] = tunneled
	 * bit[7] = outer_l3_type
	 */
	/* L2 */
	(*p)[0x00] = RTE_PTYPE_L2_ETHER;
	/* L3 */
	(*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_L4_NONFRAG;
	(*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_NONFRAG;
	/* Fragmented */
	(*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_L4_FRAG;
	(*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_FRAG;
	/* TCP */
	(*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_L4_TCP;
	(*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_TCP;
	(*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_L4_TCP;
	(*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_TCP;
	(*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_L4_TCP;
	(*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_TCP;
	/* UDP */
	(*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_L4_UDP;
	(*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_UDP;
	/* Repeat with outer_l3_type being set. Just in case. */
	(*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_L4_NONFRAG;
	(*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_NONFRAG;
	(*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_L4_FRAG;
	(*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_FRAG;
	(*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_L4_TCP;
	(*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_TCP;
	(*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_L4_TCP;
	(*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_TCP;
	(*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_L4_TCP;
	(*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_TCP;
	(*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_L4_UDP;
	(*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_L4_UDP;
	/* Tunneled - L3 */
	(*p)[0x40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
	(*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_NONFRAG;
	(*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_NONFRAG;
	(*p)[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
	(*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_NONFRAG;
	(*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_NONFRAG;
	/* Tunneled - Fragmented */
	(*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG;
	(*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG;
	(*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG;
	(*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_FRAG;
	/* Tunneled - TCP */
	(*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP;
	(*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP;
	(*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP;
	(*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP;
	(*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP;
	(*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP;
	(*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP;
	(*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP;
	(*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP;
	(*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP;
	(*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP;
	(*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_TCP;
	/* Tunneled - UDP */
	(*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_UDP;
	(*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_UDP;
	(*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_UDP;
	(*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
		     RTE_PTYPE_INNER_L4_UDP;
}

/**
 * Build a table to translate packet to checksum type of Verbs.
 */
void
mlx5_set_cksum_table(void)
{
	unsigned int i;
	uint8_t v;

	/*
	 * The index should have:
	 * bit[0] = PKT_TX_TCP_SEG
	 * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
	 * bit[4] = PKT_TX_IP_CKSUM
	 * bit[8] = PKT_TX_OUTER_IP_CKSUM
	 * bit[9] = tunnel
	 */
	for (i = 0; i < RTE_DIM(mlx5_cksum_table); ++i) {
		v = 0;
		if (i & (1 << 9)) {
			/* Tunneled packet. */
			if (i & (1 << 8)) /* Outer IP. */
				v |= MLX5_ETH_WQE_L3_CSUM;
			if (i & (1 << 4)) /* Inner IP. */
				v |= MLX5_ETH_WQE_L3_INNER_CSUM;
			if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
				v |= MLX5_ETH_WQE_L4_INNER_CSUM;
		} else {
			/* No tunnel. */
			if (i & (1 << 4)) /* IP. */
				v |= MLX5_ETH_WQE_L3_CSUM;
			if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
				v |= MLX5_ETH_WQE_L4_CSUM;
		}
		mlx5_cksum_table[i] = v;
	}
}

/**
 * Build a table to translate packet type of mbuf to SWP type of Verbs.
 */
void
mlx5_set_swp_types_table(void)
{
	unsigned int i;
	uint8_t v;

	/*
	 * The index should have:
	 * bit[0:1] = PKT_TX_L4_MASK
	 * bit[4] = PKT_TX_IPV6
	 * bit[8] = PKT_TX_OUTER_IPV6
	 * bit[9] = PKT_TX_OUTER_UDP
	 */
	for (i = 0; i < RTE_DIM(mlx5_swp_types_table); ++i) {
		v = 0;
		if (i & (1 << 8))
			v |= MLX5_ETH_WQE_L3_OUTER_IPV6;
		if (i & (1 << 9))
			v |= MLX5_ETH_WQE_L4_OUTER_UDP;
		if (i & (1 << 4))
			v |= MLX5_ETH_WQE_L3_INNER_IPV6;
		if ((i & 3) == (PKT_TX_UDP_CKSUM >> 52))
			v |= MLX5_ETH_WQE_L4_INNER_UDP;
		mlx5_swp_types_table[i] = v;
	}
}

/**
 * Return the size of tailroom of WQ.
 *
 * @param txq
 *   Pointer to TX queue structure.
 * @param addr
 *   Pointer to tail of WQ.
 *
 * @return
 *   Size of tailroom.
 */
static inline size_t
tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
{
	size_t tailroom;
	tailroom = (uintptr_t)(txq->wqes) +
		   (1 << txq->wqe_n) * MLX5_WQE_SIZE -
		   (uintptr_t)addr;
	return tailroom;
}

/**
 * Copy data to tailroom of circular queue.
 *
 * @param dst
 *   Pointer to destination.
 * @param src
 *   Pointer to source.
 * @param n
 *   Number of bytes to copy.
 * @param base
 *   Pointer to head of queue.
 * @param tailroom
 *   Size of tailroom from dst.
 *
 * @return
 *   Pointer after copied data.
 */
static inline void *
mlx5_copy_to_wq(void *dst, const void *src, size_t n,
		void *base, size_t tailroom)
{
	void *ret;

	if (n > tailroom) {
		rte_memcpy(dst, src, tailroom);
		rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
			   n - tailroom);
		ret = (uint8_t *)base + n - tailroom;
	} else {
		rte_memcpy(dst, src, n);
		ret = (n == tailroom) ? base : (uint8_t *)dst + n;
	}
	return ret;
}

/**
 * Inline TSO headers into WQE.
 *
 * @return
 *   0 on success, negative errno value on failure.
 */
static int
inline_tso(struct mlx5_txq_data *txq, struct rte_mbuf *buf,
	   uint32_t *length,
	   uintptr_t *addr,
	   uint16_t *pkt_inline_sz,
	   uint8_t **raw,
	   uint16_t *max_wqe,
	   uint16_t *tso_segsz,
	   uint16_t *tso_header_sz)
{
	uintptr_t end = (uintptr_t)(((uintptr_t)txq->wqes) +
				    (1 << txq->wqe_n) * MLX5_WQE_SIZE);
	unsigned int copy_b;
	uint8_t vlan_sz = (buf->ol_flags & PKT_TX_VLAN_PKT) ? 4 : 0;
	const uint8_t tunneled = txq->tunnel_en && (buf->ol_flags &
				 PKT_TX_TUNNEL_MASK);
	uint16_t n_wqe;

	*tso_segsz = buf->tso_segsz;
	*tso_header_sz = buf->l2_len + vlan_sz + buf->l3_len + buf->l4_len;
	if (unlikely(*tso_segsz == 0 || *tso_header_sz == 0)) {
		txq->stats.oerrors++;
		return -EINVAL;
	}
	if (tunneled)
		*tso_header_sz += buf->outer_l2_len + buf->outer_l3_len;
	/* First seg must contain all TSO headers. */
	if (unlikely(*tso_header_sz > MLX5_MAX_TSO_HEADER) ||
		     *tso_header_sz > DATA_LEN(buf)) {
		txq->stats.oerrors++;
		return -EINVAL;
	}
	copy_b = *tso_header_sz - *pkt_inline_sz;
	if (!copy_b || ((end - (uintptr_t)*raw) < copy_b))
		return -EAGAIN;
	n_wqe = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
	if (unlikely(*max_wqe < n_wqe))
		return -EINVAL;
	*max_wqe -= n_wqe;
	rte_memcpy((void *)*raw, (void *)*addr, copy_b);
	*length -= copy_b;
	*addr += copy_b;
	copy_b = MLX5_WQE_DS(copy_b) * MLX5_WQE_DWORD_SIZE;
	*pkt_inline_sz += copy_b;
	*raw += copy_b;
	return 0;
}

/**
 * DPDK callback to check the status of a tx descriptor.
 *
 * @param tx_queue
 *   The tx queue.
 * @param[in] offset
 *   The index of the descriptor in the ring.
 *
 * @return
 *   The status of the tx descriptor.
 */
int
mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
{
	struct mlx5_txq_data *txq = tx_queue;
	uint16_t used;

	mlx5_tx_complete(txq);
	used = txq->elts_head - txq->elts_tail;
	if (offset < used)
		return RTE_ETH_TX_DESC_FULL;
	return RTE_ETH_TX_DESC_DONE;
}

/**
 * Internal function to compute the number of used descriptors in an RX queue
 *
 * @param rxq
 *   The Rx queue.
 *
 * @return
 *   The number of used rx descriptor.
 */
static uint32_t
rx_queue_count(struct mlx5_rxq_data *rxq)
{
	struct rxq_zip *zip = &rxq->zip;
	volatile struct mlx5_cqe *cqe;
	const unsigned int cqe_n = (1 << rxq->cqe_n);
	const unsigned int cqe_cnt = cqe_n - 1;
	unsigned int cq_ci;
	unsigned int used;

	/* if we are processing a compressed cqe */
	if (zip->ai) {
		used = zip->cqe_cnt - zip->ca;
		cq_ci = zip->cq_ci;
	} else {
		used = 0;
		cq_ci = rxq->cq_ci;
	}
	cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
	while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
		int8_t op_own;
		unsigned int n;

		op_own = cqe->op_own;
		if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
			n = rte_be_to_cpu_32(cqe->byte_cnt);
		else
			n = 1;
		cq_ci += n;
		used += n;
		cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
	}
	used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
	return used;
}

/**
 * DPDK callback to check the status of a rx descriptor.
 *
 * @param rx_queue
 *   The Rx queue.
 * @param[in] offset
 *   The index of the descriptor in the ring.
 *
 * @return
 *   The status of the tx descriptor.
 */
int
mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
{
	struct mlx5_rxq_data *rxq = rx_queue;
	struct mlx5_rxq_ctrl *rxq_ctrl =
			container_of(rxq, struct mlx5_rxq_ctrl, rxq);
	struct rte_eth_dev *dev = ETH_DEV(rxq_ctrl->priv);

	if (dev->rx_pkt_burst != mlx5_rx_burst) {
		rte_errno = ENOTSUP;
		return -rte_errno;
	}
	if (offset >= (1 << rxq->elts_n)) {
		rte_errno = EINVAL;
		return -rte_errno;
	}
	if (offset < rx_queue_count(rxq))
		return RTE_ETH_RX_DESC_DONE;
	return RTE_ETH_RX_DESC_AVAIL;
}

/**
 * DPDK callback to get the number of used descriptors in a RX queue
 *
 * @param dev
 *   Pointer to the device structure.
 *
 * @param rx_queue_id
 *   The Rx queue.
 *
 * @return
 *   The number of used rx descriptor.
 *   -EINVAL if the queue is invalid
 */
uint32_t
mlx5_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
	struct priv *priv = dev->data->dev_private;
	struct mlx5_rxq_data *rxq;

	if (dev->rx_pkt_burst != mlx5_rx_burst) {
		rte_errno = ENOTSUP;
		return -rte_errno;
	}
	rxq = (*priv->rxqs)[rx_queue_id];
	if (!rxq) {
		rte_errno = EINVAL;
		return -rte_errno;
	}
	return rx_queue_count(rxq);
}

/**
 * DPDK callback for TX.
 *
 * @param dpdk_txq
 *   Generic pointer to TX queue structure.
 * @param[in] pkts
 *   Packets to transmit.
 * @param pkts_n
 *   Number of packets in array.
 *
 * @return
 *   Number of packets successfully transmitted (<= pkts_n).
 */
uint16_t
mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
	uint16_t elts_head = txq->elts_head;
	const uint16_t elts_n = 1 << txq->elts_n;
	const uint16_t elts_m = elts_n - 1;
	unsigned int i = 0;
	unsigned int j = 0;
	unsigned int k = 0;
	uint16_t max_elts;
	uint16_t max_wqe;
	unsigned int comp;
	volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
	unsigned int segs_n = 0;
	const unsigned int max_inline = txq->max_inline;
	uint64_t addr_64;

	if (unlikely(!pkts_n))
		return 0;
	/* Prefetch first packet cacheline. */
	rte_prefetch0(*pkts);
	/* Start processing. */
	mlx5_tx_complete(txq);
	max_elts = (elts_n - (elts_head - txq->elts_tail));
	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
	if (unlikely(!max_wqe))
		return 0;
	do {
		struct rte_mbuf *buf = *pkts; /* First_seg. */
		uint8_t *raw;
		volatile struct mlx5_wqe_v *wqe = NULL;
		volatile rte_v128u32_t *dseg = NULL;
		uint32_t length;
		unsigned int ds = 0;
		unsigned int sg = 0; /* counter of additional segs attached. */
		uintptr_t addr;
		uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
		uint16_t tso_header_sz = 0;
		uint16_t ehdr;
		uint8_t cs_flags;
		uint8_t tso = txq->tso_en && (buf->ol_flags & PKT_TX_TCP_SEG);
		uint32_t swp_offsets = 0;
		uint8_t swp_types = 0;
		rte_be32_t metadata;
		uint16_t tso_segsz = 0;
#ifdef MLX5_PMD_SOFT_COUNTERS
		uint32_t total_length = 0;
#endif
		int ret;

		segs_n = buf->nb_segs;
		/*
		 * Make sure there is enough room to store this packet and
		 * that one ring entry remains unused.
		 */
		assert(segs_n);
		if (max_elts < segs_n)
			break;
		max_elts -= segs_n;
		sg = --segs_n;
		if (unlikely(--max_wqe == 0))
			break;
		wqe = (volatile struct mlx5_wqe_v *)
			tx_mlx5_wqe(txq, txq->wqe_ci);
		rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
		if (pkts_n - i > 1)
			rte_prefetch0(*(pkts + 1));
		addr = rte_pktmbuf_mtod(buf, uintptr_t);
		length = DATA_LEN(buf);
		ehdr = (((uint8_t *)addr)[1] << 8) |
		       ((uint8_t *)addr)[0];
#ifdef MLX5_PMD_SOFT_COUNTERS
		total_length = length;
#endif
		if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
			txq->stats.oerrors++;
			break;
		}
		/* Update element. */
		(*txq->elts)[elts_head & elts_m] = buf;
		/* Prefetch next buffer data. */
		if (pkts_n - i > 1)
			rte_prefetch0(
			    rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
		cs_flags = txq_ol_cksum_to_cs(buf);
		txq_mbuf_to_swp(txq, buf, (uint8_t *)&swp_offsets, &swp_types);
		raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
		/* Copy metadata from mbuf if valid */
		metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
							     0;
		/* Replace the Ethernet type by the VLAN if necessary. */
		if (buf->ol_flags & PKT_TX_VLAN_PKT) {
			uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
							 buf->vlan_tci);
			unsigned int len = 2 * ETHER_ADDR_LEN - 2;

			addr += 2;
			length -= 2;
			/* Copy Destination and source mac address. */
			memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
			/* Copy VLAN. */
			memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
			/* Copy missing two bytes to end the DSeg. */
			memcpy((uint8_t *)raw + len + sizeof(vlan),
			       ((uint8_t *)addr) + len, 2);
			addr += len + 2;
			length -= (len + 2);
		} else {
			memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
			       MLX5_WQE_DWORD_SIZE);
			length -= pkt_inline_sz;
			addr += pkt_inline_sz;
		}
		raw += MLX5_WQE_DWORD_SIZE;
		if (tso) {
			ret = inline_tso(txq, buf, &length,
					 &addr, &pkt_inline_sz,
					 &raw, &max_wqe,
					 &tso_segsz, &tso_header_sz);
			if (ret == -EINVAL) {
				break;
			} else if (ret == -EAGAIN) {
				/* NOP WQE. */
				wqe->ctrl = (rte_v128u32_t){
					rte_cpu_to_be_32(txq->wqe_ci << 8),
					rte_cpu_to_be_32(txq->qp_num_8s | 1),
					0,
					0,
				};
				ds = 1;
#ifdef MLX5_PMD_SOFT_COUNTERS
				total_length = 0;
#endif
				k++;
				goto next_wqe;
			}
		}
		/* Inline if enough room. */
		if (max_inline || tso) {
			uint32_t inl = 0;
			uintptr_t end = (uintptr_t)
				(((uintptr_t)txq->wqes) +
				 (1 << txq->wqe_n) * MLX5_WQE_SIZE);
			unsigned int inline_room = max_inline *
						   RTE_CACHE_LINE_SIZE -
						   (pkt_inline_sz - 2) -
						   !!tso * sizeof(inl);
			uintptr_t addr_end;
			unsigned int copy_b;

pkt_inline:
			addr_end = RTE_ALIGN_FLOOR(addr + inline_room,
						   RTE_CACHE_LINE_SIZE);
			copy_b = (addr_end > addr) ?
				 RTE_MIN((addr_end - addr), length) : 0;
			if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
				/*
				 * One Dseg remains in the current WQE.  To
				 * keep the computation positive, it is
				 * removed after the bytes to Dseg conversion.
				 */
				uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;

				if (unlikely(max_wqe < n))
					break;
				max_wqe -= n;
				if (tso) {
					assert(inl == 0);
					inl = rte_cpu_to_be_32(copy_b |
							       MLX5_INLINE_SEG);
					rte_memcpy((void *)raw,
						   (void *)&inl, sizeof(inl));
					raw += sizeof(inl);
					pkt_inline_sz += sizeof(inl);
				}
				rte_memcpy((void *)raw, (void *)addr, copy_b);
				addr += copy_b;
				length -= copy_b;
				pkt_inline_sz += copy_b;
			}
			/*
			 * 2 DWORDs consumed by the WQE header + ETH segment +
			 * the size of the inline part of the packet.
			 */
			ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
			if (length > 0) {
				if (ds % (MLX5_WQE_SIZE /
					  MLX5_WQE_DWORD_SIZE) == 0) {
					if (unlikely(--max_wqe == 0))
						break;
					dseg = (volatile rte_v128u32_t *)
					       tx_mlx5_wqe(txq, txq->wqe_ci +
							   ds / 4);
				} else {
					dseg = (volatile rte_v128u32_t *)
						((uintptr_t)wqe +
						 (ds * MLX5_WQE_DWORD_SIZE));
				}
				goto use_dseg;
			} else if (!segs_n) {
				goto next_pkt;
			} else {
				/*
				 * Further inline the next segment only for
				 * non-TSO packets.
				 */
				if (!tso) {
					raw += copy_b;
					inline_room -= copy_b;
				} else {
					inline_room = 0;
				}
				/* Move to the next segment. */
				--segs_n;
				buf = buf->next;
				assert(buf);
				addr = rte_pktmbuf_mtod(buf, uintptr_t);
				length = DATA_LEN(buf);
#ifdef MLX5_PMD_SOFT_COUNTERS
				total_length += length;
#endif
				(*txq->elts)[++elts_head & elts_m] = buf;
				goto pkt_inline;
			}
		} else {
			/*
			 * No inline has been done in the packet, only the
			 * Ethernet Header as been stored.
			 */
			dseg = (volatile rte_v128u32_t *)
				((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
			ds = 3;
use_dseg:
			/* Add the remaining packet as a simple ds. */
			addr_64 = rte_cpu_to_be_64(addr);
			*dseg = (rte_v128u32_t){
				rte_cpu_to_be_32(length),
				mlx5_tx_mb2mr(txq, buf),
				addr_64,
				addr_64 >> 32,
			};
			++ds;
			if (!segs_n)
				goto next_pkt;
		}
next_seg:
		assert(buf);
		assert(ds);
		assert(wqe);
		/*
		 * Spill on next WQE when the current one does not have
		 * enough room left. Size of WQE must a be a multiple
		 * of data segment size.
		 */
		assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
		if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
			if (unlikely(--max_wqe == 0))
				break;
			dseg = (volatile rte_v128u32_t *)
			       tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
			rte_prefetch0(tx_mlx5_wqe(txq,
						  txq->wqe_ci + ds / 4 + 1));
		} else {
			++dseg;
		}
		++ds;
		buf = buf->next;
		assert(buf);
		length = DATA_LEN(buf);
#ifdef MLX5_PMD_SOFT_COUNTERS
		total_length += length;
#endif
		/* Store segment information. */
		addr_64 = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
		*dseg = (rte_v128u32_t){
			rte_cpu_to_be_32(length),
			mlx5_tx_mb2mr(txq, buf),
			addr_64,
			addr_64 >> 32,
		};
		(*txq->elts)[++elts_head & elts_m] = buf;
		if (--segs_n)
			goto next_seg;
next_pkt:
		if (ds > MLX5_DSEG_MAX) {
			txq->stats.oerrors++;
			break;
		}
		++elts_head;
		++pkts;
		++i;
		j += sg;
		/* Initialize known and common part of the WQE structure. */
		if (tso) {
			wqe->ctrl = (rte_v128u32_t){
				rte_cpu_to_be_32((txq->wqe_ci << 8) |
						 MLX5_OPCODE_TSO),
				rte_cpu_to_be_32(txq->qp_num_8s | ds),
				0,
				0,
			};
			wqe->eseg = (rte_v128u32_t){
				swp_offsets,
				cs_flags | (swp_types << 8) |
				(rte_cpu_to_be_16(tso_segsz) << 16),
				metadata,
				(ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
			};
		} else {
			wqe->ctrl = (rte_v128u32_t){
				rte_cpu_to_be_32((txq->wqe_ci << 8) |
						 MLX5_OPCODE_SEND),
				rte_cpu_to_be_32(txq->qp_num_8s | ds),
				0,
				0,
			};
			wqe->eseg = (rte_v128u32_t){
				swp_offsets,
				cs_flags | (swp_types << 8),
				metadata,
				(ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
			};
		}
next_wqe:
		txq->wqe_ci += (ds + 3) / 4;
		/* Save the last successful WQE for completion request */
		last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
#ifdef MLX5_PMD_SOFT_COUNTERS
		/* Increment sent bytes counter. */
		txq->stats.obytes += total_length;
#endif
	} while (i < pkts_n);
	/* Take a shortcut if nothing must be sent. */
	if (unlikely((i + k) == 0))
		return 0;
	txq->elts_head += (i + j);
	/* Check whether completion threshold has been reached. */
	comp = txq->elts_comp + i + j + k;
	if (comp >= MLX5_TX_COMP_THRESH) {
		/* A CQE slot must always be available. */
		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
		/* Request completion on last WQE. */
		last_wqe->ctrl2 = rte_cpu_to_be_32(8);
		/* Save elts_head in unused "immediate" field of WQE. */
		last_wqe->ctrl3 = txq->elts_head;
		txq->elts_comp = 0;
	} else {
		txq->elts_comp = comp;
	}
#ifdef MLX5_PMD_SOFT_COUNTERS
	/* Increment sent packets counter. */
	txq->stats.opackets += i;
#endif
	/* Ring QP doorbell. */
	mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
	return i;
}

/**
 * Open a MPW session.
 *
 * @param txq
 *   Pointer to TX queue structure.
 * @param mpw
 *   Pointer to MPW session structure.
 * @param length
 *   Packet length.
 */
static inline void
mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
{
	uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
	volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
		(volatile struct mlx5_wqe_data_seg (*)[])
		tx_mlx5_wqe(txq, idx + 1);

	mpw->state = MLX5_MPW_STATE_OPENED;
	mpw->pkts_n = 0;
	mpw->len = length;
	mpw->total_len = 0;
	mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
	mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
	mpw->wqe->eseg.inline_hdr_sz = 0;
	mpw->wqe->eseg.rsvd0 = 0;
	mpw->wqe->eseg.rsvd1 = 0;
	mpw->wqe->eseg.flow_table_metadata = 0;
	mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
					     (txq->wqe_ci << 8) |
					     MLX5_OPCODE_TSO);
	mpw->wqe->ctrl[2] = 0;
	mpw->wqe->ctrl[3] = 0;
	mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
		(((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
	mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
		(((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
	mpw->data.dseg[2] = &(*dseg)[0];
	mpw->data.dseg[3] = &(*dseg)[1];
	mpw->data.dseg[4] = &(*dseg)[2];
}

/**
 * Close a MPW session.
 *
 * @param txq
 *   Pointer to TX queue structure.
 * @param mpw
 *   Pointer to MPW session structure.
 */
static inline void
mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
{
	unsigned int num = mpw->pkts_n;

	/*
	 * Store size in multiple of 16 bytes. Control and Ethernet segments
	 * count as 2.
	 */
	mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
	mpw->state = MLX5_MPW_STATE_CLOSED;
	if (num < 3)
		++txq->wqe_ci;
	else
		txq->wqe_ci += 2;
	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
}

/**
 * DPDK callback for TX with MPW support.
 *
 * @param dpdk_txq
 *   Generic pointer to TX queue structure.
 * @param[in] pkts
 *   Packets to transmit.
 * @param pkts_n
 *   Number of packets in array.
 *
 * @return
 *   Number of packets successfully transmitted (<= pkts_n).
 */
uint16_t
mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
	uint16_t elts_head = txq->elts_head;
	const uint16_t elts_n = 1 << txq->elts_n;
	const uint16_t elts_m = elts_n - 1;
	unsigned int i = 0;
	unsigned int j = 0;
	uint16_t max_elts;
	uint16_t max_wqe;
	unsigned int comp;
	struct mlx5_mpw mpw = {
		.state = MLX5_MPW_STATE_CLOSED,
	};

	if (unlikely(!pkts_n))
		return 0;
	/* Prefetch first packet cacheline. */
	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
	/* Start processing. */
	mlx5_tx_complete(txq);
	max_elts = (elts_n - (elts_head - txq->elts_tail));
	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
	if (unlikely(!max_wqe))
		return 0;
	do {
		struct rte_mbuf *buf = *(pkts++);
		uint32_t length;
		unsigned int segs_n = buf->nb_segs;
		uint32_t cs_flags;
		rte_be32_t metadata;

		/*
		 * Make sure there is enough room to store this packet and
		 * that one ring entry remains unused.
		 */
		assert(segs_n);
		if (max_elts < segs_n)
			break;
		/* Do not bother with large packets MPW cannot handle. */
		if (segs_n > MLX5_MPW_DSEG_MAX) {
			txq->stats.oerrors++;
			break;
		}
		max_elts -= segs_n;
		--pkts_n;
		cs_flags = txq_ol_cksum_to_cs(buf);
		/* Copy metadata from mbuf if valid */
		metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
							     0;
		/* Retrieve packet information. */
		length = PKT_LEN(buf);
		assert(length);
		/* Start new session if packet differs. */
		if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
		    ((mpw.len != length) ||
		     (segs_n != 1) ||
		     (mpw.wqe->eseg.flow_table_metadata != metadata) ||
		     (mpw.wqe->eseg.cs_flags != cs_flags)))
			mlx5_mpw_close(txq, &mpw);
		if (mpw.state == MLX5_MPW_STATE_CLOSED) {
			/*
			 * Multi-Packet WQE consumes at most two WQE.
			 * mlx5_mpw_new() expects to be able to use such
			 * resources.
			 */
			if (unlikely(max_wqe < 2))
				break;
			max_wqe -= 2;
			mlx5_mpw_new(txq, &mpw, length);
			mpw.wqe->eseg.cs_flags = cs_flags;
			mpw.wqe->eseg.flow_table_metadata = metadata;
		}
		/* Multi-segment packets must be alone in their MPW. */
		assert((segs_n == 1) || (mpw.pkts_n == 0));
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
		length = 0;
#endif
		do {
			volatile struct mlx5_wqe_data_seg *dseg;
			uintptr_t addr;

			assert(buf);
			(*txq->elts)[elts_head++ & elts_m] = buf;
			dseg = mpw.data.dseg[mpw.pkts_n];
			addr = rte_pktmbuf_mtod(buf, uintptr_t);
			*dseg = (struct mlx5_wqe_data_seg){
				.byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
				.lkey = mlx5_tx_mb2mr(txq, buf),
				.addr = rte_cpu_to_be_64(addr),
			};
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
			length += DATA_LEN(buf);
#endif
			buf = buf->next;
			++mpw.pkts_n;
			++j;
		} while (--segs_n);
		assert(length == mpw.len);
		if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
			mlx5_mpw_close(txq, &mpw);
#ifdef MLX5_PMD_SOFT_COUNTERS
		/* Increment sent bytes counter. */
		txq->stats.obytes += length;
#endif
		++i;
	} while (pkts_n);
	/* Take a shortcut if nothing must be sent. */
	if (unlikely(i == 0))
		return 0;
	/* Check whether completion threshold has been reached. */
	/* "j" includes both packets and segments. */
	comp = txq->elts_comp + j;
	if (comp >= MLX5_TX_COMP_THRESH) {
		volatile struct mlx5_wqe *wqe = mpw.wqe;

		/* A CQE slot must always be available. */
		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
		/* Request completion on last WQE. */
		wqe->ctrl[2] = rte_cpu_to_be_32(8);
		/* Save elts_head in unused "immediate" field of WQE. */
		wqe->ctrl[3] = elts_head;
		txq->elts_comp = 0;
	} else {
		txq->elts_comp = comp;
	}
#ifdef MLX5_PMD_SOFT_COUNTERS
	/* Increment sent packets counter. */
	txq->stats.opackets += i;
#endif
	/* Ring QP doorbell. */
	if (mpw.state == MLX5_MPW_STATE_OPENED)
		mlx5_mpw_close(txq, &mpw);
	mlx5_tx_dbrec(txq, mpw.wqe);
	txq->elts_head = elts_head;
	return i;
}

/**
 * Open a MPW inline session.
 *
 * @param txq
 *   Pointer to TX queue structure.
 * @param mpw
 *   Pointer to MPW session structure.
 * @param length
 *   Packet length.
 */
static inline void
mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
		    uint32_t length)
{
	uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
	struct mlx5_wqe_inl_small *inl;

	mpw->state = MLX5_MPW_INL_STATE_OPENED;
	mpw->pkts_n = 0;
	mpw->len = length;
	mpw->total_len = 0;
	mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
	mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
					     (txq->wqe_ci << 8) |
					     MLX5_OPCODE_TSO);
	mpw->wqe->ctrl[2] = 0;
	mpw->wqe->ctrl[3] = 0;
	mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
	mpw->wqe->eseg.inline_hdr_sz = 0;
	mpw->wqe->eseg.cs_flags = 0;
	mpw->wqe->eseg.rsvd0 = 0;
	mpw->wqe->eseg.rsvd1 = 0;
	mpw->wqe->eseg.flow_table_metadata = 0;
	inl = (struct mlx5_wqe_inl_small *)
		(((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
	mpw->data.raw = (uint8_t *)&inl->raw;
}

/**
 * Close a MPW inline session.
 *
 * @param txq
 *   Pointer to TX queue structure.
 * @param mpw
 *   Pointer to MPW session structure.
 */
static inline void
mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
{
	unsigned int size;
	struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
		(((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));

	size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
	/*
	 * Store size in multiple of 16 bytes. Control and Ethernet segments
	 * count as 2.
	 */
	mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
					     MLX5_WQE_DS(size));
	mpw->state = MLX5_MPW_STATE_CLOSED;
	inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
	txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
}

/**
 * DPDK callback for TX with MPW inline support.
 *
 * @param dpdk_txq
 *   Generic pointer to TX queue structure.
 * @param[in] pkts
 *   Packets to transmit.
 * @param pkts_n
 *   Number of packets in array.
 *
 * @return
 *   Number of packets successfully transmitted (<= pkts_n).
 */
uint16_t
mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
			 uint16_t pkts_n)
{
	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
	uint16_t elts_head = txq->elts_head;
	const uint16_t elts_n = 1 << txq->elts_n;
	const uint16_t elts_m = elts_n - 1;
	unsigned int i = 0;
	unsigned int j = 0;
	uint16_t max_elts;
	uint16_t max_wqe;
	unsigned int comp;
	unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
	struct mlx5_mpw mpw = {
		.state = MLX5_MPW_STATE_CLOSED,
	};
	/*
	 * Compute the maximum number of WQE which can be consumed by inline
	 * code.
	 * - 2 DSEG for:
	 *   - 1 control segment,
	 *   - 1 Ethernet segment,
	 * - N Dseg from the inline request.
	 */
	const unsigned int wqe_inl_n =
		((2 * MLX5_WQE_DWORD_SIZE +
		  txq->max_inline * RTE_CACHE_LINE_SIZE) +
		 RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;

	if (unlikely(!pkts_n))
		return 0;
	/* Prefetch first packet cacheline. */
	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
	rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
	/* Start processing. */
	mlx5_tx_complete(txq);
	max_elts = (elts_n - (elts_head - txq->elts_tail));
	do {
		struct rte_mbuf *buf = *(pkts++);
		uintptr_t addr;
		uint32_t length;
		unsigned int segs_n = buf->nb_segs;
		uint8_t cs_flags;
		rte_be32_t metadata;

		/*
		 * Make sure there is enough room to store this packet and
		 * that one ring entry remains unused.
		 */
		assert(segs_n);
		if (max_elts < segs_n)
			break;
		/* Do not bother with large packets MPW cannot handle. */
		if (segs_n > MLX5_MPW_DSEG_MAX) {
			txq->stats.oerrors++;
			break;
		}
		max_elts -= segs_n;
		--pkts_n;
		/*
		 * Compute max_wqe in case less WQE were consumed in previous
		 * iteration.
		 */
		max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
		cs_flags = txq_ol_cksum_to_cs(buf);
		/* Copy metadata from mbuf if valid */
		metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
							     0;
		/* Retrieve packet information. */
		length = PKT_LEN(buf);
		/* Start new session if packet differs. */
		if (mpw.state == MLX5_MPW_STATE_OPENED) {
			if ((mpw.len != length) ||
			    (segs_n != 1) ||
			    (mpw.wqe->eseg.flow_table_metadata != metadata) ||
			    (mpw.wqe->eseg.cs_flags != cs_flags))
				mlx5_mpw_close(txq, &mpw);
		} else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
			if ((mpw.len != length) ||
			    (segs_n != 1) ||
			    (length > inline_room) ||
			    (mpw.wqe->eseg.flow_table_metadata != metadata) ||
			    (mpw.wqe->eseg.cs_flags != cs_flags)) {
				mlx5_mpw_inline_close(txq, &mpw);
				inline_room =
					txq->max_inline * RTE_CACHE_LINE_SIZE;
			}
		}
		if (mpw.state == MLX5_MPW_STATE_CLOSED) {
			if ((segs_n != 1) ||
			    (length > inline_room)) {
				/*
				 * Multi-Packet WQE consumes at most two WQE.
				 * mlx5_mpw_new() expects to be able to use
				 * such resources.
				 */
				if (unlikely(max_wqe < 2))
					break;
				max_wqe -= 2;
				mlx5_mpw_new(txq, &mpw, length);
				mpw.wqe->eseg.cs_flags = cs_flags;
				mpw.wqe->eseg.flow_table_metadata = metadata;
			} else {
				if (unlikely(max_wqe < wqe_inl_n))
					break;
				max_wqe -= wqe_inl_n;
				mlx5_mpw_inline_new(txq, &mpw, length);
				mpw.wqe->eseg.cs_flags = cs_flags;
				mpw.wqe->eseg.flow_table_metadata = metadata;
			}
		}
		/* Multi-segment packets must be alone in their MPW. */
		assert((segs_n == 1) || (mpw.pkts_n == 0));
		if (mpw.state == MLX5_MPW_STATE_OPENED) {
			assert(inline_room ==
			       txq->max_inline * RTE_CACHE_LINE_SIZE);
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
			length = 0;
#endif
			do {
				volatile struct mlx5_wqe_data_seg *dseg;

				assert(buf);
				(*txq->elts)[elts_head++ & elts_m] = buf;
				dseg = mpw.data.dseg[mpw.pkts_n];
				addr = rte_pktmbuf_mtod(buf, uintptr_t);
				*dseg = (struct mlx5_wqe_data_seg){
					.byte_count =
					       rte_cpu_to_be_32(DATA_LEN(buf)),
					.lkey = mlx5_tx_mb2mr(txq, buf),
					.addr = rte_cpu_to_be_64(addr),
				};
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
				length += DATA_LEN(buf);
#endif
				buf = buf->next;
				++mpw.pkts_n;
				++j;
			} while (--segs_n);
			assert(length == mpw.len);
			if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
				mlx5_mpw_close(txq, &mpw);
		} else {
			unsigned int max;

			assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
			assert(length <= inline_room);
			assert(length == DATA_LEN(buf));
			addr = rte_pktmbuf_mtod(buf, uintptr_t);
			(*txq->elts)[elts_head++ & elts_m] = buf;
			/* Maximum number of bytes before wrapping. */
			max = ((((uintptr_t)(txq->wqes)) +
				(1 << txq->wqe_n) *
				MLX5_WQE_SIZE) -
			       (uintptr_t)mpw.data.raw);
			if (length > max) {
				rte_memcpy((void *)(uintptr_t)mpw.data.raw,
					   (void *)addr,
					   max);
				mpw.data.raw = (volatile void *)txq->wqes;
				rte_memcpy((void *)(uintptr_t)mpw.data.raw,
					   (void *)(addr + max),
					   length - max);
				mpw.data.raw += length - max;
			} else {
				rte_memcpy((void *)(uintptr_t)mpw.data.raw,
					   (void *)addr,
					   length);

				if (length == max)
					mpw.data.raw =
						(volatile void *)txq->wqes;
				else
					mpw.data.raw += length;
			}
			++mpw.pkts_n;
			mpw.total_len += length;
			++j;
			if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
				mlx5_mpw_inline_close(txq, &mpw);
				inline_room =
					txq->max_inline * RTE_CACHE_LINE_SIZE;
			} else {
				inline_room -= length;
			}
		}
#ifdef MLX5_PMD_SOFT_COUNTERS
		/* Increment sent bytes counter. */
		txq->stats.obytes += length;
#endif
		++i;
	} while (pkts_n);
	/* Take a shortcut if nothing must be sent. */
	if (unlikely(i == 0))
		return 0;
	/* Check whether completion threshold has been reached. */
	/* "j" includes both packets and segments. */
	comp = txq->elts_comp + j;
	if (comp >= MLX5_TX_COMP_THRESH) {
		volatile struct mlx5_wqe *wqe = mpw.wqe;

		/* A CQE slot must always be available. */
		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
		/* Request completion on last WQE. */
		wqe->ctrl[2] = rte_cpu_to_be_32(8);
		/* Save elts_head in unused "immediate" field of WQE. */
		wqe->ctrl[3] = elts_head;
		txq->elts_comp = 0;
	} else {
		txq->elts_comp = comp;
	}
#ifdef MLX5_PMD_SOFT_COUNTERS
	/* Increment sent packets counter. */
	txq->stats.opackets += i;
#endif
	/* Ring QP doorbell. */
	if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
		mlx5_mpw_inline_close(txq, &mpw);
	else if (mpw.state == MLX5_MPW_STATE_OPENED)
		mlx5_mpw_close(txq, &mpw);
	mlx5_tx_dbrec(txq, mpw.wqe);
	txq->elts_head = elts_head;
	return i;
}

/**
 * Open an Enhanced MPW session.
 *
 * @param txq
 *   Pointer to TX queue structure.
 * @param mpw
 *   Pointer to MPW session structure.
 * @param length
 *   Packet length.
 */
static inline void
mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
{
	uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);

	mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
	mpw->pkts_n = 0;
	mpw->total_len = sizeof(struct mlx5_wqe);
	mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
	mpw->wqe->ctrl[0] =
		rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
				 (txq->wqe_ci << 8) |
				 MLX5_OPCODE_ENHANCED_MPSW);
	mpw->wqe->ctrl[2] = 0;
	mpw->wqe->ctrl[3] = 0;
	memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
	if (unlikely(padding)) {
		uintptr_t addr = (uintptr_t)(mpw->wqe + 1);

		/* Pad the first 2 DWORDs with zero-length inline header. */
		*(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
		*(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
			rte_cpu_to_be_32(MLX5_INLINE_SEG);
		mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
		/* Start from the next WQEBB. */
		mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
	} else {
		mpw->data.raw = (volatile void *)(mpw->wqe + 1);
	}
}

/**
 * Close an Enhanced MPW session.
 *
 * @param txq
 *   Pointer to TX queue structure.
 * @param mpw
 *   Pointer to MPW session structure.
 *
 * @return
 *   Number of consumed WQEs.
 */
static inline uint16_t
mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
{
	uint16_t ret;

	/* Store size in multiple of 16 bytes. Control and Ethernet segments
	 * count as 2.
	 */
	mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
					     MLX5_WQE_DS(mpw->total_len));
	mpw->state = MLX5_MPW_STATE_CLOSED;
	ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
	txq->wqe_ci += ret;
	return ret;
}

/**
 * TX with Enhanced MPW support.
 *
 * @param txq
 *   Pointer to TX queue structure.
 * @param[in] pkts
 *   Packets to transmit.
 * @param pkts_n
 *   Number of packets in array.
 *
 * @return
 *   Number of packets successfully transmitted (<= pkts_n).
 */
static inline uint16_t
txq_burst_empw(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
	       uint16_t pkts_n)
{
	uint16_t elts_head = txq->elts_head;
	const uint16_t elts_n = 1 << txq->elts_n;
	const uint16_t elts_m = elts_n - 1;
	unsigned int i = 0;
	unsigned int j = 0;
	uint16_t max_elts;
	uint16_t max_wqe;
	unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
	unsigned int mpw_room = 0;
	unsigned int inl_pad = 0;
	uint32_t inl_hdr;
	uint64_t addr_64;
	struct mlx5_mpw mpw = {
		.state = MLX5_MPW_STATE_CLOSED,
	};

	if (unlikely(!pkts_n))
		return 0;
	/* Start processing. */
	mlx5_tx_complete(txq);
	max_elts = (elts_n - (elts_head - txq->elts_tail));
	max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
	if (unlikely(!max_wqe))
		return 0;
	do {
		struct rte_mbuf *buf = *(pkts++);
		uintptr_t addr;
		unsigned int do_inline = 0; /* Whether inline is possible. */
		uint32_t length;
		uint8_t cs_flags;
		rte_be32_t metadata;

		/* Multi-segmented packet is handled in slow-path outside. */
		assert(NB_SEGS(buf) == 1);
		/* Make sure there is enough room to store this packet. */
		if (max_elts - j == 0)
			break;
		cs_flags = txq_ol_cksum_to_cs(buf);
		/* Copy metadata from mbuf if valid */
		metadata = buf->ol_flags & PKT_TX_METADATA ? buf->tx_metadata :
							     0;
		/* Retrieve packet information. */
		length = PKT_LEN(buf);
		/* Start new session if:
		 * - multi-segment packet
		 * - no space left even for a dseg
		 * - next packet can be inlined with a new WQE
		 * - cs_flag differs
		 */
		if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
			if ((inl_pad + sizeof(struct mlx5_wqe_data_seg) >
			     mpw_room) ||
			    (length <= txq->inline_max_packet_sz &&
			     inl_pad + sizeof(inl_hdr) + length >
			     mpw_room) ||
			     (mpw.wqe->eseg.flow_table_metadata != metadata) ||
			    (mpw.wqe->eseg.cs_flags != cs_flags))
				max_wqe -= mlx5_empw_close(txq, &mpw);
		}
		if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
			/* In Enhanced MPW, inline as much as the budget is
			 * allowed. The remaining space is to be filled with
			 * dsegs. If the title WQEBB isn't padded, it will have
			 * 2 dsegs there.
			 */
			mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
					   (max_inline ? max_inline :
					    pkts_n * MLX5_WQE_DWORD_SIZE) +
					   MLX5_WQE_SIZE);
			if (unlikely(max_wqe * MLX5_WQE_SIZE < mpw_room))
				break;
			/* Don't pad the title WQEBB to not waste WQ. */
			mlx5_empw_new(txq, &mpw, 0);
			mpw_room -= mpw.total_len;
			inl_pad = 0;
			do_inline = length <= txq->inline_max_packet_sz &&
				    sizeof(inl_hdr) + length <= mpw_room &&
				    !txq->mpw_hdr_dseg;
			mpw.wqe->eseg.cs_flags = cs_flags;
			mpw.wqe->eseg.flow_table_metadata = metadata;
		} else {
			/* Evaluate whether the next packet can be inlined.
			 * Inlininig is possible when:
			 * - length is less than configured value
			 * - length fits for remaining space
			 * - not required to fill the title WQEBB with dsegs
			 */
			do_inline =
				length <= txq->inline_max_packet_sz &&
				inl_pad + sizeof(inl_hdr) + length <=
				 mpw_room &&
				(!txq->mpw_hdr_dseg ||
				 mpw.total_len >= MLX5_WQE_SIZE);
		}
		if (max_inline && do_inline) {
			/* Inline packet into WQE. */
			unsigned int max;

			assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
			assert(length == DATA_LEN(buf));
			inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
			addr = rte_pktmbuf_mtod(buf, uintptr_t);
			mpw.data.raw = (volatile void *)
				((uintptr_t)mpw.data.raw + inl_pad);
			max = tx_mlx5_wq_tailroom(txq,
					(void *)(uintptr_t)mpw.data.raw);
			/* Copy inline header. */
			mpw.data.raw = (volatile void *)
				mlx5_copy_to_wq(
					  (void *)(uintptr_t)mpw.data.raw,
					  &inl_hdr,
					  sizeof(inl_hdr),
					  (void *)(uintptr_t)txq->wqes,
					  max);
			max = tx_mlx5_wq_tailroom(txq,
					(void *)(uintptr_t)mpw.data.raw);
			/* Copy packet data. */
			mpw.data.raw = (volatile void *)
				mlx5_copy_to_wq(
					  (void *)(uintptr_t)mpw.data.raw,
					  (void *)addr,
					  length,
					  (void *)(uintptr_t)txq->wqes,
					  max);
			++mpw.pkts_n;
			mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
			/* No need to get completion as the entire packet is
			 * copied to WQ. Free the buf right away.
			 */
			rte_pktmbuf_free_seg(buf);
			mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
			/* Add pad in the next packet if any. */
			inl_pad = (((uintptr_t)mpw.data.raw +
					(MLX5_WQE_DWORD_SIZE - 1)) &
					~(MLX5_WQE_DWORD_SIZE - 1)) -
				  (uintptr_t)mpw.data.raw;
		} else {
			/* No inline. Load a dseg of packet pointer. */
			volatile rte_v128u32_t *dseg;

			assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
			assert((inl_pad + sizeof(*dseg)) <= mpw_room);
			assert(length == DATA_LEN(buf));
			if (!tx_mlx5_wq_tailroom(txq,
					(void *)((uintptr_t)mpw.data.raw
						+ inl_pad)))
				dseg = (volatile void *)txq->wqes;
			else
				dseg = (volatile void *)
					((uintptr_t)mpw.data.raw +
					 inl_pad);
			(*txq->elts)[elts_head++ & elts_m] = buf;
			addr_64 = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf,
								    uintptr_t));
			*dseg = (rte_v128u32_t) {
				rte_cpu_to_be_32(length),
				mlx5_tx_mb2mr(txq, buf),
				addr_64,
				addr_64 >> 32,
			};
			mpw.data.raw = (volatile void *)(dseg + 1);
			mpw.total_len += (inl_pad + sizeof(*dseg));
			++j;
			++mpw.pkts_n;
			mpw_room -= (inl_pad + sizeof(*dseg));
			inl_pad = 0;
		}
#ifdef MLX5_PMD_SOFT_COUNTERS
		/* Increment sent bytes counter. */
		txq->stats.obytes += length;
#endif
		++i;
	} while (i < pkts_n);
	/* Take a shortcut if nothing must be sent. */
	if (unlikely(i == 0))
		return 0;
	/* Check whether completion threshold has been reached. */
	if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
			(uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
			 (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
		volatile struct mlx5_wqe *wqe = mpw.wqe;

		/* A CQE slot must always be available. */
		assert((1u << txq->cqe_n) - (txq->cq_pi++ - txq->cq_ci));
		/* Request completion on last WQE. */
		wqe->ctrl[2] = rte_cpu_to_be_32(8);
		/* Save elts_head in unused "immediate" field of WQE. */
		wqe->ctrl[3] = elts_head;
		txq->elts_comp = 0;
		txq->mpw_comp = txq->wqe_ci;
	} else {
		txq->elts_comp += j;
	}
#ifdef MLX5_PMD_SOFT_COUNTERS
	/* Increment sent packets counter. */
	txq->stats.opackets += i;
#endif
	if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
		mlx5_empw_close(txq, &mpw);
	/* Ring QP doorbell. */
	mlx5_tx_dbrec(txq, mpw.wqe);
	txq->elts_head = elts_head;
	return i;
}

/**
 * DPDK callback for TX with Enhanced MPW support.
 *
 * @param dpdk_txq
 *   Generic pointer to TX queue structure.
 * @param[in] pkts
 *   Packets to transmit.
 * @param pkts_n
 *   Number of packets in array.
 *
 * @return
 *   Number of packets successfully transmitted (<= pkts_n).
 */
uint16_t
mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
	struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
	uint16_t nb_tx = 0;

	while (pkts_n > nb_tx) {
		uint16_t n;
		uint16_t ret;

		n = txq_count_contig_multi_seg(&pkts[nb_tx], pkts_n - nb_tx);
		if (n) {
			ret = mlx5_tx_burst(dpdk_txq, &pkts[nb_tx], n);
			if (!ret)
				break;
			nb_tx += ret;
		}
		n = txq_count_contig_single_seg(&pkts[nb_tx], pkts_n - nb_tx);
		if (n) {
			ret = txq_burst_empw(txq, &pkts[nb_tx], n);
			if (!ret)
				break;
			nb_tx += ret;
		}
	}
	return nb_tx;
}

/**
 * Translate RX completion flags to packet type.
 *
 * @param[in] rxq
 *   Pointer to RX queue structure.
 * @param[in] cqe
 *   Pointer to CQE.
 *
 * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
 *
 * @return
 *   Packet type for struct rte_mbuf.
 */
static inline uint32_t
rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
{
	uint8_t idx;
	uint8_t pinfo = cqe->pkt_info;
	uint16_t ptype = cqe->hdr_type_etc;

	/*
	 * The index to the array should have:
	 * bit[1:0] = l3_hdr_type
	 * bit[4:2] = l4_hdr_type
	 * bit[5] = ip_frag
	 * bit[6] = tunneled
	 * bit[7] = outer_l3_type
	 */
	idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
	return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
}

/**
 * Get size of the next packet for a given CQE. For compressed CQEs, the
 * consumer index is updated only once all packets of the current one have
 * been processed.
 *
 * @param rxq
 *   Pointer to RX queue.
 * @param cqe
 *   CQE to process.
 * @param[out] mcqe
 *   Store pointer to mini-CQE if compressed. Otherwise, the pointer is not
 *   written.
 *
 * @return
 *   Packet size in bytes (0 if there is none), -1 in case of completion
 *   with error.
 */
static inline int
mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
		 uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe)
{
	struct rxq_zip *zip = &rxq->zip;
	uint16_t cqe_n = cqe_cnt + 1;
	int len = 0;
	uint16_t idx, end;

	/* Process compressed data in the CQE and mini arrays. */
	if (zip->ai) {
		volatile struct mlx5_mini_cqe8 (*mc)[8] =
			(volatile struct mlx5_mini_cqe8 (*)[8])
			(uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);

		len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
		*mcqe = &(*mc)[zip->ai & 7];
		if ((++zip->ai & 7) == 0) {
			/* Invalidate consumed CQEs */
			idx = zip->ca;
			end = zip->na;
			while (idx != end) {
				(*rxq->cqes)[idx & cqe_cnt].op_own =
					MLX5_CQE_INVALIDATE;
				++idx;
			}
			/*
			 * Increment consumer index to skip the number of
			 * CQEs consumed. Hardware leaves holes in the CQ
			 * ring for software use.
			 */
			zip->ca = zip->na;
			zip->na += 8;
		}
		if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
			/* Invalidate the rest */
			idx = zip->ca;
			end = zip->cq_ci;

			while (idx != end) {
				(*rxq->cqes)[idx & cqe_cnt].op_own =
					MLX5_CQE_INVALIDATE;
				++idx;
			}
			rxq->cq_ci = zip->cq_ci;
			zip->ai = 0;
		}
	/* No compressed data, get next CQE and verify if it is compressed. */
	} else {
		int ret;
		int8_t op_own;

		ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
		if (unlikely(ret == 1))
			return 0;
		++rxq->cq_ci;
		op_own = cqe->op_own;
		rte_cio_rmb();
		if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
			volatile struct mlx5_mini_cqe8 (*mc)[8] =
				(volatile struct mlx5_mini_cqe8 (*)[8])
				(uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
							  cqe_cnt].pkt_info);

			/* Fix endianness. */
			zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
			/*
			 * Current mini array position is the one returned by
			 * check_cqe64().
			 *
			 * If completion comprises several mini arrays, as a
			 * special case the second one is located 7 CQEs after
			 * the initial CQE instead of 8 for subsequent ones.
			 */
			zip->ca = rxq->cq_ci;
			zip->na = zip->ca + 7;
			/* Compute the next non compressed CQE. */
			--rxq->cq_ci;
			zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
			/* Get packet size to return. */
			len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
			*mcqe = &(*mc)[0];
			zip->ai = 1;
			/* Prefetch all the entries to be invalidated */
			idx = zip->ca;
			end = zip->cq_ci;
			while (idx != end) {
				rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
				++idx;
			}
		} else {
			len = rte_be_to_cpu_32(cqe->byte_cnt);
		}
		/* Error while receiving packet. */
		if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
			return -1;
	}
	return len;
}

/**
 * Translate RX completion flags to offload flags.
 *
 * @param[in] cqe
 *   Pointer to CQE.
 *
 * @return
 *   Offload flags (ol_flags) for struct rte_mbuf.
 */
static inline uint32_t
rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
{
	uint32_t ol_flags = 0;
	uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);

	ol_flags =
		TRANSPOSE(flags,
			  MLX5_CQE_RX_L3_HDR_VALID,
			  PKT_RX_IP_CKSUM_GOOD) |
		TRANSPOSE(flags,
			  MLX5_CQE_RX_L4_HDR_VALID,
			  PKT_RX_L4_CKSUM_GOOD);
	return ol_flags;
}

/**
 * Fill in mbuf fields from RX completion flags.
 * Note that pkt->ol_flags should be initialized outside of this function.
 *
 * @param rxq
 *   Pointer to RX queue.
 * @param pkt
 *   mbuf to fill.
 * @param cqe
 *   CQE to process.
 * @param rss_hash_res
 *   Packet RSS Hash result.
 */
static inline void
rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
	       volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res)
{
	/* Update packet information. */
	pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe);
	if (rss_hash_res && rxq->rss_hash) {
		pkt->hash.rss = rss_hash_res;
		pkt->ol_flags |= PKT_RX_RSS_HASH;
	}
	if (rxq->mark && MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
		pkt->ol_flags |= PKT_RX_FDIR;
		if (cqe->sop_drop_qpn !=
		    rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
			uint32_t mark = cqe->sop_drop_qpn;

			pkt->ol_flags |= PKT_RX_FDIR_ID;
			pkt->hash.fdir.hi = mlx5_flow_mark_get(mark);
		}
	}
	if (rxq->csum)
		pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
	if (rxq->vlan_strip &&
	    (cqe->hdr_type_etc & rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
		pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
		pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);
	}
	if (rxq->hw_timestamp) {
		pkt->timestamp = rte_be_to_cpu_64(cqe->timestamp);
		pkt->ol_flags |= PKT_RX_TIMESTAMP;
	}
}

/**
 * DPDK callback for RX.
 *
 * @param dpdk_rxq
 *   Generic pointer to RX queue structure.
 * @param[out] pkts
 *   Array to store received packets.
 * @param pkts_n
 *   Maximum number of packets in array.
 *
 * @return
 *   Number of packets successfully received (<= pkts_n).
 */
uint16_t
mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
	struct mlx5_rxq_data *rxq = dpdk_rxq;
	const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
	const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
	const unsigned int sges_n = rxq->sges_n;
	struct rte_mbuf *pkt = NULL;
	struct rte_mbuf *seg = NULL;
	volatile struct mlx5_cqe *cqe =
		&(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
	unsigned int i = 0;
	unsigned int rq_ci = rxq->rq_ci << sges_n;
	int len = 0; /* keep its value across iterations. */

	while (pkts_n) {
		unsigned int idx = rq_ci & wqe_cnt;
		volatile struct mlx5_wqe_data_seg *wqe =
			&((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx];
		struct rte_mbuf *rep = (*rxq->elts)[idx];
		volatile struct mlx5_mini_cqe8 *mcqe = NULL;
		uint32_t rss_hash_res;

		if (pkt)
			NEXT(seg) = rep;
		seg = rep;
		rte_prefetch0(seg);
		rte_prefetch0(cqe);
		rte_prefetch0(wqe);
		rep = rte_mbuf_raw_alloc(rxq->mp);
		if (unlikely(rep == NULL)) {
			++rxq->stats.rx_nombuf;
			if (!pkt) {
				/*
				 * no buffers before we even started,
				 * bail out silently.
				 */
				break;
			}
			while (pkt != seg) {
				assert(pkt != (*rxq->elts)[idx]);
				rep = NEXT(pkt);
				NEXT(pkt) = NULL;
				NB_SEGS(pkt) = 1;
				rte_mbuf_raw_free(pkt);
				pkt = rep;
			}
			break;
		}
		if (!pkt) {
			cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
			len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt, &mcqe);
			if (!len) {
				rte_mbuf_raw_free(rep);
				break;
			}
			if (unlikely(len == -1)) {
				/* RX error, packet is likely too large. */
				rte_mbuf_raw_free(rep);
				++rxq->stats.idropped;
				goto skip;
			}
			pkt = seg;
			assert(len >= (rxq->crc_present << 2));
			pkt->ol_flags = 0;
			/* If compressed, take hash result from mini-CQE. */
			rss_hash_res = rte_be_to_cpu_32(mcqe == NULL ?
							cqe->rx_hash_res :
							mcqe->rx_hash_result);
			rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
			if (rxq->crc_present)
				len -= ETHER_CRC_LEN;
			PKT_LEN(pkt) = len;
		}
		DATA_LEN(rep) = DATA_LEN(seg);
		PKT_LEN(rep) = PKT_LEN(seg);
		SET_DATA_OFF(rep, DATA_OFF(seg));
		PORT(rep) = PORT(seg);
		(*rxq->elts)[idx] = rep;
		/*
		 * Fill NIC descriptor with the new buffer.  The lkey and size
		 * of the buffers are already known, only the buffer address
		 * changes.
		 */
		wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
		/* If there's only one MR, no need to replace LKey in WQE. */
		if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
			wqe->lkey = mlx5_rx_mb2mr(rxq, rep);
		if (len > DATA_LEN(seg)) {
			len -= DATA_LEN(seg);
			++NB_SEGS(pkt);
			++rq_ci;
			continue;
		}
		DATA_LEN(seg) = len;
#ifdef MLX5_PMD_SOFT_COUNTERS
		/* Increment bytes counter. */
		rxq->stats.ibytes += PKT_LEN(pkt);
#endif
		/* Return packet. */
		*(pkts++) = pkt;
		pkt = NULL;
		--pkts_n;
		++i;
skip:
		/* Align consumer index to the next stride. */
		rq_ci >>= sges_n;
		++rq_ci;
		rq_ci <<= sges_n;
	}
	if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
		return 0;
	/* Update the consumer index. */
	rxq->rq_ci = rq_ci >> sges_n;
	rte_cio_wmb();
	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
	rte_cio_wmb();
	*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
#ifdef MLX5_PMD_SOFT_COUNTERS
	/* Increment packets counter. */
	rxq->stats.ipackets += i;
#endif
	return i;
}

void
mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
{
	struct mlx5_mprq_buf *buf = opaque;

	if (rte_atomic16_read(&buf->refcnt) == 1) {
		rte_mempool_put(buf->mp, buf);
	} else if (rte_atomic16_add_return(&buf->refcnt, -1) == 0) {
		rte_atomic16_set(&buf->refcnt, 1);
		rte_mempool_put(buf->mp, buf);
	}
}

void
mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf)
{
	mlx5_mprq_buf_free_cb(NULL, buf);
}

static inline void
mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx)
{
	struct mlx5_mprq_buf *rep = rxq->mprq_repl;
	volatile struct mlx5_wqe_data_seg *wqe =
		&((volatile struct mlx5_wqe_mprq *)rxq->wqes)[rq_idx].dseg;
	void *addr;

	assert(rep != NULL);
	/* Replace MPRQ buf. */
	(*rxq->mprq_bufs)[rq_idx] = rep;
	/* Replace WQE. */
	addr = mlx5_mprq_buf_addr(rep);
	wqe->addr = rte_cpu_to_be_64((uintptr_t)addr);
	/* If there's only one MR, no need to replace LKey in WQE. */
	if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
		wqe->lkey = mlx5_rx_addr2mr(rxq, (uintptr_t)addr);
	/* Stash a mbuf for next replacement. */
	if (likely(!rte_mempool_get(rxq->mprq_mp, (void **)&rep)))
		rxq->mprq_repl = rep;
	else
		rxq->mprq_repl = NULL;
}

/**
 * DPDK callback for RX with Multi-Packet RQ support.
 *
 * @param dpdk_rxq
 *   Generic pointer to RX queue structure.
 * @param[out] pkts
 *   Array to store received packets.
 * @param pkts_n
 *   Maximum number of packets in array.
 *
 * @return
 *   Number of packets successfully received (<= pkts_n).
 */
uint16_t
mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
	struct mlx5_rxq_data *rxq = dpdk_rxq;
	const unsigned int strd_n = 1 << rxq->strd_num_n;
	const unsigned int strd_sz = 1 << rxq->strd_sz_n;
	const unsigned int strd_shift =
		MLX5_MPRQ_STRIDE_SHIFT_BYTE * rxq->strd_shift_en;
	const unsigned int cq_mask = (1 << rxq->cqe_n) - 1;
	const unsigned int wq_mask = (1 << rxq->elts_n) - 1;
	volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
	unsigned int i = 0;
	uint32_t rq_ci = rxq->rq_ci;
	uint16_t consumed_strd = rxq->consumed_strd;
	struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];

	while (i < pkts_n) {
		struct rte_mbuf *pkt;
		void *addr;
		int ret;
		unsigned int len;
		uint16_t strd_cnt;
		uint16_t strd_idx;
		uint32_t offset;
		uint32_t byte_cnt;
		volatile struct mlx5_mini_cqe8 *mcqe = NULL;
		uint32_t rss_hash_res = 0;

		if (consumed_strd == strd_n) {
			/* Replace WQE only if the buffer is still in use. */
			if (rte_atomic16_read(&buf->refcnt) > 1) {
				mprq_buf_replace(rxq, rq_ci & wq_mask);
				/* Release the old buffer. */
				mlx5_mprq_buf_free(buf);
			} else if (unlikely(rxq->mprq_repl == NULL)) {
				struct mlx5_mprq_buf *rep;

				/*
				 * Currently, the MPRQ mempool is out of buffer
				 * and doing memcpy regardless of the size of Rx
				 * packet. Retry allocation to get back to
				 * normal.
				 */
				if (!rte_mempool_get(rxq->mprq_mp,
						     (void **)&rep))
					rxq->mprq_repl = rep;
			}
			/* Advance to the next WQE. */
			consumed_strd = 0;
			++rq_ci;
			buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
		}
		cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
		ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &mcqe);
		if (!ret)
			break;
		if (unlikely(ret == -1)) {
			/* RX error, packet is likely too large. */
			++rxq->stats.idropped;
			continue;
		}
		byte_cnt = ret;
		strd_cnt = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >>
			   MLX5_MPRQ_STRIDE_NUM_SHIFT;
		assert(strd_cnt);
		consumed_strd += strd_cnt;
		if (byte_cnt & MLX5_MPRQ_FILLER_MASK)
			continue;
		if (mcqe == NULL) {
			rss_hash_res = rte_be_to_cpu_32(cqe->rx_hash_res);
			strd_idx = rte_be_to_cpu_16(cqe->wqe_counter);
		} else {
			/* mini-CQE for MPRQ doesn't have hash result. */
			strd_idx = rte_be_to_cpu_16(mcqe->stride_idx);
		}
		assert(strd_idx < strd_n);
		assert(!((rte_be_to_cpu_16(cqe->wqe_id) ^ rq_ci) & wq_mask));
		/*
		 * Currently configured to receive a packet per a stride. But if
		 * MTU is adjusted through kernel interface, device could
		 * consume multiple strides without raising an error. In this
		 * case, the packet should be dropped because it is bigger than
		 * the max_rx_pkt_len.
		 */
		if (unlikely(strd_cnt > 1)) {
			++rxq->stats.idropped;
			continue;
		}
		pkt = rte_pktmbuf_alloc(rxq->mp);
		if (unlikely(pkt == NULL)) {
			++rxq->stats.rx_nombuf;
			break;
		}
		len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
		assert((int)len >= (rxq->crc_present << 2));
		if (rxq->crc_present)
			len -= ETHER_CRC_LEN;
		offset = strd_idx * strd_sz + strd_shift;
		addr = RTE_PTR_ADD(mlx5_mprq_buf_addr(buf), offset);
		/* Initialize the offload flag. */
		pkt->ol_flags = 0;
		/*
		 * Memcpy packets to the target mbuf if:
		 * - The size of packet is smaller than mprq_max_memcpy_len.
		 * - Out of buffer in the Mempool for Multi-Packet RQ.
		 */
		if (len <= rxq->mprq_max_memcpy_len || rxq->mprq_repl == NULL) {
			/*
			 * When memcpy'ing packet due to out-of-buffer, the
			 * packet must be smaller than the target mbuf.
			 */
			if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
				rte_pktmbuf_free_seg(pkt);
				++rxq->stats.idropped;
				continue;
			}
			rte_memcpy(rte_pktmbuf_mtod(pkt, void *), addr, len);
		} else {
			rte_iova_t buf_iova;
			struct rte_mbuf_ext_shared_info *shinfo;
			uint16_t buf_len = strd_cnt * strd_sz;

			/* Increment the refcnt of the whole chunk. */
			rte_atomic16_add_return(&buf->refcnt, 1);
			assert((uint16_t)rte_atomic16_read(&buf->refcnt) <=
			       strd_n + 1);
			addr = RTE_PTR_SUB(addr, RTE_PKTMBUF_HEADROOM);
			/*
			 * MLX5 device doesn't use iova but it is necessary in a
			 * case where the Rx packet is transmitted via a
			 * different PMD.
			 */
			buf_iova = rte_mempool_virt2iova(buf) +
				   RTE_PTR_DIFF(addr, buf);
			shinfo = rte_pktmbuf_ext_shinfo_init_helper(addr,
					&buf_len, mlx5_mprq_buf_free_cb, buf);
			/*
			 * EXT_ATTACHED_MBUF will be set to pkt->ol_flags when
			 * attaching the stride to mbuf and more offload flags
			 * will be added below by calling rxq_cq_to_mbuf().
			 * Other fields will be overwritten.
			 */
			rte_pktmbuf_attach_extbuf(pkt, addr, buf_iova, buf_len,
						  shinfo);
			rte_pktmbuf_reset_headroom(pkt);
			assert(pkt->ol_flags == EXT_ATTACHED_MBUF);
			/*
			 * Prevent potential overflow due to MTU change through
			 * kernel interface.
			 */
			if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
				rte_pktmbuf_free_seg(pkt);
				++rxq->stats.idropped;
				continue;
			}
		}
		rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
		PKT_LEN(pkt) = len;
		DATA_LEN(pkt) = len;
		PORT(pkt) = rxq->port_id;
#ifdef MLX5_PMD_SOFT_COUNTERS
		/* Increment bytes counter. */
		rxq->stats.ibytes += PKT_LEN(pkt);
#endif
		/* Return packet. */
		*(pkts++) = pkt;
		++i;
	}
	/* Update the consumer indexes. */
	rxq->consumed_strd = consumed_strd;
	rte_cio_wmb();
	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
	if (rq_ci != rxq->rq_ci) {
		rxq->rq_ci = rq_ci;
		rte_cio_wmb();
		*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
	}
#ifdef MLX5_PMD_SOFT_COUNTERS
	/* Increment packets counter. */
	rxq->stats.ipackets += i;
#endif
	return i;
}

/**
 * Dummy DPDK callback for TX.
 *
 * This function is used to temporarily replace the real callback during
 * unsafe control operations on the queue, or in case of error.
 *
 * @param dpdk_txq
 *   Generic pointer to TX queue structure.
 * @param[in] pkts
 *   Packets to transmit.
 * @param pkts_n
 *   Number of packets in array.
 *
 * @return
 *   Number of packets successfully transmitted (<= pkts_n).
 */
uint16_t
removed_tx_burst(void *dpdk_txq __rte_unused,
		 struct rte_mbuf **pkts __rte_unused,
		 uint16_t pkts_n __rte_unused)
{
	return 0;
}

/**
 * Dummy DPDK callback for RX.
 *
 * This function is used to temporarily replace the real callback during
 * unsafe control operations on the queue, or in case of error.
 *
 * @param dpdk_rxq
 *   Generic pointer to RX queue structure.
 * @param[out] pkts
 *   Array to store received packets.
 * @param pkts_n
 *   Maximum number of packets in array.
 *
 * @return
 *   Number of packets successfully received (<= pkts_n).
 */
uint16_t
removed_rx_burst(void *dpdk_txq __rte_unused,
		 struct rte_mbuf **pkts __rte_unused,
		 uint16_t pkts_n __rte_unused)
{
	return 0;
}

/*
 * Vectorized Rx/Tx routines are not compiled in when required vector
 * instructions are not supported on a target architecture. The following null
 * stubs are needed for linkage when those are not included outside of this file
 * (e.g.  mlx5_rxtx_vec_sse.c for x86).
 */

__rte_weak uint16_t
mlx5_tx_burst_raw_vec(void *dpdk_txq __rte_unused,
		      struct rte_mbuf **pkts __rte_unused,
		      uint16_t pkts_n __rte_unused)
{
	return 0;
}

__rte_weak uint16_t
mlx5_tx_burst_vec(void *dpdk_txq __rte_unused,
		  struct rte_mbuf **pkts __rte_unused,
		  uint16_t pkts_n __rte_unused)
{
	return 0;
}

__rte_weak uint16_t
mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
		  struct rte_mbuf **pkts __rte_unused,
		  uint16_t pkts_n __rte_unused)
{
	return 0;
}

__rte_weak int
mlx5_check_raw_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
{
	return -ENOTSUP;
}

__rte_weak int
mlx5_check_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
{
	return -ENOTSUP;
}

__rte_weak int
mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
{
	return -ENOTSUP;
}

__rte_weak int
mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
{
	return -ENOTSUP;
}