1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
|
/*-
* BSD LICENSE
*
* Copyright 2015 6WIND S.A.
* Copyright 2015 Mellanox.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of 6WIND S.A. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
/* Verbs header. */
/* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#include <infiniband/mlx5_hw.h>
#include <infiniband/arch.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
/* DPDK headers don't like -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>
#include <rte_common.h>
#include <rte_branch_prediction.h>
#include <rte_ether.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
#include "mlx5.h"
#include "mlx5_utils.h"
#include "mlx5_rxtx.h"
#include "mlx5_autoconf.h"
#include "mlx5_defs.h"
#include "mlx5_prm.h"
#ifndef NDEBUG
/**
* Verify or set magic value in CQE.
*
* @param cqe
* Pointer to CQE.
*
* @return
* 0 the first time.
*/
static inline int
check_cqe_seen(volatile struct mlx5_cqe *cqe)
{
static const uint8_t magic[] = "seen";
volatile uint8_t (*buf)[sizeof(cqe->rsvd3)] = &cqe->rsvd3;
int ret = 1;
unsigned int i;
for (i = 0; i < sizeof(magic) && i < sizeof(*buf); ++i)
if (!ret || (*buf)[i] != magic[i]) {
ret = 0;
(*buf)[i] = magic[i];
}
return ret;
}
#endif /* NDEBUG */
static inline int
check_cqe(volatile struct mlx5_cqe *cqe,
unsigned int cqes_n, const uint16_t ci)
__attribute__((always_inline));
/**
* Check whether CQE is valid.
*
* @param cqe
* Pointer to CQE.
* @param cqes_n
* Size of completion queue.
* @param ci
* Consumer index.
*
* @return
* 0 on success, 1 on failure.
*/
static inline int
check_cqe(volatile struct mlx5_cqe *cqe,
unsigned int cqes_n, const uint16_t ci)
{
uint16_t idx = ci & cqes_n;
uint8_t op_own = cqe->op_own;
uint8_t op_owner = MLX5_CQE_OWNER(op_own);
uint8_t op_code = MLX5_CQE_OPCODE(op_own);
if (unlikely((op_owner != (!!(idx))) || (op_code == MLX5_CQE_INVALID)))
return 1; /* No CQE. */
#ifndef NDEBUG
if ((op_code == MLX5_CQE_RESP_ERR) ||
(op_code == MLX5_CQE_REQ_ERR)) {
volatile struct mlx5_err_cqe *err_cqe = (volatile void *)cqe;
uint8_t syndrome = err_cqe->syndrome;
if ((syndrome == MLX5_CQE_SYNDROME_LOCAL_LENGTH_ERR) ||
(syndrome == MLX5_CQE_SYNDROME_REMOTE_ABORTED_ERR))
return 0;
if (!check_cqe_seen(cqe))
ERROR("unexpected CQE error %u (0x%02x)"
" syndrome 0x%02x",
op_code, op_code, syndrome);
return 1;
} else if ((op_code != MLX5_CQE_RESP_SEND) &&
(op_code != MLX5_CQE_REQ)) {
if (!check_cqe_seen(cqe))
ERROR("unexpected CQE opcode %u (0x%02x)",
op_code, op_code);
return 1;
}
#endif /* NDEBUG */
return 0;
}
static inline void
txq_complete(struct txq *txq) __attribute__((always_inline));
/**
* Manage TX completions.
*
* When sending a burst, mlx5_tx_burst() posts several WRs.
*
* @param txq
* Pointer to TX queue structure.
*/
static inline void
txq_complete(struct txq *txq)
{
const unsigned int elts_n = 1 << txq->elts_n;
const unsigned int cqe_n = 1 << txq->cqe_n;
const unsigned int cqe_cnt = cqe_n - 1;
uint16_t elts_free = txq->elts_tail;
uint16_t elts_tail;
uint16_t cq_ci = txq->cq_ci;
volatile struct mlx5_cqe *cqe = NULL;
volatile struct mlx5_wqe *wqe;
do {
volatile struct mlx5_cqe *tmp;
tmp = &(*txq->cqes)[cq_ci & cqe_cnt];
if (check_cqe(tmp, cqe_n, cq_ci))
break;
cqe = tmp;
#ifndef NDEBUG
if (MLX5_CQE_FORMAT(cqe->op_own) == MLX5_COMPRESSED) {
if (!check_cqe_seen(cqe))
ERROR("unexpected compressed CQE, TX stopped");
return;
}
if ((MLX5_CQE_OPCODE(cqe->op_own) == MLX5_CQE_RESP_ERR) ||
(MLX5_CQE_OPCODE(cqe->op_own) == MLX5_CQE_REQ_ERR)) {
if (!check_cqe_seen(cqe))
ERROR("unexpected error CQE, TX stopped");
return;
}
#endif /* NDEBUG */
++cq_ci;
} while (1);
if (unlikely(cqe == NULL))
return;
wqe = &(*txq->wqes)[htons(cqe->wqe_counter) &
((1 << txq->wqe_n) - 1)].hdr;
elts_tail = wqe->ctrl[3];
assert(elts_tail < (1 << txq->wqe_n));
/* Free buffers. */
while (elts_free != elts_tail) {
struct rte_mbuf *elt = (*txq->elts)[elts_free];
unsigned int elts_free_next =
(elts_free + 1) & (elts_n - 1);
struct rte_mbuf *elt_next = (*txq->elts)[elts_free_next];
#ifndef NDEBUG
/* Poisoning. */
memset(&(*txq->elts)[elts_free],
0x66,
sizeof((*txq->elts)[elts_free]));
#endif
RTE_MBUF_PREFETCH_TO_FREE(elt_next);
/* Only one segment needs to be freed. */
rte_pktmbuf_free_seg(elt);
elts_free = elts_free_next;
}
txq->cq_ci = cq_ci;
txq->elts_tail = elts_tail;
/* Update the consumer index. */
rte_wmb();
*txq->cq_db = htonl(cq_ci);
}
/**
* Get Memory Pool (MP) from mbuf. If mbuf is indirect, the pool from which
* the cloned mbuf is allocated is returned instead.
*
* @param buf
* Pointer to mbuf.
*
* @return
* Memory pool where data is located for given mbuf.
*/
static struct rte_mempool *
txq_mb2mp(struct rte_mbuf *buf)
{
if (unlikely(RTE_MBUF_INDIRECT(buf)))
return rte_mbuf_from_indirect(buf)->pool;
return buf->pool;
}
static inline uint32_t
txq_mp2mr(struct txq *txq, struct rte_mempool *mp)
__attribute__((always_inline));
/**
* Get Memory Region (MR) <-> Memory Pool (MP) association from txq->mp2mr[].
* Add MP to txq->mp2mr[] if it's not registered yet. If mp2mr[] is full,
* remove an entry first.
*
* @param txq
* Pointer to TX queue structure.
* @param[in] mp
* Memory Pool for which a Memory Region lkey must be returned.
*
* @return
* mr->lkey on success, (uint32_t)-1 on failure.
*/
static inline uint32_t
txq_mp2mr(struct txq *txq, struct rte_mempool *mp)
{
unsigned int i;
uint32_t lkey = (uint32_t)-1;
for (i = 0; (i != RTE_DIM(txq->mp2mr)); ++i) {
if (unlikely(txq->mp2mr[i].mp == NULL)) {
/* Unknown MP, add a new MR for it. */
break;
}
if (txq->mp2mr[i].mp == mp) {
assert(txq->mp2mr[i].lkey != (uint32_t)-1);
assert(htonl(txq->mp2mr[i].mr->lkey) ==
txq->mp2mr[i].lkey);
lkey = txq->mp2mr[i].lkey;
break;
}
}
if (unlikely(lkey == (uint32_t)-1))
lkey = txq_mp2mr_reg(txq, mp, i);
return lkey;
}
/**
* Ring TX queue doorbell.
*
* @param txq
* Pointer to TX queue structure.
*/
static inline void
mlx5_tx_dbrec(struct txq *txq)
{
uint8_t *dst = (uint8_t *)((uintptr_t)txq->bf_reg + txq->bf_offset);
uint32_t data[4] = {
htonl((txq->wqe_ci << 8) | MLX5_OPCODE_SEND),
htonl(txq->qp_num_8s),
0,
0,
};
rte_wmb();
*txq->qp_db = htonl(txq->wqe_ci);
/* Ensure ordering between DB record and BF copy. */
rte_wmb();
memcpy(dst, (uint8_t *)data, 16);
txq->bf_offset ^= (1 << txq->bf_buf_size);
}
/**
* Prefetch a CQE.
*
* @param txq
* Pointer to TX queue structure.
* @param cqe_ci
* CQE consumer index.
*/
static inline void
tx_prefetch_cqe(struct txq *txq, uint16_t ci)
{
volatile struct mlx5_cqe *cqe;
cqe = &(*txq->cqes)[ci & ((1 << txq->cqe_n) - 1)];
rte_prefetch0(cqe);
}
/**
* Prefetch a WQE.
*
* @param txq
* Pointer to TX queue structure.
* @param wqe_ci
* WQE consumer index.
*/
static inline void
tx_prefetch_wqe(struct txq *txq, uint16_t ci)
{
volatile struct mlx5_wqe64 *wqe;
wqe = &(*txq->wqes)[ci & ((1 << txq->wqe_n) - 1)];
rte_prefetch0(wqe);
}
/**
* DPDK callback for TX.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct txq *txq = (struct txq *)dpdk_txq;
uint16_t elts_head = txq->elts_head;
const unsigned int elts_n = 1 << txq->elts_n;
unsigned int i = 0;
unsigned int j = 0;
unsigned int max;
unsigned int comp;
volatile struct mlx5_wqe *wqe = NULL;
unsigned int segs_n = 0;
struct rte_mbuf *buf = NULL;
uint8_t *raw;
if (unlikely(!pkts_n))
return 0;
/* Prefetch first packet cacheline. */
tx_prefetch_cqe(txq, txq->cq_ci);
tx_prefetch_cqe(txq, txq->cq_ci + 1);
rte_prefetch0(*pkts);
/* Start processing. */
txq_complete(txq);
max = (elts_n - (elts_head - txq->elts_tail));
if (max > elts_n)
max -= elts_n;
do {
volatile struct mlx5_wqe_data_seg *dseg = NULL;
uint32_t length;
unsigned int ds = 0;
uintptr_t addr;
#ifdef MLX5_PMD_SOFT_COUNTERS
uint32_t total_length = 0;
#endif
/* first_seg */
buf = *(pkts++);
segs_n = buf->nb_segs;
/*
* Make sure there is enough room to store this packet and
* that one ring entry remains unused.
*/
assert(segs_n);
if (max < segs_n + 1)
break;
max -= segs_n;
--segs_n;
if (!segs_n)
--pkts_n;
wqe = &(*txq->wqes)[txq->wqe_ci &
((1 << txq->wqe_n) - 1)].hdr;
tx_prefetch_wqe(txq, txq->wqe_ci + 1);
if (pkts_n > 1)
rte_prefetch0(*pkts);
addr = rte_pktmbuf_mtod(buf, uintptr_t);
length = DATA_LEN(buf);
#ifdef MLX5_PMD_SOFT_COUNTERS
total_length = length;
#endif
assert(length >= MLX5_WQE_DWORD_SIZE);
/* Update element. */
(*txq->elts)[elts_head] = buf;
elts_head = (elts_head + 1) & (elts_n - 1);
/* Prefetch next buffer data. */
if (pkts_n > 1) {
volatile void *pkt_addr;
pkt_addr = rte_pktmbuf_mtod(*pkts, volatile void *);
rte_prefetch0(pkt_addr);
}
/* Should we enable HW CKSUM offload */
if (buf->ol_flags &
(PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
wqe->eseg.cs_flags =
MLX5_ETH_WQE_L3_CSUM |
MLX5_ETH_WQE_L4_CSUM;
} else {
wqe->eseg.cs_flags = 0;
}
raw = (uint8_t *)(uintptr_t)&wqe->eseg.inline_hdr[0];
/* Start the know and common part of the WQE structure. */
wqe->ctrl[0] = htonl((txq->wqe_ci << 8) | MLX5_OPCODE_SEND);
wqe->ctrl[2] = 0;
wqe->ctrl[3] = 0;
wqe->eseg.rsvd0 = 0;
wqe->eseg.rsvd1 = 0;
wqe->eseg.mss = 0;
wqe->eseg.rsvd2 = 0;
/* Start by copying the Ethernet Header. */
memcpy((uint8_t *)raw, ((uint8_t *)addr), 16);
length -= MLX5_WQE_DWORD_SIZE;
addr += MLX5_WQE_DWORD_SIZE;
/* Replace the Ethernet type by the VLAN if necessary. */
if (buf->ol_flags & PKT_TX_VLAN_PKT) {
uint32_t vlan = htonl(0x81000000 | buf->vlan_tci);
memcpy((uint8_t *)(raw + MLX5_WQE_DWORD_SIZE -
sizeof(vlan)),
&vlan, sizeof(vlan));
addr -= sizeof(vlan);
length += sizeof(vlan);
}
/* Inline if enough room. */
if (txq->max_inline != 0) {
uintptr_t end =
(uintptr_t)&(*txq->wqes)[1 << txq->wqe_n];
uint16_t max_inline =
txq->max_inline * RTE_CACHE_LINE_SIZE;
uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE;
uint16_t room;
raw += MLX5_WQE_DWORD_SIZE;
room = end - (uintptr_t)raw;
if (room > max_inline) {
uintptr_t addr_end = (addr + max_inline) &
~(RTE_CACHE_LINE_SIZE - 1);
uint16_t copy_b = ((addr_end - addr) > length) ?
length :
(addr_end - addr);
rte_memcpy((void *)raw, (void *)addr, copy_b);
addr += copy_b;
length -= copy_b;
pkt_inline_sz += copy_b;
/* Sanity check. */
assert(addr <= addr_end);
}
/* Store the inlined packet size in the WQE. */
wqe->eseg.inline_hdr_sz = htons(pkt_inline_sz);
/*
* 2 DWORDs consumed by the WQE header + 1 DSEG +
* the size of the inline part of the packet.
*/
ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
if (length > 0) {
dseg = (struct mlx5_wqe_data_seg *)
((uintptr_t)wqe +
(ds * MLX5_WQE_DWORD_SIZE));
if ((uintptr_t)dseg >= end)
dseg = (struct mlx5_wqe_data_seg *)
((uintptr_t)&(*txq->wqes)[0]);
goto use_dseg;
} else if (!segs_n) {
goto next_pkt;
} else {
goto next_seg;
}
} else {
/*
* No inline has been done in the packet, only the
* Ethernet Header as been stored.
*/
wqe->eseg.inline_hdr_sz = htons(MLX5_WQE_DWORD_SIZE);
dseg = (struct mlx5_wqe_data_seg *)
((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
ds = 3;
use_dseg:
/* Add the remaining packet as a simple ds. */
*dseg = (struct mlx5_wqe_data_seg) {
.addr = htonll(addr),
.byte_count = htonl(length),
.lkey = txq_mp2mr(txq, txq_mb2mp(buf)),
};
++ds;
if (!segs_n)
goto next_pkt;
}
next_seg:
assert(buf);
assert(ds);
assert(wqe);
/*
* Spill on next WQE when the current one does not have
* enough room left. Size of WQE must a be a multiple
* of data segment size.
*/
assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
unsigned int n = (txq->wqe_ci + ((ds + 3) / 4)) &
((1 << txq->wqe_n) - 1);
dseg = (struct mlx5_wqe_data_seg *)
((uintptr_t)&(*txq->wqes)[n]);
tx_prefetch_wqe(txq, n + 1);
} else {
++dseg;
}
++ds;
buf = buf->next;
assert(buf);
length = DATA_LEN(buf);
#ifdef MLX5_PMD_SOFT_COUNTERS
total_length += length;
#endif
/* Store segment information. */
*dseg = (struct mlx5_wqe_data_seg) {
.addr = htonll(rte_pktmbuf_mtod(buf, uintptr_t)),
.byte_count = htonl(length),
.lkey = txq_mp2mr(txq, txq_mb2mp(buf)),
};
(*txq->elts)[elts_head] = buf;
elts_head = (elts_head + 1) & (elts_n - 1);
++j;
--segs_n;
if (segs_n)
goto next_seg;
else
--pkts_n;
next_pkt:
++i;
wqe->ctrl[1] = htonl(txq->qp_num_8s | ds);
txq->wqe_ci += (ds + 3) / 4;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent bytes counter. */
txq->stats.obytes += total_length;
#endif
} while (pkts_n);
/* Take a shortcut if nothing must be sent. */
if (unlikely(i == 0))
return 0;
/* Check whether completion threshold has been reached. */
comp = txq->elts_comp + i + j;
if (comp >= MLX5_TX_COMP_THRESH) {
/* Request completion on last WQE. */
wqe->ctrl[2] = htonl(8);
/* Save elts_head in unused "immediate" field of WQE. */
wqe->ctrl[3] = elts_head;
txq->elts_comp = 0;
} else {
txq->elts_comp = comp;
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent packets counter. */
txq->stats.opackets += i;
#endif
/* Ring QP doorbell. */
mlx5_tx_dbrec(txq);
txq->elts_head = elts_head;
return i;
}
/**
* Open a MPW session.
*
* @param txq
* Pointer to TX queue structure.
* @param mpw
* Pointer to MPW session structure.
* @param length
* Packet length.
*/
static inline void
mlx5_mpw_new(struct txq *txq, struct mlx5_mpw *mpw, uint32_t length)
{
uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
(volatile struct mlx5_wqe_data_seg (*)[])
(uintptr_t)&(*txq->wqes)[(idx + 1) & ((1 << txq->wqe_n) - 1)];
mpw->state = MLX5_MPW_STATE_OPENED;
mpw->pkts_n = 0;
mpw->len = length;
mpw->total_len = 0;
mpw->wqe = (volatile struct mlx5_wqe *)&(*txq->wqes)[idx].hdr;
mpw->wqe->eseg.mss = htons(length);
mpw->wqe->eseg.inline_hdr_sz = 0;
mpw->wqe->eseg.rsvd0 = 0;
mpw->wqe->eseg.rsvd1 = 0;
mpw->wqe->eseg.rsvd2 = 0;
mpw->wqe->ctrl[0] = htonl((MLX5_OPC_MOD_MPW << 24) |
(txq->wqe_ci << 8) | MLX5_OPCODE_TSO);
mpw->wqe->ctrl[2] = 0;
mpw->wqe->ctrl[3] = 0;
mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
(((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
(((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
mpw->data.dseg[2] = &(*dseg)[0];
mpw->data.dseg[3] = &(*dseg)[1];
mpw->data.dseg[4] = &(*dseg)[2];
}
/**
* Close a MPW session.
*
* @param txq
* Pointer to TX queue structure.
* @param mpw
* Pointer to MPW session structure.
*/
static inline void
mlx5_mpw_close(struct txq *txq, struct mlx5_mpw *mpw)
{
unsigned int num = mpw->pkts_n;
/*
* Store size in multiple of 16 bytes. Control and Ethernet segments
* count as 2.
*/
mpw->wqe->ctrl[1] = htonl(txq->qp_num_8s | (2 + num));
mpw->state = MLX5_MPW_STATE_CLOSED;
if (num < 3)
++txq->wqe_ci;
else
txq->wqe_ci += 2;
tx_prefetch_wqe(txq, txq->wqe_ci);
tx_prefetch_wqe(txq, txq->wqe_ci + 1);
}
/**
* DPDK callback for TX with MPW support.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct txq *txq = (struct txq *)dpdk_txq;
uint16_t elts_head = txq->elts_head;
const unsigned int elts_n = 1 << txq->elts_n;
unsigned int i = 0;
unsigned int j = 0;
unsigned int max;
unsigned int comp;
struct mlx5_mpw mpw = {
.state = MLX5_MPW_STATE_CLOSED,
};
if (unlikely(!pkts_n))
return 0;
/* Prefetch first packet cacheline. */
tx_prefetch_cqe(txq, txq->cq_ci);
tx_prefetch_wqe(txq, txq->wqe_ci);
tx_prefetch_wqe(txq, txq->wqe_ci + 1);
/* Start processing. */
txq_complete(txq);
max = (elts_n - (elts_head - txq->elts_tail));
if (max > elts_n)
max -= elts_n;
do {
struct rte_mbuf *buf = *(pkts++);
unsigned int elts_head_next;
uint32_t length;
unsigned int segs_n = buf->nb_segs;
uint32_t cs_flags = 0;
/*
* Make sure there is enough room to store this packet and
* that one ring entry remains unused.
*/
assert(segs_n);
if (max < segs_n + 1)
break;
/* Do not bother with large packets MPW cannot handle. */
if (segs_n > MLX5_MPW_DSEG_MAX)
break;
max -= segs_n;
--pkts_n;
/* Should we enable HW CKSUM offload */
if (buf->ol_flags &
(PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
/* Retrieve packet information. */
length = PKT_LEN(buf);
assert(length);
/* Start new session if packet differs. */
if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
((mpw.len != length) ||
(segs_n != 1) ||
(mpw.wqe->eseg.cs_flags != cs_flags)))
mlx5_mpw_close(txq, &mpw);
if (mpw.state == MLX5_MPW_STATE_CLOSED) {
mlx5_mpw_new(txq, &mpw, length);
mpw.wqe->eseg.cs_flags = cs_flags;
}
/* Multi-segment packets must be alone in their MPW. */
assert((segs_n == 1) || (mpw.pkts_n == 0));
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
length = 0;
#endif
do {
volatile struct mlx5_wqe_data_seg *dseg;
uintptr_t addr;
elts_head_next = (elts_head + 1) & (elts_n - 1);
assert(buf);
(*txq->elts)[elts_head] = buf;
dseg = mpw.data.dseg[mpw.pkts_n];
addr = rte_pktmbuf_mtod(buf, uintptr_t);
*dseg = (struct mlx5_wqe_data_seg){
.byte_count = htonl(DATA_LEN(buf)),
.lkey = txq_mp2mr(txq, txq_mb2mp(buf)),
.addr = htonll(addr),
};
elts_head = elts_head_next;
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
length += DATA_LEN(buf);
#endif
buf = buf->next;
++mpw.pkts_n;
++j;
} while (--segs_n);
assert(length == mpw.len);
if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
mlx5_mpw_close(txq, &mpw);
elts_head = elts_head_next;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent bytes counter. */
txq->stats.obytes += length;
#endif
++i;
} while (pkts_n);
/* Take a shortcut if nothing must be sent. */
if (unlikely(i == 0))
return 0;
/* Check whether completion threshold has been reached. */
/* "j" includes both packets and segments. */
comp = txq->elts_comp + j;
if (comp >= MLX5_TX_COMP_THRESH) {
volatile struct mlx5_wqe *wqe = mpw.wqe;
/* Request completion on last WQE. */
wqe->ctrl[2] = htonl(8);
/* Save elts_head in unused "immediate" field of WQE. */
wqe->ctrl[3] = elts_head;
txq->elts_comp = 0;
} else {
txq->elts_comp = comp;
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent packets counter. */
txq->stats.opackets += i;
#endif
/* Ring QP doorbell. */
if (mpw.state == MLX5_MPW_STATE_OPENED)
mlx5_mpw_close(txq, &mpw);
mlx5_tx_dbrec(txq);
txq->elts_head = elts_head;
return i;
}
/**
* Open a MPW inline session.
*
* @param txq
* Pointer to TX queue structure.
* @param mpw
* Pointer to MPW session structure.
* @param length
* Packet length.
*/
static inline void
mlx5_mpw_inline_new(struct txq *txq, struct mlx5_mpw *mpw, uint32_t length)
{
uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
struct mlx5_wqe_inl_small *inl;
mpw->state = MLX5_MPW_INL_STATE_OPENED;
mpw->pkts_n = 0;
mpw->len = length;
mpw->total_len = 0;
mpw->wqe = (volatile struct mlx5_wqe *)&(*txq->wqes)[idx].hdr;
mpw->wqe->ctrl[0] = htonl((MLX5_OPC_MOD_MPW << 24) |
(txq->wqe_ci << 8) |
MLX5_OPCODE_TSO);
mpw->wqe->ctrl[2] = 0;
mpw->wqe->ctrl[3] = 0;
mpw->wqe->eseg.mss = htons(length);
mpw->wqe->eseg.inline_hdr_sz = 0;
mpw->wqe->eseg.cs_flags = 0;
mpw->wqe->eseg.rsvd0 = 0;
mpw->wqe->eseg.rsvd1 = 0;
mpw->wqe->eseg.rsvd2 = 0;
inl = (struct mlx5_wqe_inl_small *)
(((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
mpw->data.raw = (uint8_t *)&inl->raw;
}
/**
* Close a MPW inline session.
*
* @param txq
* Pointer to TX queue structure.
* @param mpw
* Pointer to MPW session structure.
*/
static inline void
mlx5_mpw_inline_close(struct txq *txq, struct mlx5_mpw *mpw)
{
unsigned int size;
struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
(((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
/*
* Store size in multiple of 16 bytes. Control and Ethernet segments
* count as 2.
*/
mpw->wqe->ctrl[1] = htonl(txq->qp_num_8s | MLX5_WQE_DS(size));
mpw->state = MLX5_MPW_STATE_CLOSED;
inl->byte_cnt = htonl(mpw->total_len | MLX5_INLINE_SEG);
txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
}
/**
* DPDK callback for TX with MPW inline support.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
uint16_t pkts_n)
{
struct txq *txq = (struct txq *)dpdk_txq;
uint16_t elts_head = txq->elts_head;
const unsigned int elts_n = 1 << txq->elts_n;
unsigned int i = 0;
unsigned int j = 0;
unsigned int max;
unsigned int comp;
unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
struct mlx5_mpw mpw = {
.state = MLX5_MPW_STATE_CLOSED,
};
if (unlikely(!pkts_n))
return 0;
/* Prefetch first packet cacheline. */
tx_prefetch_cqe(txq, txq->cq_ci);
tx_prefetch_wqe(txq, txq->wqe_ci);
tx_prefetch_wqe(txq, txq->wqe_ci + 1);
/* Start processing. */
txq_complete(txq);
max = (elts_n - (elts_head - txq->elts_tail));
if (max > elts_n)
max -= elts_n;
do {
struct rte_mbuf *buf = *(pkts++);
unsigned int elts_head_next;
uintptr_t addr;
uint32_t length;
unsigned int segs_n = buf->nb_segs;
uint32_t cs_flags = 0;
/*
* Make sure there is enough room to store this packet and
* that one ring entry remains unused.
*/
assert(segs_n);
if (max < segs_n + 1)
break;
/* Do not bother with large packets MPW cannot handle. */
if (segs_n > MLX5_MPW_DSEG_MAX)
break;
max -= segs_n;
--pkts_n;
/* Should we enable HW CKSUM offload */
if (buf->ol_flags &
(PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
/* Retrieve packet information. */
length = PKT_LEN(buf);
/* Start new session if packet differs. */
if (mpw.state == MLX5_MPW_STATE_OPENED) {
if ((mpw.len != length) ||
(segs_n != 1) ||
(mpw.wqe->eseg.cs_flags != cs_flags))
mlx5_mpw_close(txq, &mpw);
} else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
if ((mpw.len != length) ||
(segs_n != 1) ||
(length > inline_room) ||
(mpw.wqe->eseg.cs_flags != cs_flags)) {
mlx5_mpw_inline_close(txq, &mpw);
inline_room =
txq->max_inline * RTE_CACHE_LINE_SIZE;
}
}
if (mpw.state == MLX5_MPW_STATE_CLOSED) {
if ((segs_n != 1) ||
(length > inline_room)) {
mlx5_mpw_new(txq, &mpw, length);
mpw.wqe->eseg.cs_flags = cs_flags;
} else {
mlx5_mpw_inline_new(txq, &mpw, length);
mpw.wqe->eseg.cs_flags = cs_flags;
}
}
/* Multi-segment packets must be alone in their MPW. */
assert((segs_n == 1) || (mpw.pkts_n == 0));
if (mpw.state == MLX5_MPW_STATE_OPENED) {
assert(inline_room ==
txq->max_inline * RTE_CACHE_LINE_SIZE);
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
length = 0;
#endif
do {
volatile struct mlx5_wqe_data_seg *dseg;
elts_head_next =
(elts_head + 1) & (elts_n - 1);
assert(buf);
(*txq->elts)[elts_head] = buf;
dseg = mpw.data.dseg[mpw.pkts_n];
addr = rte_pktmbuf_mtod(buf, uintptr_t);
*dseg = (struct mlx5_wqe_data_seg){
.byte_count = htonl(DATA_LEN(buf)),
.lkey = txq_mp2mr(txq, txq_mb2mp(buf)),
.addr = htonll(addr),
};
elts_head = elts_head_next;
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
length += DATA_LEN(buf);
#endif
buf = buf->next;
++mpw.pkts_n;
++j;
} while (--segs_n);
assert(length == mpw.len);
if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
mlx5_mpw_close(txq, &mpw);
} else {
unsigned int max;
assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
assert(length <= inline_room);
assert(length == DATA_LEN(buf));
elts_head_next = (elts_head + 1) & (elts_n - 1);
addr = rte_pktmbuf_mtod(buf, uintptr_t);
(*txq->elts)[elts_head] = buf;
/* Maximum number of bytes before wrapping. */
max = ((uintptr_t)&(*txq->wqes)[1 << txq->wqe_n] -
(uintptr_t)mpw.data.raw);
if (length > max) {
rte_memcpy((void *)(uintptr_t)mpw.data.raw,
(void *)addr,
max);
mpw.data.raw =
(volatile void *)&(*txq->wqes)[0];
rte_memcpy((void *)(uintptr_t)mpw.data.raw,
(void *)(addr + max),
length - max);
mpw.data.raw += length - max;
} else {
rte_memcpy((void *)(uintptr_t)mpw.data.raw,
(void *)addr,
length);
mpw.data.raw += length;
}
if ((uintptr_t)mpw.data.raw ==
(uintptr_t)&(*txq->wqes)[1 << txq->wqe_n])
mpw.data.raw =
(volatile void *)&(*txq->wqes)[0];
++mpw.pkts_n;
++j;
if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
mlx5_mpw_inline_close(txq, &mpw);
inline_room =
txq->max_inline * RTE_CACHE_LINE_SIZE;
} else {
inline_room -= length;
}
}
mpw.total_len += length;
elts_head = elts_head_next;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent bytes counter. */
txq->stats.obytes += length;
#endif
++i;
} while (pkts_n);
/* Take a shortcut if nothing must be sent. */
if (unlikely(i == 0))
return 0;
/* Check whether completion threshold has been reached. */
/* "j" includes both packets and segments. */
comp = txq->elts_comp + j;
if (comp >= MLX5_TX_COMP_THRESH) {
volatile struct mlx5_wqe *wqe = mpw.wqe;
/* Request completion on last WQE. */
wqe->ctrl[2] = htonl(8);
/* Save elts_head in unused "immediate" field of WQE. */
wqe->ctrl[3] = elts_head;
txq->elts_comp = 0;
} else {
txq->elts_comp = comp;
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent packets counter. */
txq->stats.opackets += i;
#endif
/* Ring QP doorbell. */
if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
mlx5_mpw_inline_close(txq, &mpw);
else if (mpw.state == MLX5_MPW_STATE_OPENED)
mlx5_mpw_close(txq, &mpw);
mlx5_tx_dbrec(txq);
txq->elts_head = elts_head;
return i;
}
/**
* Translate RX completion flags to packet type.
*
* @param[in] cqe
* Pointer to CQE.
*
* @note: fix mlx5_dev_supported_ptypes_get() if any change here.
*
* @return
* Packet type for struct rte_mbuf.
*/
static inline uint32_t
rxq_cq_to_pkt_type(volatile struct mlx5_cqe *cqe)
{
uint32_t pkt_type;
uint8_t flags = cqe->l4_hdr_type_etc;
if (cqe->pkt_info & MLX5_CQE_RX_TUNNEL_PACKET)
pkt_type =
TRANSPOSE(flags,
MLX5_CQE_RX_OUTER_IPV4_PACKET,
RTE_PTYPE_L3_IPV4) |
TRANSPOSE(flags,
MLX5_CQE_RX_OUTER_IPV6_PACKET,
RTE_PTYPE_L3_IPV6) |
TRANSPOSE(flags,
MLX5_CQE_RX_IPV4_PACKET,
RTE_PTYPE_INNER_L3_IPV4) |
TRANSPOSE(flags,
MLX5_CQE_RX_IPV6_PACKET,
RTE_PTYPE_INNER_L3_IPV6);
else
pkt_type =
TRANSPOSE(flags,
MLX5_CQE_L3_HDR_TYPE_IPV6,
RTE_PTYPE_L3_IPV6) |
TRANSPOSE(flags,
MLX5_CQE_L3_HDR_TYPE_IPV4,
RTE_PTYPE_L3_IPV4);
return pkt_type;
}
/**
* Get size of the next packet for a given CQE. For compressed CQEs, the
* consumer index is updated only once all packets of the current one have
* been processed.
*
* @param rxq
* Pointer to RX queue.
* @param cqe
* CQE to process.
* @param[out] rss_hash
* Packet RSS Hash result.
*
* @return
* Packet size in bytes (0 if there is none), -1 in case of completion
* with error.
*/
static inline int
mlx5_rx_poll_len(struct rxq *rxq, volatile struct mlx5_cqe *cqe,
uint16_t cqe_cnt, uint32_t *rss_hash)
{
struct rxq_zip *zip = &rxq->zip;
uint16_t cqe_n = cqe_cnt + 1;
int len = 0;
/* Process compressed data in the CQE and mini arrays. */
if (zip->ai) {
volatile struct mlx5_mini_cqe8 (*mc)[8] =
(volatile struct mlx5_mini_cqe8 (*)[8])
(uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt]);
len = ntohl((*mc)[zip->ai & 7].byte_cnt);
*rss_hash = ntohl((*mc)[zip->ai & 7].rx_hash_result);
if ((++zip->ai & 7) == 0) {
/*
* Increment consumer index to skip the number of
* CQEs consumed. Hardware leaves holes in the CQ
* ring for software use.
*/
zip->ca = zip->na;
zip->na += 8;
}
if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
uint16_t idx = rxq->cq_ci;
uint16_t end = zip->cq_ci;
while (idx != end) {
(*rxq->cqes)[idx & cqe_cnt].op_own =
MLX5_CQE_INVALIDATE;
++idx;
}
rxq->cq_ci = zip->cq_ci;
zip->ai = 0;
}
/* No compressed data, get next CQE and verify if it is compressed. */
} else {
int ret;
int8_t op_own;
ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
if (unlikely(ret == 1))
return 0;
++rxq->cq_ci;
op_own = cqe->op_own;
if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
volatile struct mlx5_mini_cqe8 (*mc)[8] =
(volatile struct mlx5_mini_cqe8 (*)[8])
(uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
cqe_cnt]);
/* Fix endianness. */
zip->cqe_cnt = ntohl(cqe->byte_cnt);
/*
* Current mini array position is the one returned by
* check_cqe64().
*
* If completion comprises several mini arrays, as a
* special case the second one is located 7 CQEs after
* the initial CQE instead of 8 for subsequent ones.
*/
zip->ca = rxq->cq_ci & cqe_cnt;
zip->na = zip->ca + 7;
/* Compute the next non compressed CQE. */
--rxq->cq_ci;
zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
/* Get packet size to return. */
len = ntohl((*mc)[0].byte_cnt);
*rss_hash = ntohl((*mc)[0].rx_hash_result);
zip->ai = 1;
} else {
len = ntohl(cqe->byte_cnt);
*rss_hash = ntohl(cqe->rx_hash_res);
}
/* Error while receiving packet. */
if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
return -1;
}
return len;
}
/**
* Translate RX completion flags to offload flags.
*
* @param[in] rxq
* Pointer to RX queue structure.
* @param[in] cqe
* Pointer to CQE.
*
* @return
* Offload flags (ol_flags) for struct rte_mbuf.
*/
static inline uint32_t
rxq_cq_to_ol_flags(struct rxq *rxq, volatile struct mlx5_cqe *cqe)
{
uint32_t ol_flags = 0;
uint8_t l3_hdr = (cqe->l4_hdr_type_etc) & MLX5_CQE_L3_HDR_TYPE_MASK;
uint8_t l4_hdr = (cqe->l4_hdr_type_etc) & MLX5_CQE_L4_HDR_TYPE_MASK;
if ((l3_hdr == MLX5_CQE_L3_HDR_TYPE_IPV4) ||
(l3_hdr == MLX5_CQE_L3_HDR_TYPE_IPV6))
ol_flags |= TRANSPOSE(cqe->hds_ip_ext,
MLX5_CQE_L3_OK,
PKT_RX_IP_CKSUM_GOOD);
if ((l4_hdr == MLX5_CQE_L4_HDR_TYPE_TCP) ||
(l4_hdr == MLX5_CQE_L4_HDR_TYPE_TCP_EMP_ACK) ||
(l4_hdr == MLX5_CQE_L4_HDR_TYPE_TCP_ACK) ||
(l4_hdr == MLX5_CQE_L4_HDR_TYPE_UDP))
ol_flags |= TRANSPOSE(cqe->hds_ip_ext,
MLX5_CQE_L4_OK,
PKT_RX_L4_CKSUM_GOOD);
if ((cqe->pkt_info & MLX5_CQE_RX_TUNNEL_PACKET) && (rxq->csum_l2tun))
ol_flags |=
TRANSPOSE(cqe->l4_hdr_type_etc,
MLX5_CQE_RX_OUTER_IP_CSUM_OK,
PKT_RX_IP_CKSUM_GOOD) |
TRANSPOSE(cqe->l4_hdr_type_etc,
MLX5_CQE_RX_OUTER_TCP_UDP_CSUM_OK,
PKT_RX_L4_CKSUM_GOOD);
return ol_flags;
}
/**
* DPDK callback for RX.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct rxq *rxq = dpdk_rxq;
const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
const unsigned int sges_n = rxq->sges_n;
struct rte_mbuf *pkt = NULL;
struct rte_mbuf *seg = NULL;
volatile struct mlx5_cqe *cqe =
&(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
unsigned int i = 0;
unsigned int rq_ci = rxq->rq_ci << sges_n;
int len; /* keep its value across iterations. */
while (pkts_n) {
unsigned int idx = rq_ci & wqe_cnt;
volatile struct mlx5_wqe_data_seg *wqe = &(*rxq->wqes)[idx];
struct rte_mbuf *rep = (*rxq->elts)[idx];
uint32_t rss_hash_res = 0;
if (pkt)
NEXT(seg) = rep;
seg = rep;
rte_prefetch0(seg);
rte_prefetch0(cqe);
rte_prefetch0(wqe);
rep = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(rep == NULL)) {
++rxq->stats.rx_nombuf;
if (!pkt) {
/*
* no buffers before we even started,
* bail out silently.
*/
break;
}
while (pkt != seg) {
assert(pkt != (*rxq->elts)[idx]);
seg = NEXT(pkt);
rte_mbuf_refcnt_set(pkt, 0);
__rte_mbuf_raw_free(pkt);
pkt = seg;
}
break;
}
if (!pkt) {
cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
&rss_hash_res);
if (!len) {
rte_mbuf_refcnt_set(rep, 0);
__rte_mbuf_raw_free(rep);
break;
}
if (unlikely(len == -1)) {
/* RX error, packet is likely too large. */
rte_mbuf_refcnt_set(rep, 0);
__rte_mbuf_raw_free(rep);
++rxq->stats.idropped;
goto skip;
}
pkt = seg;
assert(len >= (rxq->crc_present << 2));
/* Update packet information. */
pkt->packet_type = 0;
pkt->ol_flags = 0;
if (rxq->rss_hash) {
pkt->hash.rss = rss_hash_res;
pkt->ol_flags = PKT_RX_RSS_HASH;
}
if (rxq->csum | rxq->csum_l2tun | rxq->vlan_strip |
rxq->crc_present) {
if (rxq->csum) {
pkt->packet_type =
rxq_cq_to_pkt_type(cqe);
pkt->ol_flags |=
rxq_cq_to_ol_flags(rxq, cqe);
}
if (cqe->l4_hdr_type_etc &
MLX5_CQE_VLAN_STRIPPED) {
pkt->ol_flags |= PKT_RX_VLAN_PKT |
PKT_RX_VLAN_STRIPPED;
pkt->vlan_tci = ntohs(cqe->vlan_info);
}
if (rxq->crc_present)
len -= ETHER_CRC_LEN;
}
PKT_LEN(pkt) = len;
}
DATA_LEN(rep) = DATA_LEN(seg);
PKT_LEN(rep) = PKT_LEN(seg);
SET_DATA_OFF(rep, DATA_OFF(seg));
NB_SEGS(rep) = NB_SEGS(seg);
PORT(rep) = PORT(seg);
NEXT(rep) = NULL;
(*rxq->elts)[idx] = rep;
/*
* Fill NIC descriptor with the new buffer. The lkey and size
* of the buffers are already known, only the buffer address
* changes.
*/
wqe->addr = htonll(rte_pktmbuf_mtod(rep, uintptr_t));
if (len > DATA_LEN(seg)) {
len -= DATA_LEN(seg);
++NB_SEGS(pkt);
++rq_ci;
continue;
}
DATA_LEN(seg) = len;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment bytes counter. */
rxq->stats.ibytes += PKT_LEN(pkt);
#endif
/* Return packet. */
*(pkts++) = pkt;
pkt = NULL;
--pkts_n;
++i;
skip:
/* Align consumer index to the next stride. */
rq_ci >>= sges_n;
++rq_ci;
rq_ci <<= sges_n;
}
if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
return 0;
/* Update the consumer index. */
rxq->rq_ci = rq_ci >> sges_n;
rte_wmb();
*rxq->cq_db = htonl(rxq->cq_ci);
rte_wmb();
*rxq->rq_db = htonl(rxq->rq_ci);
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment packets counter. */
rxq->stats.ipackets += i;
#endif
return i;
}
/**
* Dummy DPDK callback for TX.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
(void)dpdk_txq;
(void)pkts;
(void)pkts_n;
return 0;
}
/**
* Dummy DPDK callback for RX.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
(void)dpdk_rxq;
(void)pkts;
(void)pkts_n;
return 0;
}
|