1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (c) 2016 - 2018 Cavium Inc.
* All rights reserved.
* www.cavium.com
*/
#include <rte_memzone.h>
#include <rte_errno.h>
#include "bcm_osal.h"
#include "ecore.h"
#include "ecore_hw.h"
#include "ecore_iov_api.h"
#include "ecore_mcp_api.h"
#include "ecore_l2_api.h"
/* Array of memzone pointers */
static const struct rte_memzone *ecore_mz_mapping[RTE_MAX_MEMZONE];
/* Counter to track current memzone allocated */
uint16_t ecore_mz_count;
unsigned long qede_log2_align(unsigned long n)
{
unsigned long ret = n ? 1 : 0;
unsigned long _n = n >> 1;
while (_n) {
_n >>= 1;
ret <<= 1;
}
if (ret < n)
ret <<= 1;
return ret;
}
u32 qede_osal_log2(u32 val)
{
u32 log = 0;
while (val >>= 1)
log++;
return log;
}
inline void qede_set_bit(u32 nr, unsigned long *addr)
{
__sync_fetch_and_or(addr, (1UL << nr));
}
inline void qede_clr_bit(u32 nr, unsigned long *addr)
{
__sync_fetch_and_and(addr, ~(1UL << nr));
}
inline bool qede_test_bit(u32 nr, unsigned long *addr)
{
bool res;
rte_mb();
res = ((*addr) & (1UL << nr)) != 0;
rte_mb();
return res;
}
static inline u32 qede_ffb(unsigned long word)
{
unsigned long first_bit;
first_bit = __builtin_ffsl(word);
return first_bit ? (first_bit - 1) : OSAL_BITS_PER_UL;
}
inline u32 qede_find_first_bit(unsigned long *addr, u32 limit)
{
u32 i;
u32 nwords = 0;
OSAL_BUILD_BUG_ON(!limit);
nwords = (limit - 1) / OSAL_BITS_PER_UL + 1;
for (i = 0; i < nwords; i++)
if (addr[i] != 0)
break;
return (i == nwords) ? limit : i * OSAL_BITS_PER_UL + qede_ffb(addr[i]);
}
static inline u32 qede_ffz(unsigned long word)
{
unsigned long first_zero;
first_zero = __builtin_ffsl(~word);
return first_zero ? (first_zero - 1) : OSAL_BITS_PER_UL;
}
inline u32 qede_find_first_zero_bit(unsigned long *addr, u32 limit)
{
u32 i;
u32 nwords = 0;
OSAL_BUILD_BUG_ON(!limit);
nwords = (limit - 1) / OSAL_BITS_PER_UL + 1;
for (i = 0; i < nwords && ~(addr[i]) == 0; i++);
return (i == nwords) ? limit : i * OSAL_BITS_PER_UL + qede_ffz(addr[i]);
}
void qede_vf_fill_driver_data(struct ecore_hwfn *hwfn,
__rte_unused struct vf_pf_resc_request *resc_req,
struct ecore_vf_acquire_sw_info *vf_sw_info)
{
vf_sw_info->os_type = VFPF_ACQUIRE_OS_LINUX_USERSPACE;
vf_sw_info->override_fw_version = 1;
}
void *osal_dma_alloc_coherent(struct ecore_dev *p_dev,
dma_addr_t *phys, size_t size)
{
const struct rte_memzone *mz;
char mz_name[RTE_MEMZONE_NAMESIZE];
uint32_t core_id = rte_lcore_id();
unsigned int socket_id;
if (ecore_mz_count >= RTE_MAX_MEMZONE) {
DP_ERR(p_dev, "Memzone allocation count exceeds %u\n",
RTE_MAX_MEMZONE);
*phys = 0;
return OSAL_NULL;
}
OSAL_MEM_ZERO(mz_name, sizeof(*mz_name));
snprintf(mz_name, sizeof(mz_name) - 1, "%lx",
(unsigned long)rte_get_timer_cycles());
if (core_id == (unsigned int)LCORE_ID_ANY)
core_id = rte_get_master_lcore();
socket_id = rte_lcore_to_socket_id(core_id);
mz = rte_memzone_reserve_aligned(mz_name, size, socket_id,
RTE_MEMZONE_IOVA_CONTIG, RTE_CACHE_LINE_SIZE);
if (!mz) {
DP_ERR(p_dev, "Unable to allocate DMA memory "
"of size %zu bytes - %s\n",
size, rte_strerror(rte_errno));
*phys = 0;
return OSAL_NULL;
}
*phys = mz->iova;
ecore_mz_mapping[ecore_mz_count++] = mz;
DP_VERBOSE(p_dev, ECORE_MSG_SP,
"Allocated dma memory size=%zu phys=0x%lx"
" virt=%p core=%d\n",
mz->len, (unsigned long)mz->iova, mz->addr, core_id);
return mz->addr;
}
void *osal_dma_alloc_coherent_aligned(struct ecore_dev *p_dev,
dma_addr_t *phys, size_t size, int align)
{
const struct rte_memzone *mz;
char mz_name[RTE_MEMZONE_NAMESIZE];
uint32_t core_id = rte_lcore_id();
unsigned int socket_id;
if (ecore_mz_count >= RTE_MAX_MEMZONE) {
DP_ERR(p_dev, "Memzone allocation count exceeds %u\n",
RTE_MAX_MEMZONE);
*phys = 0;
return OSAL_NULL;
}
OSAL_MEM_ZERO(mz_name, sizeof(*mz_name));
snprintf(mz_name, sizeof(mz_name) - 1, "%lx",
(unsigned long)rte_get_timer_cycles());
if (core_id == (unsigned int)LCORE_ID_ANY)
core_id = rte_get_master_lcore();
socket_id = rte_lcore_to_socket_id(core_id);
mz = rte_memzone_reserve_aligned(mz_name, size, socket_id,
RTE_MEMZONE_IOVA_CONTIG, align);
if (!mz) {
DP_ERR(p_dev, "Unable to allocate DMA memory "
"of size %zu bytes - %s\n",
size, rte_strerror(rte_errno));
*phys = 0;
return OSAL_NULL;
}
*phys = mz->iova;
ecore_mz_mapping[ecore_mz_count++] = mz;
DP_VERBOSE(p_dev, ECORE_MSG_SP,
"Allocated aligned dma memory size=%zu phys=0x%lx"
" virt=%p core=%d\n",
mz->len, (unsigned long)mz->iova, mz->addr, core_id);
return mz->addr;
}
void osal_dma_free_mem(struct ecore_dev *p_dev, dma_addr_t phys)
{
uint16_t j;
for (j = 0 ; j < ecore_mz_count; j++) {
if (phys == ecore_mz_mapping[j]->iova) {
DP_VERBOSE(p_dev, ECORE_MSG_SP,
"Free memzone %s\n", ecore_mz_mapping[j]->name);
rte_memzone_free(ecore_mz_mapping[j]);
while (j < ecore_mz_count - 1) {
ecore_mz_mapping[j] = ecore_mz_mapping[j + 1];
j++;
}
ecore_mz_count--;
return;
}
}
DP_ERR(p_dev, "Unexpected memory free request\n");
}
#ifdef CONFIG_ECORE_ZIPPED_FW
u32 qede_unzip_data(struct ecore_hwfn *p_hwfn, u32 input_len,
u8 *input_buf, u32 max_size, u8 *unzip_buf)
{
int rc;
p_hwfn->stream->next_in = input_buf;
p_hwfn->stream->avail_in = input_len;
p_hwfn->stream->next_out = unzip_buf;
p_hwfn->stream->avail_out = max_size;
rc = inflateInit2(p_hwfn->stream, MAX_WBITS);
if (rc != Z_OK) {
DP_ERR(p_hwfn,
"zlib init failed, rc = %d\n", rc);
return 0;
}
rc = inflate(p_hwfn->stream, Z_FINISH);
inflateEnd(p_hwfn->stream);
if (rc != Z_OK && rc != Z_STREAM_END) {
DP_ERR(p_hwfn,
"FW unzip error: %s, rc=%d\n", p_hwfn->stream->msg,
rc);
return 0;
}
return p_hwfn->stream->total_out / 4;
}
#endif
void
qede_get_mcp_proto_stats(struct ecore_dev *edev,
enum ecore_mcp_protocol_type type,
union ecore_mcp_protocol_stats *stats)
{
struct ecore_eth_stats lan_stats;
if (type == ECORE_MCP_LAN_STATS) {
ecore_get_vport_stats(edev, &lan_stats);
/* @DPDK */
stats->lan_stats.ucast_rx_pkts = lan_stats.common.rx_ucast_pkts;
stats->lan_stats.ucast_tx_pkts = lan_stats.common.tx_ucast_pkts;
stats->lan_stats.fcs_err = -1;
} else {
DP_INFO(edev, "Statistics request type %d not supported\n",
type);
}
}
void
qede_hw_err_notify(struct ecore_hwfn *p_hwfn, enum ecore_hw_err_type err_type)
{
char err_str[64];
switch (err_type) {
case ECORE_HW_ERR_FAN_FAIL:
strcpy(err_str, "Fan Failure");
break;
case ECORE_HW_ERR_MFW_RESP_FAIL:
strcpy(err_str, "MFW Response Failure");
break;
case ECORE_HW_ERR_HW_ATTN:
strcpy(err_str, "HW Attention");
break;
case ECORE_HW_ERR_DMAE_FAIL:
strcpy(err_str, "DMAE Failure");
break;
case ECORE_HW_ERR_RAMROD_FAIL:
strcpy(err_str, "Ramrod Failure");
break;
case ECORE_HW_ERR_FW_ASSERT:
strcpy(err_str, "FW Assertion");
break;
default:
strcpy(err_str, "Unknown");
}
DP_ERR(p_hwfn, "HW error occurred [%s]\n", err_str);
ecore_int_attn_clr_enable(p_hwfn->p_dev, true);
}
u32 qede_crc32(u32 crc, u8 *ptr, u32 length)
{
int i;
while (length--) {
crc ^= *ptr++;
for (i = 0; i < 8; i++)
crc = (crc >> 1) ^ ((crc & 1) ? 0xedb88320 : 0);
}
return crc;
}
|