aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/qede/qede_rxtx.c
blob: cdb85c218a8aaa254d529f2cf1ed13e0fe21187e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
/*
 * Copyright (c) 2016 QLogic Corporation.
 * All rights reserved.
 * www.qlogic.com
 *
 * See LICENSE.qede_pmd for copyright and licensing details.
 */

#include <rte_net.h>
#include "qede_rxtx.h"

static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq)
{
	struct rte_mbuf *new_mb = NULL;
	struct eth_rx_bd *rx_bd;
	dma_addr_t mapping;
	uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);

	new_mb = rte_mbuf_raw_alloc(rxq->mb_pool);
	if (unlikely(!new_mb)) {
		PMD_RX_LOG(ERR, rxq,
			   "Failed to allocate rx buffer "
			   "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
			   idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq),
			   rte_mempool_avail_count(rxq->mb_pool),
			   rte_mempool_in_use_count(rxq->mb_pool));
		return -ENOMEM;
	}
	rxq->sw_rx_ring[idx].mbuf = new_mb;
	rxq->sw_rx_ring[idx].page_offset = 0;
	mapping = rte_mbuf_data_iova_default(new_mb);
	/* Advance PROD and get BD pointer */
	rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring);
	rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
	rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
	rxq->sw_rx_prod++;
	return 0;
}

/* Criterias for calculating Rx buffer size -
 * 1) rx_buf_size should not exceed the size of mbuf
 * 2) In scattered_rx mode - minimum rx_buf_size should be
 *    (MTU + Maximum L2 Header Size + 2) / ETH_RX_MAX_BUFF_PER_PKT
 * 3) In regular mode - minimum rx_buf_size should be
 *    (MTU + Maximum L2 Header Size + 2)
 *    In above cases +2 corrosponds to 2 bytes padding in front of L2
 *    header.
 * 4) rx_buf_size should be cacheline-size aligned. So considering
 *    criteria 1, we need to adjust the size to floor instead of ceil,
 *    so that we don't exceed mbuf size while ceiling rx_buf_size.
 */
int
qede_calc_rx_buf_size(struct rte_eth_dev *dev, uint16_t mbufsz,
		      uint16_t max_frame_size)
{
	struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
	int rx_buf_size;

	if (dev->data->scattered_rx) {
		/* per HW limitation, only ETH_RX_MAX_BUFF_PER_PKT number of
		 * bufferes can be used for single packet. So need to make sure
		 * mbuf size is sufficient enough for this.
		 */
		if ((mbufsz * ETH_RX_MAX_BUFF_PER_PKT) <
		     (max_frame_size + QEDE_ETH_OVERHEAD)) {
			DP_ERR(edev, "mbuf %d size is not enough to hold max fragments (%d) for max rx packet length (%d)\n",
			       mbufsz, ETH_RX_MAX_BUFF_PER_PKT, max_frame_size);
			return -EINVAL;
		}

		rx_buf_size = RTE_MAX(mbufsz,
				      (max_frame_size + QEDE_ETH_OVERHEAD) /
				       ETH_RX_MAX_BUFF_PER_PKT);
	} else {
		rx_buf_size = max_frame_size + QEDE_ETH_OVERHEAD;
	}

	/* Align to cache-line size if needed */
	return QEDE_FLOOR_TO_CACHE_LINE_SIZE(rx_buf_size);
}

int
qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
		    uint16_t nb_desc, unsigned int socket_id,
		    __rte_unused const struct rte_eth_rxconf *rx_conf,
		    struct rte_mempool *mp)
{
	struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
	struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
	struct qede_rx_queue *rxq;
	uint16_t max_rx_pkt_len;
	uint16_t bufsz;
	size_t size;
	int rc;

	PMD_INIT_FUNC_TRACE(edev);

	/* Note: Ring size/align is controlled by struct rte_eth_desc_lim */
	if (!rte_is_power_of_2(nb_desc)) {
		DP_ERR(edev, "Ring size %u is not power of 2\n",
			  nb_desc);
		return -EINVAL;
	}

	/* Free memory prior to re-allocation if needed... */
	if (dev->data->rx_queues[queue_idx] != NULL) {
		qede_rx_queue_release(dev->data->rx_queues[queue_idx]);
		dev->data->rx_queues[queue_idx] = NULL;
	}

	/* First allocate the rx queue data structure */
	rxq = rte_zmalloc_socket("qede_rx_queue", sizeof(struct qede_rx_queue),
				 RTE_CACHE_LINE_SIZE, socket_id);

	if (!rxq) {
		DP_ERR(edev, "Unable to allocate memory for rxq on socket %u",
			  socket_id);
		return -ENOMEM;
	}

	rxq->qdev = qdev;
	rxq->mb_pool = mp;
	rxq->nb_rx_desc = nb_desc;
	rxq->queue_id = queue_idx;
	rxq->port_id = dev->data->port_id;

	max_rx_pkt_len = (uint16_t)rxmode->max_rx_pkt_len;

	/* Fix up RX buffer size */
	bufsz = (uint16_t)rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
	/* cache align the mbuf size to simplfy rx_buf_size calculation */
	bufsz = QEDE_FLOOR_TO_CACHE_LINE_SIZE(bufsz);

	if ((rxmode->enable_scatter)			||
	    (max_rx_pkt_len + QEDE_ETH_OVERHEAD) > bufsz) {
		if (!dev->data->scattered_rx) {
			DP_INFO(edev, "Forcing scatter-gather mode\n");
			dev->data->scattered_rx = 1;
		}
	}

	rc = qede_calc_rx_buf_size(dev, bufsz, max_rx_pkt_len);
	if (rc < 0) {
		rte_free(rxq);
		return rc;
	}

	rxq->rx_buf_size = rc;

	DP_INFO(edev, "mtu %u mbufsz %u bd_max_bytes %u scatter_mode %d\n",
		qdev->mtu, bufsz, rxq->rx_buf_size, dev->data->scattered_rx);

	/* Allocate the parallel driver ring for Rx buffers */
	size = sizeof(*rxq->sw_rx_ring) * rxq->nb_rx_desc;
	rxq->sw_rx_ring = rte_zmalloc_socket("sw_rx_ring", size,
					     RTE_CACHE_LINE_SIZE, socket_id);
	if (!rxq->sw_rx_ring) {
		DP_ERR(edev, "Memory allocation fails for sw_rx_ring on"
		       " socket %u\n", socket_id);
		rte_free(rxq);
		return -ENOMEM;
	}

	/* Allocate FW Rx ring  */
	rc = qdev->ops->common->chain_alloc(edev,
					    ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
					    ECORE_CHAIN_MODE_NEXT_PTR,
					    ECORE_CHAIN_CNT_TYPE_U16,
					    rxq->nb_rx_desc,
					    sizeof(struct eth_rx_bd),
					    &rxq->rx_bd_ring,
					    NULL);

	if (rc != ECORE_SUCCESS) {
		DP_ERR(edev, "Memory allocation fails for RX BD ring"
		       " on socket %u\n", socket_id);
		rte_free(rxq->sw_rx_ring);
		rte_free(rxq);
		return -ENOMEM;
	}

	/* Allocate FW completion ring */
	rc = qdev->ops->common->chain_alloc(edev,
					    ECORE_CHAIN_USE_TO_CONSUME,
					    ECORE_CHAIN_MODE_PBL,
					    ECORE_CHAIN_CNT_TYPE_U16,
					    rxq->nb_rx_desc,
					    sizeof(union eth_rx_cqe),
					    &rxq->rx_comp_ring,
					    NULL);

	if (rc != ECORE_SUCCESS) {
		DP_ERR(edev, "Memory allocation fails for RX CQE ring"
		       " on socket %u\n", socket_id);
		qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
		rte_free(rxq->sw_rx_ring);
		rte_free(rxq);
		return -ENOMEM;
	}

	dev->data->rx_queues[queue_idx] = rxq;
	qdev->fp_array[queue_idx].rxq = rxq;

	DP_INFO(edev, "rxq %d num_desc %u rx_buf_size=%u socket %u\n",
		  queue_idx, nb_desc, rxq->rx_buf_size, socket_id);

	return 0;
}

static void
qede_rx_queue_reset(__rte_unused struct qede_dev *qdev,
		    struct qede_rx_queue *rxq)
{
	DP_INFO(&qdev->edev, "Reset RX queue %u\n", rxq->queue_id);
	ecore_chain_reset(&rxq->rx_bd_ring);
	ecore_chain_reset(&rxq->rx_comp_ring);
	rxq->sw_rx_prod = 0;
	rxq->sw_rx_cons = 0;
	*rxq->hw_cons_ptr = 0;
}

static void qede_rx_queue_release_mbufs(struct qede_rx_queue *rxq)
{
	uint16_t i;

	if (rxq->sw_rx_ring) {
		for (i = 0; i < rxq->nb_rx_desc; i++) {
			if (rxq->sw_rx_ring[i].mbuf) {
				rte_pktmbuf_free(rxq->sw_rx_ring[i].mbuf);
				rxq->sw_rx_ring[i].mbuf = NULL;
			}
		}
	}
}

void qede_rx_queue_release(void *rx_queue)
{
	struct qede_rx_queue *rxq = rx_queue;
	struct qede_dev *qdev;
	struct ecore_dev *edev;

	if (rxq) {
		qdev = rxq->qdev;
		edev = QEDE_INIT_EDEV(qdev);
		PMD_INIT_FUNC_TRACE(edev);
		qede_rx_queue_release_mbufs(rxq);
		qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
		qdev->ops->common->chain_free(edev, &rxq->rx_comp_ring);
		rte_free(rxq->sw_rx_ring);
		rte_free(rxq);
	}
}

/* Stops a given RX queue in the HW */
static int qede_rx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
{
	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
	struct ecore_hwfn *p_hwfn;
	struct qede_rx_queue *rxq;
	int hwfn_index;
	int rc;

	if (rx_queue_id < eth_dev->data->nb_rx_queues) {
		rxq = eth_dev->data->rx_queues[rx_queue_id];
		hwfn_index = rx_queue_id % edev->num_hwfns;
		p_hwfn = &edev->hwfns[hwfn_index];
		rc = ecore_eth_rx_queue_stop(p_hwfn, rxq->handle,
				true, false);
		if (rc != ECORE_SUCCESS) {
			DP_ERR(edev, "RX queue %u stop fails\n", rx_queue_id);
			return -1;
		}
		qede_rx_queue_release_mbufs(rxq);
		qede_rx_queue_reset(qdev, rxq);
		eth_dev->data->rx_queue_state[rx_queue_id] =
			RTE_ETH_QUEUE_STATE_STOPPED;
		DP_INFO(edev, "RX queue %u stopped\n", rx_queue_id);
	} else {
		DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
		rc = -EINVAL;
	}

	return rc;
}

int
qede_tx_queue_setup(struct rte_eth_dev *dev,
		    uint16_t queue_idx,
		    uint16_t nb_desc,
		    unsigned int socket_id,
		    const struct rte_eth_txconf *tx_conf)
{
	struct qede_dev *qdev = dev->data->dev_private;
	struct ecore_dev *edev = &qdev->edev;
	struct qede_tx_queue *txq;
	int rc;

	PMD_INIT_FUNC_TRACE(edev);

	if (!rte_is_power_of_2(nb_desc)) {
		DP_ERR(edev, "Ring size %u is not power of 2\n",
		       nb_desc);
		return -EINVAL;
	}

	/* Free memory prior to re-allocation if needed... */
	if (dev->data->tx_queues[queue_idx] != NULL) {
		qede_tx_queue_release(dev->data->tx_queues[queue_idx]);
		dev->data->tx_queues[queue_idx] = NULL;
	}

	txq = rte_zmalloc_socket("qede_tx_queue", sizeof(struct qede_tx_queue),
				 RTE_CACHE_LINE_SIZE, socket_id);

	if (txq == NULL) {
		DP_ERR(edev,
		       "Unable to allocate memory for txq on socket %u",
		       socket_id);
		return -ENOMEM;
	}

	txq->nb_tx_desc = nb_desc;
	txq->qdev = qdev;
	txq->port_id = dev->data->port_id;

	rc = qdev->ops->common->chain_alloc(edev,
					    ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
					    ECORE_CHAIN_MODE_PBL,
					    ECORE_CHAIN_CNT_TYPE_U16,
					    txq->nb_tx_desc,
					    sizeof(union eth_tx_bd_types),
					    &txq->tx_pbl,
					    NULL);
	if (rc != ECORE_SUCCESS) {
		DP_ERR(edev,
		       "Unable to allocate memory for txbd ring on socket %u",
		       socket_id);
		qede_tx_queue_release(txq);
		return -ENOMEM;
	}

	/* Allocate software ring */
	txq->sw_tx_ring = rte_zmalloc_socket("txq->sw_tx_ring",
					     (sizeof(struct qede_tx_entry) *
					      txq->nb_tx_desc),
					     RTE_CACHE_LINE_SIZE, socket_id);

	if (!txq->sw_tx_ring) {
		DP_ERR(edev,
		       "Unable to allocate memory for txbd ring on socket %u",
		       socket_id);
		qdev->ops->common->chain_free(edev, &txq->tx_pbl);
		qede_tx_queue_release(txq);
		return -ENOMEM;
	}

	txq->queue_id = queue_idx;

	txq->nb_tx_avail = txq->nb_tx_desc;

	txq->tx_free_thresh =
	    tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh :
	    (txq->nb_tx_desc - QEDE_DEFAULT_TX_FREE_THRESH);

	dev->data->tx_queues[queue_idx] = txq;
	qdev->fp_array[queue_idx].txq = txq;

	DP_INFO(edev,
		  "txq %u num_desc %u tx_free_thresh %u socket %u\n",
		  queue_idx, nb_desc, txq->tx_free_thresh, socket_id);

	return 0;
}

static void
qede_tx_queue_reset(__rte_unused struct qede_dev *qdev,
		    struct qede_tx_queue *txq)
{
	DP_INFO(&qdev->edev, "Reset TX queue %u\n", txq->queue_id);
	ecore_chain_reset(&txq->tx_pbl);
	txq->sw_tx_cons = 0;
	txq->sw_tx_prod = 0;
	*txq->hw_cons_ptr = 0;
}

static void qede_tx_queue_release_mbufs(struct qede_tx_queue *txq)
{
	uint16_t i;

	if (txq->sw_tx_ring) {
		for (i = 0; i < txq->nb_tx_desc; i++) {
			if (txq->sw_tx_ring[i].mbuf) {
				rte_pktmbuf_free(txq->sw_tx_ring[i].mbuf);
				txq->sw_tx_ring[i].mbuf = NULL;
			}
		}
	}
}

void qede_tx_queue_release(void *tx_queue)
{
	struct qede_tx_queue *txq = tx_queue;
	struct qede_dev *qdev;
	struct ecore_dev *edev;

	if (txq) {
		qdev = txq->qdev;
		edev = QEDE_INIT_EDEV(qdev);
		PMD_INIT_FUNC_TRACE(edev);
		qede_tx_queue_release_mbufs(txq);
		qdev->ops->common->chain_free(edev, &txq->tx_pbl);
		rte_free(txq->sw_tx_ring);
		rte_free(txq);
	}
}

/* This function allocates fast-path status block memory */
static int
qede_alloc_mem_sb(struct qede_dev *qdev, struct ecore_sb_info *sb_info,
		  uint16_t sb_id)
{
	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
	struct status_block_e4 *sb_virt;
	dma_addr_t sb_phys;
	int rc;

	sb_virt = OSAL_DMA_ALLOC_COHERENT(edev, &sb_phys,
					  sizeof(struct status_block_e4));
	if (!sb_virt) {
		DP_ERR(edev, "Status block allocation failed\n");
		return -ENOMEM;
	}
	rc = qdev->ops->common->sb_init(edev, sb_info, sb_virt,
					sb_phys, sb_id);
	if (rc) {
		DP_ERR(edev, "Status block initialization failed\n");
		OSAL_DMA_FREE_COHERENT(edev, sb_virt, sb_phys,
				       sizeof(struct status_block_e4));
		return rc;
	}

	return 0;
}

int qede_alloc_fp_resc(struct qede_dev *qdev)
{
	struct ecore_dev *edev = &qdev->edev;
	struct qede_fastpath *fp;
	uint32_t num_sbs;
	uint16_t sb_idx;

	if (IS_VF(edev))
		ecore_vf_get_num_sbs(ECORE_LEADING_HWFN(edev), &num_sbs);
	else
		num_sbs = ecore_cxt_get_proto_cid_count
			  (ECORE_LEADING_HWFN(edev), PROTOCOLID_ETH, NULL);

	if (num_sbs == 0) {
		DP_ERR(edev, "No status blocks available\n");
		return -EINVAL;
	}

	qdev->fp_array = rte_calloc("fp", QEDE_RXTX_MAX(qdev),
				sizeof(*qdev->fp_array), RTE_CACHE_LINE_SIZE);

	if (!qdev->fp_array) {
		DP_ERR(edev, "fp array allocation failed\n");
		return -ENOMEM;
	}

	memset((void *)qdev->fp_array, 0, QEDE_RXTX_MAX(qdev) *
			sizeof(*qdev->fp_array));

	for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
		fp = &qdev->fp_array[sb_idx];
		if (!fp)
			continue;
		fp->sb_info = rte_calloc("sb", 1, sizeof(struct ecore_sb_info),
				RTE_CACHE_LINE_SIZE);
		if (!fp->sb_info) {
			DP_ERR(edev, "FP sb_info allocation fails\n");
			return -1;
		}
		if (qede_alloc_mem_sb(qdev, fp->sb_info, sb_idx)) {
			DP_ERR(edev, "FP status block allocation fails\n");
			return -1;
		}
		DP_INFO(edev, "sb_info idx 0x%x initialized\n",
				fp->sb_info->igu_sb_id);
	}

	return 0;
}

void qede_dealloc_fp_resc(struct rte_eth_dev *eth_dev)
{
	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
	struct qede_fastpath *fp;
	uint16_t sb_idx;
	uint8_t i;

	PMD_INIT_FUNC_TRACE(edev);

	for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
		fp = &qdev->fp_array[sb_idx];
		if (!fp)
			continue;
		DP_INFO(edev, "Free sb_info index 0x%x\n",
				fp->sb_info->igu_sb_id);
		if (fp->sb_info) {
			OSAL_DMA_FREE_COHERENT(edev, fp->sb_info->sb_virt,
				fp->sb_info->sb_phys,
				sizeof(struct status_block_e4));
			rte_free(fp->sb_info);
			fp->sb_info = NULL;
		}
	}

	/* Free packet buffers and ring memories */
	for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
		if (eth_dev->data->rx_queues[i]) {
			qede_rx_queue_release(eth_dev->data->rx_queues[i]);
			eth_dev->data->rx_queues[i] = NULL;
		}
	}

	for (i = 0; i < eth_dev->data->nb_tx_queues; i++) {
		if (eth_dev->data->tx_queues[i]) {
			qede_tx_queue_release(eth_dev->data->tx_queues[i]);
			eth_dev->data->tx_queues[i] = NULL;
		}
	}

	if (qdev->fp_array)
		rte_free(qdev->fp_array);
	qdev->fp_array = NULL;
}

static inline void
qede_update_rx_prod(__rte_unused struct qede_dev *edev,
		    struct qede_rx_queue *rxq)
{
	uint16_t bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
	uint16_t cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring);
	struct eth_rx_prod_data rx_prods = { 0 };

	/* Update producers */
	rx_prods.bd_prod = rte_cpu_to_le_16(bd_prod);
	rx_prods.cqe_prod = rte_cpu_to_le_16(cqe_prod);

	/* Make sure that the BD and SGE data is updated before updating the
	 * producers since FW might read the BD/SGE right after the producer
	 * is updated.
	 */
	rte_wmb();

	internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
			(uint32_t *)&rx_prods);

	/* mmiowb is needed to synchronize doorbell writes from more than one
	 * processor. It guarantees that the write arrives to the device before
	 * the napi lock is released and another qede_poll is called (possibly
	 * on another CPU). Without this barrier, the next doorbell can bypass
	 * this doorbell. This is applicable to IA64/Altix systems.
	 */
	rte_wmb();

	PMD_RX_LOG(DEBUG, rxq, "bd_prod %u  cqe_prod %u", bd_prod, cqe_prod);
}

/* Starts a given RX queue in HW */
static int
qede_rx_queue_start(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
{
	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
	struct ecore_queue_start_common_params params;
	struct ecore_rxq_start_ret_params ret_params;
	struct qede_rx_queue *rxq;
	struct qede_fastpath *fp;
	struct ecore_hwfn *p_hwfn;
	dma_addr_t p_phys_table;
	uint16_t page_cnt;
	uint16_t j;
	int hwfn_index;
	int rc;

	if (rx_queue_id < eth_dev->data->nb_rx_queues) {
		fp = &qdev->fp_array[rx_queue_id];
		rxq = eth_dev->data->rx_queues[rx_queue_id];
		/* Allocate buffers for the Rx ring */
		for (j = 0; j < rxq->nb_rx_desc; j++) {
			rc = qede_alloc_rx_buffer(rxq);
			if (rc) {
				DP_ERR(edev, "RX buffer allocation failed"
						" for rxq = %u\n", rx_queue_id);
				return -ENOMEM;
			}
		}
		/* disable interrupts */
		ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0);
		/* Prepare ramrod */
		memset(&params, 0, sizeof(params));
		params.queue_id = rx_queue_id / edev->num_hwfns;
		params.vport_id = 0;
		params.stats_id = params.vport_id;
		params.p_sb = fp->sb_info;
		DP_INFO(edev, "rxq %u igu_sb_id 0x%x\n",
				fp->rxq->queue_id, fp->sb_info->igu_sb_id);
		params.sb_idx = RX_PI;
		hwfn_index = rx_queue_id % edev->num_hwfns;
		p_hwfn = &edev->hwfns[hwfn_index];
		p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->rx_comp_ring);
		page_cnt = ecore_chain_get_page_cnt(&fp->rxq->rx_comp_ring);
		memset(&ret_params, 0, sizeof(ret_params));
		rc = ecore_eth_rx_queue_start(p_hwfn,
				p_hwfn->hw_info.opaque_fid,
				&params, fp->rxq->rx_buf_size,
				fp->rxq->rx_bd_ring.p_phys_addr,
				p_phys_table, page_cnt,
				&ret_params);
		if (rc) {
			DP_ERR(edev, "RX queue %u could not be started, rc = %d\n",
					rx_queue_id, rc);
			return -1;
		}
		/* Update with the returned parameters */
		fp->rxq->hw_rxq_prod_addr = ret_params.p_prod;
		fp->rxq->handle = ret_params.p_handle;

		fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
		qede_update_rx_prod(qdev, fp->rxq);
		eth_dev->data->rx_queue_state[rx_queue_id] =
			RTE_ETH_QUEUE_STATE_STARTED;
		DP_INFO(edev, "RX queue %u started\n", rx_queue_id);
	} else {
		DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
		rc = -EINVAL;
	}

	return rc;
}

static int
qede_tx_queue_start(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
{
	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
	struct ecore_queue_start_common_params params;
	struct ecore_txq_start_ret_params ret_params;
	struct ecore_hwfn *p_hwfn;
	dma_addr_t p_phys_table;
	struct qede_tx_queue *txq;
	struct qede_fastpath *fp;
	uint16_t page_cnt;
	int hwfn_index;
	int rc;

	if (tx_queue_id < eth_dev->data->nb_tx_queues) {
		txq = eth_dev->data->tx_queues[tx_queue_id];
		fp = &qdev->fp_array[tx_queue_id];
		memset(&params, 0, sizeof(params));
		params.queue_id = tx_queue_id / edev->num_hwfns;
		params.vport_id = 0;
		params.stats_id = params.vport_id;
		params.p_sb = fp->sb_info;
		DP_INFO(edev, "txq %u igu_sb_id 0x%x\n",
				fp->txq->queue_id, fp->sb_info->igu_sb_id);
		params.sb_idx = TX_PI(0); /* tc = 0 */
		p_phys_table = ecore_chain_get_pbl_phys(&txq->tx_pbl);
		page_cnt = ecore_chain_get_page_cnt(&txq->tx_pbl);
		hwfn_index = tx_queue_id % edev->num_hwfns;
		p_hwfn = &edev->hwfns[hwfn_index];
		if (qdev->dev_info.is_legacy)
			fp->txq->is_legacy = true;
		rc = ecore_eth_tx_queue_start(p_hwfn,
				p_hwfn->hw_info.opaque_fid,
				&params, 0 /* tc */,
				p_phys_table, page_cnt,
				&ret_params);
		if (rc != ECORE_SUCCESS) {
			DP_ERR(edev, "TX queue %u couldn't be started, rc=%d\n",
					tx_queue_id, rc);
			return -1;
		}
		txq->doorbell_addr = ret_params.p_doorbell;
		txq->handle = ret_params.p_handle;

		txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[TX_PI(0)];
		SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST,
				DB_DEST_XCM);
		SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
				DB_AGG_CMD_SET);
		SET_FIELD(txq->tx_db.data.params,
				ETH_DB_DATA_AGG_VAL_SEL,
				DQ_XCM_ETH_TX_BD_PROD_CMD);
		txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
		eth_dev->data->tx_queue_state[tx_queue_id] =
			RTE_ETH_QUEUE_STATE_STARTED;
		DP_INFO(edev, "TX queue %u started\n", tx_queue_id);
	} else {
		DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
		rc = -EINVAL;
	}

	return rc;
}

static inline void
qede_free_tx_pkt(struct qede_tx_queue *txq)
{
	struct rte_mbuf *mbuf;
	uint16_t nb_segs;
	uint16_t idx;

	idx = TX_CONS(txq);
	mbuf = txq->sw_tx_ring[idx].mbuf;
	if (mbuf) {
		nb_segs = mbuf->nb_segs;
		PMD_TX_LOG(DEBUG, txq, "nb_segs to free %u\n", nb_segs);
		while (nb_segs) {
			/* It's like consuming rxbuf in recv() */
			ecore_chain_consume(&txq->tx_pbl);
			txq->nb_tx_avail++;
			nb_segs--;
		}
		rte_pktmbuf_free(mbuf);
		txq->sw_tx_ring[idx].mbuf = NULL;
		txq->sw_tx_cons++;
		PMD_TX_LOG(DEBUG, txq, "Freed tx packet\n");
	} else {
		ecore_chain_consume(&txq->tx_pbl);
		txq->nb_tx_avail++;
	}
}

static inline void
qede_process_tx_compl(__rte_unused struct ecore_dev *edev,
		      struct qede_tx_queue *txq)
{
	uint16_t hw_bd_cons;
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
	uint16_t sw_tx_cons;
#endif

	rte_compiler_barrier();
	hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr);
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
	sw_tx_cons = ecore_chain_get_cons_idx(&txq->tx_pbl);
	PMD_TX_LOG(DEBUG, txq, "Tx Completions = %u\n",
		   abs(hw_bd_cons - sw_tx_cons));
#endif
	while (hw_bd_cons !=  ecore_chain_get_cons_idx(&txq->tx_pbl))
		qede_free_tx_pkt(txq);
}

static int qede_drain_txq(struct qede_dev *qdev,
			  struct qede_tx_queue *txq, bool allow_drain)
{
	struct ecore_dev *edev = &qdev->edev;
	int rc, cnt = 1000;

	while (txq->sw_tx_cons != txq->sw_tx_prod) {
		qede_process_tx_compl(edev, txq);
		if (!cnt) {
			if (allow_drain) {
				DP_ERR(edev, "Tx queue[%u] is stuck,"
					  "requesting MCP to drain\n",
					  txq->queue_id);
				rc = qdev->ops->common->drain(edev);
				if (rc)
					return rc;
				return qede_drain_txq(qdev, txq, false);
			}
			DP_ERR(edev, "Timeout waiting for tx queue[%d]:"
				  "PROD=%d, CONS=%d\n",
				  txq->queue_id, txq->sw_tx_prod,
				  txq->sw_tx_cons);
			return -1;
		}
		cnt--;
		DELAY(1000);
		rte_compiler_barrier();
	}

	/* FW finished processing, wait for HW to transmit all tx packets */
	DELAY(2000);

	return 0;
}

/* Stops a given TX queue in the HW */
static int qede_tx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
{
	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
	struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
	struct ecore_hwfn *p_hwfn;
	struct qede_tx_queue *txq;
	int hwfn_index;
	int rc;

	if (tx_queue_id < eth_dev->data->nb_tx_queues) {
		txq = eth_dev->data->tx_queues[tx_queue_id];
		/* Drain txq */
		if (qede_drain_txq(qdev, txq, true))
			return -1; /* For the lack of retcodes */
		/* Stop txq */
		hwfn_index = tx_queue_id % edev->num_hwfns;
		p_hwfn = &edev->hwfns[hwfn_index];
		rc = ecore_eth_tx_queue_stop(p_hwfn, txq->handle);
		if (rc != ECORE_SUCCESS) {
			DP_ERR(edev, "TX queue %u stop fails\n", tx_queue_id);
			return -1;
		}
		qede_tx_queue_release_mbufs(txq);
		qede_tx_queue_reset(qdev, txq);
		eth_dev->data->tx_queue_state[tx_queue_id] =
			RTE_ETH_QUEUE_STATE_STOPPED;
		DP_INFO(edev, "TX queue %u stopped\n", tx_queue_id);
	} else {
		DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
		rc = -EINVAL;
	}

	return rc;
}

int qede_start_queues(struct rte_eth_dev *eth_dev)
{
	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
	uint8_t id;
	int rc = -1;

	for_each_rss(id) {
		rc = qede_rx_queue_start(eth_dev, id);
		if (rc != ECORE_SUCCESS)
			return -1;
	}

	for_each_tss(id) {
		rc = qede_tx_queue_start(eth_dev, id);
		if (rc != ECORE_SUCCESS)
			return -1;
	}

	return rc;
}

void qede_stop_queues(struct rte_eth_dev *eth_dev)
{
	struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
	uint8_t id;

	/* Stopping RX/TX queues */
	for_each_tss(id) {
		qede_tx_queue_stop(eth_dev, id);
	}

	for_each_rss(id) {
		qede_rx_queue_stop(eth_dev, id);
	}
}

static inline bool qede_tunn_exist(uint16_t flag)
{
	return !!((PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
		    PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT) & flag);
}

static inline uint8_t qede_check_tunn_csum_l3(uint16_t flag)
{
	return !!((PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
		PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT) & flag);
}

/*
 * qede_check_tunn_csum_l4:
 * Returns:
 * 1 : If L4 csum is enabled AND if the validation has failed.
 * 0 : Otherwise
 */
static inline uint8_t qede_check_tunn_csum_l4(uint16_t flag)
{
	if ((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
	     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT) & flag)
		return !!((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
			PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT) & flag);

	return 0;
}

static inline uint8_t qede_check_notunn_csum_l4(uint16_t flag)
{
	if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
	     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag)
		return !!((PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
			   PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT) & flag);

	return 0;
}

/* Returns outer L2, L3 and L4 packet_type for tunneled packets */
static inline uint32_t qede_rx_cqe_to_pkt_type_outer(struct rte_mbuf *m)
{
	uint32_t packet_type = RTE_PTYPE_UNKNOWN;
	struct ether_hdr *eth_hdr;
	struct ipv4_hdr *ipv4_hdr;
	struct ipv6_hdr *ipv6_hdr;
	struct vlan_hdr *vlan_hdr;
	uint16_t ethertype;
	bool vlan_tagged = 0;
	uint16_t len;

	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
	len = sizeof(struct ether_hdr);
	ethertype = rte_cpu_to_be_16(eth_hdr->ether_type);

	 /* Note: Valid only if VLAN stripping is disabled */
	if (ethertype == ETHER_TYPE_VLAN) {
		vlan_tagged = 1;
		vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
		len += sizeof(struct vlan_hdr);
		ethertype = rte_cpu_to_be_16(vlan_hdr->eth_proto);
	}

	if (ethertype == ETHER_TYPE_IPv4) {
		packet_type |= RTE_PTYPE_L3_IPV4;
		ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *, len);
		if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
			packet_type |= RTE_PTYPE_L4_TCP;
		else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
			packet_type |= RTE_PTYPE_L4_UDP;
	} else if (ethertype == ETHER_TYPE_IPv6) {
		packet_type |= RTE_PTYPE_L3_IPV6;
		ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct ipv6_hdr *, len);
		if (ipv6_hdr->proto == IPPROTO_TCP)
			packet_type |= RTE_PTYPE_L4_TCP;
		else if (ipv6_hdr->proto == IPPROTO_UDP)
			packet_type |= RTE_PTYPE_L4_UDP;
	}

	if (vlan_tagged)
		packet_type |= RTE_PTYPE_L2_ETHER_VLAN;
	else
		packet_type |= RTE_PTYPE_L2_ETHER;

	return packet_type;
}

static inline uint32_t qede_rx_cqe_to_pkt_type_inner(uint16_t flags)
{
	uint16_t val;

	/* Lookup table */
	static const uint32_t
	ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
		[QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_INNER_L3_IPV4		|
				       RTE_PTYPE_INNER_L2_ETHER,
		[QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_INNER_L3_IPV6		|
				       RTE_PTYPE_INNER_L2_ETHER,
		[QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_INNER_L3_IPV4	|
					   RTE_PTYPE_INNER_L4_TCP	|
					   RTE_PTYPE_INNER_L2_ETHER,
		[QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_INNER_L3_IPV6	|
					   RTE_PTYPE_INNER_L4_TCP	|
					   RTE_PTYPE_INNER_L2_ETHER,
		[QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_INNER_L3_IPV4	|
					   RTE_PTYPE_INNER_L4_UDP	|
					   RTE_PTYPE_INNER_L2_ETHER,
		[QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_INNER_L3_IPV6	|
					   RTE_PTYPE_INNER_L4_UDP	|
					   RTE_PTYPE_INNER_L2_ETHER,
		/* Frags with no VLAN */
		[QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_INNER_L3_IPV4	|
					    RTE_PTYPE_INNER_L4_FRAG	|
					    RTE_PTYPE_INNER_L2_ETHER,
		[QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_INNER_L3_IPV6	|
					    RTE_PTYPE_INNER_L4_FRAG	|
					    RTE_PTYPE_INNER_L2_ETHER,
		/* VLANs */
		[QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_INNER_L3_IPV4	|
					    RTE_PTYPE_INNER_L2_ETHER_VLAN,
		[QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_INNER_L3_IPV6	|
					    RTE_PTYPE_INNER_L2_ETHER_VLAN,
		[QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV4	|
						RTE_PTYPE_INNER_L4_TCP	|
						RTE_PTYPE_INNER_L2_ETHER_VLAN,
		[QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV6	|
						RTE_PTYPE_INNER_L4_TCP	|
						RTE_PTYPE_INNER_L2_ETHER_VLAN,
		[QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV4	|
						RTE_PTYPE_INNER_L4_UDP	|
						RTE_PTYPE_INNER_L2_ETHER_VLAN,
		[QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV6	|
						RTE_PTYPE_INNER_L4_UDP	|
						RTE_PTYPE_INNER_L2_ETHER_VLAN,
		/* Frags with VLAN */
		[QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV4 |
						 RTE_PTYPE_INNER_L4_FRAG |
						 RTE_PTYPE_INNER_L2_ETHER_VLAN,
		[QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV6 |
						 RTE_PTYPE_INNER_L4_FRAG |
						 RTE_PTYPE_INNER_L2_ETHER_VLAN,
	};

	/* Bits (0..3) provides L3/L4 protocol type */
	/* Bits (4,5) provides frag and VLAN info */
	val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
	       PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
	       (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
		PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
	       (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
		PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
		(PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
		 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;

	if (val < QEDE_PKT_TYPE_MAX)
		return ptype_lkup_tbl[val];

	return RTE_PTYPE_UNKNOWN;
}

static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags)
{
	uint16_t val;

	/* Lookup table */
	static const uint32_t
	ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
		[QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L2_ETHER,
		[QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L2_ETHER,
		[QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_L3_IPV4	|
					   RTE_PTYPE_L4_TCP	|
					   RTE_PTYPE_L2_ETHER,
		[QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_L3_IPV6	|
					   RTE_PTYPE_L4_TCP	|
					   RTE_PTYPE_L2_ETHER,
		[QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_L3_IPV4	|
					   RTE_PTYPE_L4_UDP	|
					   RTE_PTYPE_L2_ETHER,
		[QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_L3_IPV6	|
					   RTE_PTYPE_L4_UDP	|
					   RTE_PTYPE_L2_ETHER,
		/* Frags with no VLAN */
		[QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_L3_IPV4	|
					    RTE_PTYPE_L4_FRAG	|
					    RTE_PTYPE_L2_ETHER,
		[QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_L3_IPV6	|
					    RTE_PTYPE_L4_FRAG	|
					    RTE_PTYPE_L2_ETHER,
		/* VLANs */
		[QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_L3_IPV4		|
					    RTE_PTYPE_L2_ETHER_VLAN,
		[QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_L3_IPV6		|
					    RTE_PTYPE_L2_ETHER_VLAN,
		[QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_L3_IPV4	|
						RTE_PTYPE_L4_TCP	|
						RTE_PTYPE_L2_ETHER_VLAN,
		[QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_L3_IPV6	|
						RTE_PTYPE_L4_TCP	|
						RTE_PTYPE_L2_ETHER_VLAN,
		[QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_L3_IPV4	|
						RTE_PTYPE_L4_UDP	|
						RTE_PTYPE_L2_ETHER_VLAN,
		[QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_L3_IPV6	|
						RTE_PTYPE_L4_UDP	|
						RTE_PTYPE_L2_ETHER_VLAN,
		/* Frags with VLAN */
		[QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_L3_IPV4	|
						 RTE_PTYPE_L4_FRAG	|
						 RTE_PTYPE_L2_ETHER_VLAN,
		[QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_L3_IPV6	|
						 RTE_PTYPE_L4_FRAG	|
						 RTE_PTYPE_L2_ETHER_VLAN,
	};

	/* Bits (0..3) provides L3/L4 protocol type */
	/* Bits (4,5) provides frag and VLAN info */
	val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
	       PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
	       (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
		PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
	       (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
		PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
		(PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
		 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;

	if (val < QEDE_PKT_TYPE_MAX)
		return ptype_lkup_tbl[val];

	return RTE_PTYPE_UNKNOWN;
}

static inline uint8_t
qede_check_notunn_csum_l3(struct rte_mbuf *m, uint16_t flag)
{
	struct ipv4_hdr *ip;
	uint16_t pkt_csum;
	uint16_t calc_csum;
	uint16_t val;

	val = ((PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
		PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT) & flag);

	if (unlikely(val)) {
		m->packet_type = qede_rx_cqe_to_pkt_type(flag);
		if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
			ip = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
					   sizeof(struct ether_hdr));
			pkt_csum = ip->hdr_checksum;
			ip->hdr_checksum = 0;
			calc_csum = rte_ipv4_cksum(ip);
			ip->hdr_checksum = pkt_csum;
			return (calc_csum != pkt_csum);
		} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
			return 1;
		}
	}
	return 0;
}

static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
{
	ecore_chain_consume(&rxq->rx_bd_ring);
	rxq->sw_rx_cons++;
}

static inline void
qede_reuse_page(__rte_unused struct qede_dev *qdev,
		struct qede_rx_queue *rxq, struct qede_rx_entry *curr_cons)
{
	struct eth_rx_bd *rx_bd_prod = ecore_chain_produce(&rxq->rx_bd_ring);
	uint16_t idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
	struct qede_rx_entry *curr_prod;
	dma_addr_t new_mapping;

	curr_prod = &rxq->sw_rx_ring[idx];
	*curr_prod = *curr_cons;

	new_mapping = rte_mbuf_data_iova_default(curr_prod->mbuf) +
		      curr_prod->page_offset;

	rx_bd_prod->addr.hi = rte_cpu_to_le_32(U64_HI(new_mapping));
	rx_bd_prod->addr.lo = rte_cpu_to_le_32(U64_LO(new_mapping));

	rxq->sw_rx_prod++;
}

static inline void
qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
			struct qede_dev *qdev, uint8_t count)
{
	struct qede_rx_entry *curr_cons;

	for (; count > 0; count--) {
		curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS(rxq)];
		qede_reuse_page(qdev, rxq, curr_cons);
		qede_rx_bd_ring_consume(rxq);
	}
}

static inline void
qede_rx_process_tpa_cmn_cont_end_cqe(__rte_unused struct qede_dev *qdev,
				     struct qede_rx_queue *rxq,
				     uint8_t agg_index, uint16_t len)
{
	struct qede_agg_info *tpa_info;
	struct rte_mbuf *curr_frag; /* Pointer to currently filled TPA seg */
	uint16_t cons_idx;

	/* Under certain conditions it is possible that FW may not consume
	 * additional or new BD. So decision to consume the BD must be made
	 * based on len_list[0].
	 */
	if (rte_le_to_cpu_16(len)) {
		tpa_info = &rxq->tpa_info[agg_index];
		cons_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
		curr_frag = rxq->sw_rx_ring[cons_idx].mbuf;
		assert(curr_frag);
		curr_frag->nb_segs = 1;
		curr_frag->pkt_len = rte_le_to_cpu_16(len);
		curr_frag->data_len = curr_frag->pkt_len;
		tpa_info->tpa_tail->next = curr_frag;
		tpa_info->tpa_tail = curr_frag;
		qede_rx_bd_ring_consume(rxq);
		if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
			PMD_RX_LOG(ERR, rxq, "mbuf allocation fails\n");
			rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
			rxq->rx_alloc_errors++;
		}
	}
}

static inline void
qede_rx_process_tpa_cont_cqe(struct qede_dev *qdev,
			     struct qede_rx_queue *rxq,
			     struct eth_fast_path_rx_tpa_cont_cqe *cqe)
{
	PMD_RX_LOG(INFO, rxq, "TPA cont[%d] - len [%d]\n",
		   cqe->tpa_agg_index, rte_le_to_cpu_16(cqe->len_list[0]));
	/* only len_list[0] will have value */
	qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
					     cqe->len_list[0]);
}

static inline void
qede_rx_process_tpa_end_cqe(struct qede_dev *qdev,
			    struct qede_rx_queue *rxq,
			    struct eth_fast_path_rx_tpa_end_cqe *cqe)
{
	struct rte_mbuf *rx_mb; /* Pointer to head of the chained agg */

	qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
					     cqe->len_list[0]);
	/* Update total length and frags based on end TPA */
	rx_mb = rxq->tpa_info[cqe->tpa_agg_index].tpa_head;
	/* TODO:  Add Sanity Checks */
	rx_mb->nb_segs = cqe->num_of_bds;
	rx_mb->pkt_len = cqe->total_packet_len;

	PMD_RX_LOG(INFO, rxq, "TPA End[%d] reason %d cqe_len %d nb_segs %d"
		   " pkt_len %d\n", cqe->tpa_agg_index, cqe->end_reason,
		   rte_le_to_cpu_16(cqe->len_list[0]), rx_mb->nb_segs,
		   rx_mb->pkt_len);
}

static inline uint32_t qede_rx_cqe_to_tunn_pkt_type(uint16_t flags)
{
	uint32_t val;

	/* Lookup table */
	static const uint32_t
	ptype_tunn_lkup_tbl[QEDE_PKT_TYPE_TUNN_MAX_TYPE] __rte_cache_aligned = {
		[QEDE_PKT_TYPE_UNKNOWN] = RTE_PTYPE_UNKNOWN,
		[QEDE_PKT_TYPE_TUNN_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
		[QEDE_PKT_TYPE_TUNN_GRE] = RTE_PTYPE_TUNNEL_GRE,
		[QEDE_PKT_TYPE_TUNN_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
		[QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GENEVE] =
				RTE_PTYPE_TUNNEL_GENEVE,
		[QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GRE] =
				RTE_PTYPE_TUNNEL_GRE,
		[QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_VXLAN] =
				RTE_PTYPE_TUNNEL_VXLAN,
		[QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GENEVE] =
				RTE_PTYPE_TUNNEL_GENEVE,
		[QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GRE] =
				RTE_PTYPE_TUNNEL_GRE,
		[QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_VXLAN] =
				RTE_PTYPE_TUNNEL_VXLAN,
		[QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GENEVE] =
				RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
		[QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GRE] =
				RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
		[QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_VXLAN] =
				RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
		[QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GENEVE] =
				RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
		[QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GRE] =
				RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
		[QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_VXLAN] =
				RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
		[QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GENEVE] =
				RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
		[QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GRE] =
				RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
		[QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_VXLAN] =
				RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
		[QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GENEVE] =
				RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
		[QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GRE] =
				RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
		[QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_VXLAN] =
				RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
	};

	/* Cover bits[4-0] to include tunn_type and next protocol */
	val = ((ETH_TUNNEL_PARSING_FLAGS_TYPE_MASK <<
		ETH_TUNNEL_PARSING_FLAGS_TYPE_SHIFT) |
		(ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_MASK <<
		ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_SHIFT)) & flags;

	if (val < QEDE_PKT_TYPE_TUNN_MAX_TYPE)
		return ptype_tunn_lkup_tbl[val];
	else
		return RTE_PTYPE_UNKNOWN;
}

static inline int
qede_process_sg_pkts(void *p_rxq,  struct rte_mbuf *rx_mb,
		     uint8_t num_segs, uint16_t pkt_len)
{
	struct qede_rx_queue *rxq = p_rxq;
	struct qede_dev *qdev = rxq->qdev;
	register struct rte_mbuf *seg1 = NULL;
	register struct rte_mbuf *seg2 = NULL;
	uint16_t sw_rx_index;
	uint16_t cur_size;

	seg1 = rx_mb;
	while (num_segs) {
		cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
							pkt_len;
		if (unlikely(!cur_size)) {
			PMD_RX_LOG(ERR, rxq, "Length is 0 while %u BDs"
				   " left for mapping jumbo\n", num_segs);
			qede_recycle_rx_bd_ring(rxq, qdev, num_segs);
			return -EINVAL;
		}
		sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
		seg2 = rxq->sw_rx_ring[sw_rx_index].mbuf;
		qede_rx_bd_ring_consume(rxq);
		pkt_len -= cur_size;
		seg2->data_len = cur_size;
		seg1->next = seg2;
		seg1 = seg1->next;
		num_segs--;
		rxq->rx_segs++;
	}

	return 0;
}

#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
static inline void
print_rx_bd_info(struct rte_mbuf *m, struct qede_rx_queue *rxq,
		 uint8_t bitfield)
{
	PMD_RX_LOG(INFO, rxq,
		"len 0x%04x bf 0x%04x hash_val 0x%x"
		" ol_flags 0x%04lx l2=%s l3=%s l4=%s tunn=%s"
		" inner_l2=%s inner_l3=%s inner_l4=%s\n",
		m->data_len, bitfield, m->hash.rss,
		(unsigned long)m->ol_flags,
		rte_get_ptype_l2_name(m->packet_type),
		rte_get_ptype_l3_name(m->packet_type),
		rte_get_ptype_l4_name(m->packet_type),
		rte_get_ptype_tunnel_name(m->packet_type),
		rte_get_ptype_inner_l2_name(m->packet_type),
		rte_get_ptype_inner_l3_name(m->packet_type),
		rte_get_ptype_inner_l4_name(m->packet_type));
}
#endif

uint16_t
qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
	struct qede_rx_queue *rxq = p_rxq;
	struct qede_dev *qdev = rxq->qdev;
	struct ecore_dev *edev = &qdev->edev;
	uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index;
	uint16_t rx_pkt = 0;
	union eth_rx_cqe *cqe;
	struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL;
	register struct rte_mbuf *rx_mb = NULL;
	register struct rte_mbuf *seg1 = NULL;
	enum eth_rx_cqe_type cqe_type;
	uint16_t pkt_len = 0; /* Sum of all BD segments */
	uint16_t len; /* Length of first BD */
	uint8_t num_segs = 1;
	uint16_t preload_idx;
	uint16_t parse_flag;
#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
	uint8_t bitfield_val;
#endif
	uint8_t tunn_parse_flag;
	uint8_t j;
	struct eth_fast_path_rx_tpa_start_cqe *cqe_start_tpa;
	uint64_t ol_flags;
	uint32_t packet_type;
	uint16_t vlan_tci;
	bool tpa_start_flg;
	uint8_t offset, tpa_agg_idx, flags;
	struct qede_agg_info *tpa_info = NULL;
	uint32_t rss_hash;

	hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
	sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);

	rte_rmb();

	if (hw_comp_cons == sw_comp_cons)
		return 0;

	while (sw_comp_cons != hw_comp_cons) {
		ol_flags = 0;
		packet_type = RTE_PTYPE_UNKNOWN;
		vlan_tci = 0;
		tpa_start_flg = false;
		rss_hash = 0;

		/* Get the CQE from the completion ring */
		cqe =
		    (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
		cqe_type = cqe->fast_path_regular.type;
		PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type);

		switch (cqe_type) {
		case ETH_RX_CQE_TYPE_REGULAR:
			fp_cqe = &cqe->fast_path_regular;
		break;
		case ETH_RX_CQE_TYPE_TPA_START:
			cqe_start_tpa = &cqe->fast_path_tpa_start;
			tpa_info = &rxq->tpa_info[cqe_start_tpa->tpa_agg_index];
			tpa_start_flg = true;
			/* Mark it as LRO packet */
			ol_flags |= PKT_RX_LRO;
			/* In split mode,  seg_len is same as len_on_first_bd
			 * and ext_bd_len_list will be empty since there are
			 * no additional buffers
			 */
			PMD_RX_LOG(INFO, rxq,
			    "TPA start[%d] - len_on_first_bd %d header %d"
			    " [bd_list[0] %d], [seg_len %d]\n",
			    cqe_start_tpa->tpa_agg_index,
			    rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd),
			    cqe_start_tpa->header_len,
			    rte_le_to_cpu_16(cqe_start_tpa->ext_bd_len_list[0]),
			    rte_le_to_cpu_16(cqe_start_tpa->seg_len));

		break;
		case ETH_RX_CQE_TYPE_TPA_CONT:
			qede_rx_process_tpa_cont_cqe(qdev, rxq,
						     &cqe->fast_path_tpa_cont);
			goto next_cqe;
		case ETH_RX_CQE_TYPE_TPA_END:
			qede_rx_process_tpa_end_cqe(qdev, rxq,
						    &cqe->fast_path_tpa_end);
			tpa_agg_idx = cqe->fast_path_tpa_end.tpa_agg_index;
			tpa_info = &rxq->tpa_info[tpa_agg_idx];
			rx_mb = rxq->tpa_info[tpa_agg_idx].tpa_head;
			goto tpa_end;
		case ETH_RX_CQE_TYPE_SLOW_PATH:
			PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n");
			ecore_eth_cqe_completion(
				&edev->hwfns[rxq->queue_id % edev->num_hwfns],
				(struct eth_slow_path_rx_cqe *)cqe);
			/* fall-thru */
		default:
			goto next_cqe;
		}

		/* Get the data from the SW ring */
		sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
		rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf;
		assert(rx_mb != NULL);

		/* Handle regular CQE or TPA start CQE */
		if (!tpa_start_flg) {
			parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags);
			offset = fp_cqe->placement_offset;
			len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
			pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
			vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
			rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash);
#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
			bitfield_val = fp_cqe->bitfields;
#endif
		} else {
			parse_flag =
			    rte_le_to_cpu_16(cqe_start_tpa->pars_flags.flags);
			offset = cqe_start_tpa->placement_offset;
			/* seg_len = len_on_first_bd */
			len = rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd);
			vlan_tci = rte_le_to_cpu_16(cqe_start_tpa->vlan_tag);
#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
			bitfield_val = cqe_start_tpa->bitfields;
#endif
			rss_hash = rte_le_to_cpu_32(cqe_start_tpa->rss_hash);
		}
		if (qede_tunn_exist(parse_flag)) {
			PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n");
			if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
				PMD_RX_LOG(ERR, rxq,
					    "L4 csum failed, flags = 0x%x\n",
					    parse_flag);
				rxq->rx_hw_errors++;
				ol_flags |= PKT_RX_L4_CKSUM_BAD;
			} else {
				ol_flags |= PKT_RX_L4_CKSUM_GOOD;
			}

			if (unlikely(qede_check_tunn_csum_l3(parse_flag))) {
				PMD_RX_LOG(ERR, rxq,
					"Outer L3 csum failed, flags = 0x%x\n",
					parse_flag);
				  rxq->rx_hw_errors++;
				  ol_flags |= PKT_RX_EIP_CKSUM_BAD;
			} else {
				  ol_flags |= PKT_RX_IP_CKSUM_GOOD;
			}

			if (tpa_start_flg)
				flags = cqe_start_tpa->tunnel_pars_flags.flags;
			else
				flags = fp_cqe->tunnel_pars_flags.flags;
			tunn_parse_flag = flags;

			/* Tunnel_type */
			packet_type =
				qede_rx_cqe_to_tunn_pkt_type(tunn_parse_flag);

			/* Inner header */
			packet_type |=
			      qede_rx_cqe_to_pkt_type_inner(parse_flag);

			/* Outer L3/L4 types is not available in CQE */
			packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);

			/* Outer L3/L4 types is not available in CQE.
			 * Need to add offset to parse correctly,
			 */
			rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
			packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
		} else {
			packet_type |= qede_rx_cqe_to_pkt_type(parse_flag);
		}

		/* Common handling for non-tunnel packets and for inner
		 * headers in the case of tunnel.
		 */
		if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
			PMD_RX_LOG(ERR, rxq,
				    "L4 csum failed, flags = 0x%x\n",
				    parse_flag);
			rxq->rx_hw_errors++;
			ol_flags |= PKT_RX_L4_CKSUM_BAD;
		} else {
			ol_flags |= PKT_RX_L4_CKSUM_GOOD;
		}
		if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) {
			PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n",
				   parse_flag);
			rxq->rx_hw_errors++;
			ol_flags |= PKT_RX_IP_CKSUM_BAD;
		} else {
			ol_flags |= PKT_RX_IP_CKSUM_GOOD;
		}

		if (CQE_HAS_VLAN(parse_flag) ||
		    CQE_HAS_OUTER_VLAN(parse_flag)) {
			/* Note: FW doesn't indicate Q-in-Q packet */
			ol_flags |= PKT_RX_VLAN;
			if (qdev->vlan_strip_flg) {
				ol_flags |= PKT_RX_VLAN_STRIPPED;
				rx_mb->vlan_tci = vlan_tci;
			}
		}

		/* RSS Hash */
		if (qdev->rss_enable) {
			ol_flags |= PKT_RX_RSS_HASH;
			rx_mb->hash.rss = rss_hash;
		}

		if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
			PMD_RX_LOG(ERR, rxq,
				   "New buffer allocation failed,"
				   "dropping incoming packet\n");
			qede_recycle_rx_bd_ring(rxq, qdev, fp_cqe->bd_num);
			rte_eth_devices[rxq->port_id].
			    data->rx_mbuf_alloc_failed++;
			rxq->rx_alloc_errors++;
			break;
		}
		qede_rx_bd_ring_consume(rxq);

		if (!tpa_start_flg && fp_cqe->bd_num > 1) {
			PMD_RX_LOG(DEBUG, rxq, "Jumbo-over-BD packet: %02x BDs"
				   " len on first: %04x Total Len: %04x",
				   fp_cqe->bd_num, len, pkt_len);
			num_segs = fp_cqe->bd_num - 1;
			seg1 = rx_mb;
			if (qede_process_sg_pkts(p_rxq, seg1, num_segs,
						 pkt_len - len))
				goto next_cqe;
			for (j = 0; j < num_segs; j++) {
				if (qede_alloc_rx_buffer(rxq)) {
					PMD_RX_LOG(ERR, rxq,
						"Buffer allocation failed");
					rte_eth_devices[rxq->port_id].
						data->rx_mbuf_alloc_failed++;
					rxq->rx_alloc_errors++;
					break;
				}
				rxq->rx_segs++;
			}
		}
		rxq->rx_segs++; /* for the first segment */

		/* Prefetch next mbuf while processing current one. */
		preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
		rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf);

		/* Update rest of the MBUF fields */
		rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
		rx_mb->port = rxq->port_id;
		rx_mb->ol_flags = ol_flags;
		rx_mb->data_len = len;
		rx_mb->packet_type = packet_type;
#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
		print_rx_bd_info(rx_mb, rxq, bitfield_val);
#endif
		if (!tpa_start_flg) {
			rx_mb->nb_segs = fp_cqe->bd_num;
			rx_mb->pkt_len = pkt_len;
		} else {
			/* store ref to the updated mbuf */
			tpa_info->tpa_head = rx_mb;
			tpa_info->tpa_tail = tpa_info->tpa_head;
		}
		rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *));
tpa_end:
		if (!tpa_start_flg) {
			rx_pkts[rx_pkt] = rx_mb;
			rx_pkt++;
		}
next_cqe:
		ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
		sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
		if (rx_pkt == nb_pkts) {
			PMD_RX_LOG(DEBUG, rxq,
				   "Budget reached nb_pkts=%u received=%u",
				   rx_pkt, nb_pkts);
			break;
		}
	}

	qede_update_rx_prod(qdev, rxq);

	rxq->rcv_pkts += rx_pkt;

	PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id());

	return rx_pkt;
}


/* Populate scatter gather buffer descriptor fields */
static inline uint16_t
qede_encode_sg_bd(struct qede_tx_queue *p_txq, struct rte_mbuf *m_seg,
		  struct eth_tx_2nd_bd **bd2, struct eth_tx_3rd_bd **bd3,
		  uint16_t start_seg)
{
	struct qede_tx_queue *txq = p_txq;
	struct eth_tx_bd *tx_bd = NULL;
	dma_addr_t mapping;
	uint16_t nb_segs = 0;

	/* Check for scattered buffers */
	while (m_seg) {
		if (start_seg == 0) {
			if (!*bd2) {
				*bd2 = (struct eth_tx_2nd_bd *)
					ecore_chain_produce(&txq->tx_pbl);
				memset(*bd2, 0, sizeof(struct eth_tx_2nd_bd));
				nb_segs++;
			}
			mapping = rte_mbuf_data_iova(m_seg);
			QEDE_BD_SET_ADDR_LEN(*bd2, mapping, m_seg->data_len);
			PMD_TX_LOG(DEBUG, txq, "BD2 len %04x", m_seg->data_len);
		} else if (start_seg == 1) {
			if (!*bd3) {
				*bd3 = (struct eth_tx_3rd_bd *)
					ecore_chain_produce(&txq->tx_pbl);
				memset(*bd3, 0, sizeof(struct eth_tx_3rd_bd));
				nb_segs++;
			}
			mapping = rte_mbuf_data_iova(m_seg);
			QEDE_BD_SET_ADDR_LEN(*bd3, mapping, m_seg->data_len);
			PMD_TX_LOG(DEBUG, txq, "BD3 len %04x", m_seg->data_len);
		} else {
			tx_bd = (struct eth_tx_bd *)
				ecore_chain_produce(&txq->tx_pbl);
			memset(tx_bd, 0, sizeof(*tx_bd));
			nb_segs++;
			mapping = rte_mbuf_data_iova(m_seg);
			QEDE_BD_SET_ADDR_LEN(tx_bd, mapping, m_seg->data_len);
			PMD_TX_LOG(DEBUG, txq, "BD len %04x", m_seg->data_len);
		}
		start_seg++;
		m_seg = m_seg->next;
	}

	/* Return total scattered buffers */
	return nb_segs;
}

#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
static inline void
print_tx_bd_info(struct qede_tx_queue *txq,
		 struct eth_tx_1st_bd *bd1,
		 struct eth_tx_2nd_bd *bd2,
		 struct eth_tx_3rd_bd *bd3,
		 uint64_t tx_ol_flags)
{
	char ol_buf[256] = { 0 }; /* for verbose prints */

	if (bd1)
		PMD_TX_LOG(INFO, txq,
		   "BD1: nbytes=0x%04x nbds=0x%04x bd_flags=0x%04x bf=0x%04x",
		   rte_cpu_to_le_16(bd1->nbytes), bd1->data.nbds,
		   bd1->data.bd_flags.bitfields,
		   rte_cpu_to_le_16(bd1->data.bitfields));
	if (bd2)
		PMD_TX_LOG(INFO, txq,
		   "BD2: nbytes=0x%04x bf1=0x%04x bf2=0x%04x tunn_ip=0x%04x\n",
		   rte_cpu_to_le_16(bd2->nbytes), bd2->data.bitfields1,
		   bd2->data.bitfields2, bd2->data.tunn_ip_size);
	if (bd3)
		PMD_TX_LOG(INFO, txq,
		   "BD3: nbytes=0x%04x bf=0x%04x MSS=0x%04x "
		   "tunn_l4_hdr_start_offset_w=0x%04x tunn_hdr_size=0x%04x\n",
		   rte_cpu_to_le_16(bd3->nbytes),
		   rte_cpu_to_le_16(bd3->data.bitfields),
		   rte_cpu_to_le_16(bd3->data.lso_mss),
		   bd3->data.tunn_l4_hdr_start_offset_w,
		   bd3->data.tunn_hdr_size_w);

	rte_get_tx_ol_flag_list(tx_ol_flags, ol_buf, sizeof(ol_buf));
	PMD_TX_LOG(INFO, txq, "TX offloads = %s\n", ol_buf);
}
#endif

/* TX prepare to check packets meets TX conditions */
uint16_t
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
qede_xmit_prep_pkts(void *p_txq, struct rte_mbuf **tx_pkts,
		    uint16_t nb_pkts)
{
	struct qede_tx_queue *txq = p_txq;
#else
qede_xmit_prep_pkts(__rte_unused void *p_txq, struct rte_mbuf **tx_pkts,
		    uint16_t nb_pkts)
{
#endif
	uint64_t ol_flags;
	struct rte_mbuf *m;
	uint16_t i;
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
	int ret;
#endif

	for (i = 0; i < nb_pkts; i++) {
		m = tx_pkts[i];
		ol_flags = m->ol_flags;
		if (ol_flags & PKT_TX_TCP_SEG) {
			if (m->nb_segs >= ETH_TX_MAX_BDS_PER_LSO_PACKET) {
				rte_errno = -EINVAL;
				break;
			}
			/* TBD: confirm its ~9700B for both ? */
			if (m->tso_segsz > ETH_TX_MAX_NON_LSO_PKT_LEN) {
				rte_errno = -EINVAL;
				break;
			}
		} else {
			if (m->nb_segs >= ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) {
				rte_errno = -EINVAL;
				break;
			}
		}
		if (ol_flags & QEDE_TX_OFFLOAD_NOTSUP_MASK) {
			/* We support only limited tunnel protocols */
			if (ol_flags & PKT_TX_TUNNEL_MASK) {
				uint64_t temp;

				temp = ol_flags & PKT_TX_TUNNEL_MASK;
				if (temp == PKT_TX_TUNNEL_VXLAN ||
				    temp == PKT_TX_TUNNEL_MPLSINUDP)
					break;
			}

			rte_errno = -ENOTSUP;
			break;
		}

#ifdef RTE_LIBRTE_ETHDEV_DEBUG
		ret = rte_validate_tx_offload(m);
		if (ret != 0) {
			rte_errno = ret;
			break;
		}
#endif
	}

#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
	if (unlikely(i != nb_pkts))
		PMD_TX_LOG(ERR, txq, "TX prepare failed for %u\n",
			   nb_pkts - i);
#endif
	return i;
}

#define MPLSINUDP_HDR_SIZE			(12)

#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
static inline void
qede_mpls_tunn_tx_sanity_check(struct rte_mbuf *mbuf,
			       struct qede_tx_queue *txq)
{
	if (((mbuf->outer_l2_len + mbuf->outer_l3_len) / 2) > 0xff)
		PMD_TX_LOG(ERR, txq, "tunn_l4_hdr_start_offset overflow\n");
	if (((mbuf->outer_l2_len + mbuf->outer_l3_len +
		MPLSINUDP_HDR_SIZE) / 2) > 0xff)
		PMD_TX_LOG(ERR, txq, "tunn_hdr_size overflow\n");
	if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE) / 2) >
		ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK)
		PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
	if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2) >
		ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
		PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
}
#endif

uint16_t
qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
	struct qede_tx_queue *txq = p_txq;
	struct qede_dev *qdev = txq->qdev;
	struct ecore_dev *edev = &qdev->edev;
	struct rte_mbuf *mbuf;
	struct rte_mbuf *m_seg = NULL;
	uint16_t nb_tx_pkts;
	uint16_t bd_prod;
	uint16_t idx;
	uint16_t nb_frags;
	uint16_t nb_pkt_sent = 0;
	uint8_t nbds;
	bool lso_flg;
	bool mplsoudp_flg;
	__rte_unused bool tunn_flg;
	bool tunn_ipv6_ext_flg;
	struct eth_tx_1st_bd *bd1;
	struct eth_tx_2nd_bd *bd2;
	struct eth_tx_3rd_bd *bd3;
	uint64_t tx_ol_flags;
	uint16_t hdr_size;
	/* BD1 */
	uint16_t bd1_bf;
	uint8_t bd1_bd_flags_bf;
	uint16_t vlan;
	/* BD2 */
	uint16_t bd2_bf1;
	uint16_t bd2_bf2;
	/* BD3 */
	uint16_t mss;
	uint16_t bd3_bf;

	uint8_t tunn_l4_hdr_start_offset;
	uint8_t tunn_hdr_size;
	uint8_t inner_l2_hdr_size;
	uint16_t inner_l4_hdr_offset;

	if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
		PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u",
			   nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
		qede_process_tx_compl(edev, txq);
	}

	nb_tx_pkts  = nb_pkts;
	bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
	while (nb_tx_pkts--) {
		/* Init flags/values */
		tunn_flg = false;
		lso_flg = false;
		nbds = 0;
		vlan = 0;
		bd1 = NULL;
		bd2 = NULL;
		bd3 = NULL;
		hdr_size = 0;
		bd1_bf = 0;
		bd1_bd_flags_bf = 0;
		bd2_bf1 = 0;
		bd2_bf2 = 0;
		mss = 0;
		bd3_bf = 0;
		mplsoudp_flg = false;
		tunn_ipv6_ext_flg = false;
		tunn_hdr_size = 0;
		tunn_l4_hdr_start_offset = 0;

		mbuf = *tx_pkts++;
		assert(mbuf);

		/* Check minimum TX BDS availability against available BDs */
		if (unlikely(txq->nb_tx_avail < mbuf->nb_segs))
			break;

		tx_ol_flags = mbuf->ol_flags;
		bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;

		/* TX prepare would have already checked supported tunnel Tx
		 * offloads. Don't rely on pkt_type marked by Rx, instead use
		 * tx_ol_flags to decide.
		 */
		if (((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
						PKT_TX_TUNNEL_VXLAN) ||
		    ((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
						PKT_TX_TUNNEL_MPLSINUDP)) {
			/* Check against max which is Tunnel IPv6 + ext */
			if (unlikely(txq->nb_tx_avail <
				ETH_TX_MIN_BDS_PER_TUNN_IPV6_WITH_EXT_PKT))
					break;
			tunn_flg = true;
			/* First indicate its a tunnel pkt */
			bd1_bf |= ETH_TX_DATA_1ST_BD_TUNN_FLAG_MASK <<
				  ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
			/* Legacy FW had flipped behavior in regard to this bit
			 * i.e. it needed to set to prevent FW from touching
			 * encapsulated packets when it didn't need to.
			 */
			if (unlikely(txq->is_legacy)) {
				bd1_bf ^= 1 <<
					ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
			}

			/* Outer IP checksum offload */
			if (tx_ol_flags & (PKT_TX_OUTER_IP_CKSUM |
					   PKT_TX_OUTER_IPV4)) {
				bd1_bd_flags_bf |=
					ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_MASK <<
					ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
			}

			/**
			 * Currently, only inner checksum offload in MPLS-in-UDP
			 * tunnel with one MPLS label is supported. Both outer
			 * and inner layers  lengths need to be provided in
			 * mbuf.
			 */
			if ((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
						PKT_TX_TUNNEL_MPLSINUDP) {
				mplsoudp_flg = true;
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
				qede_mpls_tunn_tx_sanity_check(mbuf, txq);
#endif
				/* Outer L4 offset in two byte words */
				tunn_l4_hdr_start_offset =
				  (mbuf->outer_l2_len + mbuf->outer_l3_len) / 2;
				/* Tunnel header size in two byte words */
				tunn_hdr_size = (mbuf->outer_l2_len +
						mbuf->outer_l3_len +
						MPLSINUDP_HDR_SIZE) / 2;
				/* Inner L2 header size in two byte words */
				inner_l2_hdr_size = (mbuf->l2_len -
						MPLSINUDP_HDR_SIZE) / 2;
				/* Inner L4 header offset from the beggining
				 * of inner packet in two byte words
				 */
				inner_l4_hdr_offset = (mbuf->l2_len -
					MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2;

				/* Inner L2 size and address type */
				bd2_bf1 |= (inner_l2_hdr_size &
					ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK) <<
					ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_SHIFT;
				bd2_bf1 |= (UNICAST_ADDRESS &
					ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_MASK) <<
					ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_SHIFT;
				/* Treated as IPv6+Ext */
				bd2_bf1 |=
				    1 << ETH_TX_DATA_2ND_BD_TUNN_IPV6_EXT_SHIFT;

				/* Mark inner IPv6 if present */
				if (tx_ol_flags & PKT_TX_IPV6)
					bd2_bf1 |=
						1 << ETH_TX_DATA_2ND_BD_TUNN_INNER_IPV6_SHIFT;

				/* Inner L4 offsets */
				if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
				     (tx_ol_flags & (PKT_TX_UDP_CKSUM |
							PKT_TX_TCP_CKSUM))) {
					/* Determines if BD3 is needed */
					tunn_ipv6_ext_flg = true;
					if ((tx_ol_flags & PKT_TX_L4_MASK) ==
							PKT_TX_UDP_CKSUM) {
						bd2_bf1 |=
							1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
					}

					/* TODO other pseudo checksum modes are
					 * not supported
					 */
					bd2_bf1 |=
					ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
					ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT;
					bd2_bf2 |= (inner_l4_hdr_offset &
						ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) <<
						ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
				}
			} /* End MPLSoUDP */
		} /* End Tunnel handling */

		if (tx_ol_flags & PKT_TX_TCP_SEG) {
			lso_flg = true;
			if (unlikely(txq->nb_tx_avail <
						ETH_TX_MIN_BDS_PER_LSO_PKT))
				break;
			/* For LSO, packet header and payload must reside on
			 * buffers pointed by different BDs. Using BD1 for HDR
			 * and BD2 onwards for data.
			 */
			hdr_size = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
			if (tunn_flg)
				hdr_size += mbuf->outer_l2_len +
					    mbuf->outer_l3_len;

			bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT;
			bd1_bd_flags_bf |=
					1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
			/* PKT_TX_TCP_SEG implies PKT_TX_TCP_CKSUM */
			bd1_bd_flags_bf |=
					1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
			mss = rte_cpu_to_le_16(mbuf->tso_segsz);
			/* Using one header BD */
			bd3_bf |= rte_cpu_to_le_16(1 <<
					ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
		} else {
			if (unlikely(txq->nb_tx_avail <
					ETH_TX_MIN_BDS_PER_NON_LSO_PKT))
				break;
			bd1_bf |=
			       (mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
				<< ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
		}

		/* Descriptor based VLAN insertion */
		if (tx_ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
			vlan = rte_cpu_to_le_16(mbuf->vlan_tci);
			bd1_bd_flags_bf |=
			    1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
		}

		/* Offload the IP checksum in the hardware */
		if (tx_ol_flags & PKT_TX_IP_CKSUM) {
			bd1_bd_flags_bf |=
				1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
			/* There's no DPDK flag to request outer-L4 csum
			 * offload. But in the case of tunnel if inner L3 or L4
			 * csum offload is requested then we need to force
			 * recalculation of L4 tunnel header csum also.
			 */
			if (tunn_flg) {
				bd1_bd_flags_bf |=
					ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
					ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
			}
		}

		/* L4 checksum offload (tcp or udp) */
		if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
		    (tx_ol_flags & (PKT_TX_UDP_CKSUM | PKT_TX_TCP_CKSUM))) {
			bd1_bd_flags_bf |=
				1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
			/* There's no DPDK flag to request outer-L4 csum
			 * offload. But in the case of tunnel if inner L3 or L4
			 * csum offload is requested then we need to force
			 * recalculation of L4 tunnel header csum also.
			 */
			if (tunn_flg) {
				bd1_bd_flags_bf |=
					ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
					ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
			}
		}

		/* Fill the entry in the SW ring and the BDs in the FW ring */
		idx = TX_PROD(txq);
		txq->sw_tx_ring[idx].mbuf = mbuf;

		/* BD1 */
		bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
		memset(bd1, 0, sizeof(struct eth_tx_1st_bd));
		nbds++;

		/* Map MBUF linear data for DMA and set in the BD1 */
		QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
				     mbuf->data_len);
		bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf);
		bd1->data.bd_flags.bitfields = bd1_bd_flags_bf;
		bd1->data.vlan = vlan;

		if (lso_flg || mplsoudp_flg) {
			bd2 = (struct eth_tx_2nd_bd *)ecore_chain_produce
							(&txq->tx_pbl);
			memset(bd2, 0, sizeof(struct eth_tx_2nd_bd));
			nbds++;

			/* BD1 */
			QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
					     hdr_size);
			/* BD2 */
			QEDE_BD_SET_ADDR_LEN(bd2, (hdr_size +
					     rte_mbuf_data_iova(mbuf)),
					     mbuf->data_len - hdr_size);
			bd2->data.bitfields1 = rte_cpu_to_le_16(bd2_bf1);
			if (mplsoudp_flg) {
				bd2->data.bitfields2 =
					rte_cpu_to_le_16(bd2_bf2);
				/* Outer L3 size */
				bd2->data.tunn_ip_size =
					rte_cpu_to_le_16(mbuf->outer_l3_len);
			}
			/* BD3 */
			if (lso_flg || (mplsoudp_flg && tunn_ipv6_ext_flg)) {
				bd3 = (struct eth_tx_3rd_bd *)
					ecore_chain_produce(&txq->tx_pbl);
				memset(bd3, 0, sizeof(struct eth_tx_3rd_bd));
				nbds++;
				bd3->data.bitfields = rte_cpu_to_le_16(bd3_bf);
				if (lso_flg)
					bd3->data.lso_mss = mss;
				if (mplsoudp_flg) {
					bd3->data.tunn_l4_hdr_start_offset_w =
						tunn_l4_hdr_start_offset;
					bd3->data.tunn_hdr_size_w =
						tunn_hdr_size;
				}
			}
		}

		/* Handle fragmented MBUF */
		m_seg = mbuf->next;

		/* Encode scatter gather buffer descriptors if required */
		nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3, nbds - 1);
		bd1->data.nbds = nbds + nb_frags;

		txq->nb_tx_avail -= bd1->data.nbds;
		txq->sw_tx_prod++;
		rte_prefetch0(txq->sw_tx_ring[TX_PROD(txq)].mbuf);
		bd_prod =
		    rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
		print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags);
#endif
		nb_pkt_sent++;
		txq->xmit_pkts++;
	}

	/* Write value of prod idx into bd_prod */
	txq->tx_db.data.bd_prod = bd_prod;
	rte_wmb();
	rte_compiler_barrier();
	DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw);
	rte_wmb();

	/* Check again for Tx completions */
	qede_process_tx_compl(edev, txq);

	PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d",
		   nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id());

	return nb_pkt_sent;
}

uint16_t
qede_rxtx_pkts_dummy(__rte_unused void *p_rxq,
		     __rte_unused struct rte_mbuf **pkts,
		     __rte_unused uint16_t nb_pkts)
{
	return 0;
}