summaryrefslogtreecommitdiffstats
path: root/drivers/net/sfc/sfc_ef10_rx.c
blob: 0b3e8fbbbd3e25fa551df4ce0465e63d3d47d31f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
/* SPDX-License-Identifier: BSD-3-Clause
 *
 * Copyright (c) 2016-2018 Solarflare Communications Inc.
 * All rights reserved.
 *
 * This software was jointly developed between OKTET Labs (under contract
 * for Solarflare) and Solarflare Communications, Inc.
 */

/* EF10 native datapath implementation */

#include <stdbool.h>

#include <rte_byteorder.h>
#include <rte_mbuf_ptype.h>
#include <rte_mbuf.h>
#include <rte_io.h>

#include "efx.h"
#include "efx_types.h"
#include "efx_regs.h"
#include "efx_regs_ef10.h"

#include "sfc_tweak.h"
#include "sfc_dp_rx.h"
#include "sfc_kvargs.h"
#include "sfc_ef10.h"

#define sfc_ef10_rx_err(dpq, ...) \
	SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__)

/**
 * Alignment requirement for value written to RX WPTR:
 * the WPTR must be aligned to an 8 descriptor boundary.
 */
#define SFC_EF10_RX_WPTR_ALIGN	8

/**
 * Maximum number of descriptors/buffers in the Rx ring.
 * It should guarantee that corresponding event queue never overfill.
 * EF10 native datapath uses event queue of the same size as Rx queue.
 * Maximum number of events on datapath can be estimated as number of
 * Rx queue entries (one event per Rx buffer in the worst case) plus
 * Rx error and flush events.
 */
#define SFC_EF10_RXQ_LIMIT(_ndesc) \
	((_ndesc) - 1 /* head must not step on tail */ - \
	 (SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
	 1 /* Rx error */ - 1 /* flush */)

struct sfc_ef10_rx_sw_desc {
	struct rte_mbuf			*mbuf;
};

struct sfc_ef10_rxq {
	/* Used on data path */
	unsigned int			flags;
#define SFC_EF10_RXQ_STARTED		0x1
#define SFC_EF10_RXQ_NOT_RUNNING	0x2
#define SFC_EF10_RXQ_EXCEPTION		0x4
#define SFC_EF10_RXQ_RSS_HASH		0x8
	unsigned int			ptr_mask;
	unsigned int			prepared;
	unsigned int			completed;
	unsigned int			evq_read_ptr;
	efx_qword_t			*evq_hw_ring;
	struct sfc_ef10_rx_sw_desc	*sw_ring;
	uint64_t			rearm_data;
	uint16_t			prefix_size;

	/* Used on refill */
	uint16_t			buf_size;
	unsigned int			added;
	unsigned int			max_fill_level;
	unsigned int			refill_threshold;
	struct rte_mempool		*refill_mb_pool;
	efx_qword_t			*rxq_hw_ring;
	volatile void			*doorbell;

	/* Datapath receive queue anchor */
	struct sfc_dp_rxq		dp;
};

static inline struct sfc_ef10_rxq *
sfc_ef10_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
{
	return container_of(dp_rxq, struct sfc_ef10_rxq, dp);
}

static void
sfc_ef10_rx_qpush(struct sfc_ef10_rxq *rxq)
{
	efx_dword_t dword;

	/* Hardware has alignment restriction for WPTR */
	RTE_BUILD_BUG_ON(SFC_RX_REFILL_BULK % SFC_EF10_RX_WPTR_ALIGN != 0);
	SFC_ASSERT(RTE_ALIGN(rxq->added, SFC_EF10_RX_WPTR_ALIGN) == rxq->added);

	EFX_POPULATE_DWORD_1(dword, ERF_DZ_RX_DESC_WPTR,
			     rxq->added & rxq->ptr_mask);

	/* DMA sync to device is not required */

	/*
	 * rte_write32() has rte_io_wmb() which guarantees that the STORE
	 * operations (i.e. Rx and event descriptor updates) that precede
	 * the rte_io_wmb() call are visible to NIC before the STORE
	 * operations that follow it (i.e. doorbell write).
	 */
	rte_write32(dword.ed_u32[0], rxq->doorbell);
}

static void
sfc_ef10_rx_qrefill(struct sfc_ef10_rxq *rxq)
{
	const unsigned int ptr_mask = rxq->ptr_mask;
	const uint32_t buf_size = rxq->buf_size;
	unsigned int free_space;
	unsigned int bulks;
	void *objs[SFC_RX_REFILL_BULK];
	unsigned int added = rxq->added;

	free_space = rxq->max_fill_level - (added - rxq->completed);

	if (free_space < rxq->refill_threshold)
		return;

	bulks = free_space / RTE_DIM(objs);
	/* refill_threshold guarantees that bulks is positive */
	SFC_ASSERT(bulks > 0);

	do {
		unsigned int id;
		unsigned int i;

		if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
						  RTE_DIM(objs)) < 0)) {
			struct rte_eth_dev_data *dev_data =
				rte_eth_devices[rxq->dp.dpq.port_id].data;

			/*
			 * It is hardly a safe way to increment counter
			 * from different contexts, but all PMDs do it.
			 */
			dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs);
			/* Return if we have posted nothing yet */
			if (added == rxq->added)
				return;
			/* Push posted */
			break;
		}

		for (i = 0, id = added & ptr_mask;
		     i < RTE_DIM(objs);
		     ++i, ++id) {
			struct rte_mbuf *m = objs[i];
			struct sfc_ef10_rx_sw_desc *rxd;
			rte_iova_t phys_addr;

			SFC_ASSERT((id & ~ptr_mask) == 0);
			rxd = &rxq->sw_ring[id];
			rxd->mbuf = m;

			/*
			 * Avoid writing to mbuf. It is cheaper to do it
			 * when we receive packet and fill in nearby
			 * structure members.
			 */

			phys_addr = rte_mbuf_data_iova_default(m);
			EFX_POPULATE_QWORD_2(rxq->rxq_hw_ring[id],
			    ESF_DZ_RX_KER_BYTE_CNT, buf_size,
			    ESF_DZ_RX_KER_BUF_ADDR, phys_addr);
		}

		added += RTE_DIM(objs);
	} while (--bulks > 0);

	SFC_ASSERT(rxq->added != added);
	rxq->added = added;
	sfc_ef10_rx_qpush(rxq);
}

static void
sfc_ef10_rx_prefetch_next(struct sfc_ef10_rxq *rxq, unsigned int next_id)
{
	struct rte_mbuf *next_mbuf;

	/* Prefetch next bunch of software descriptors */
	if ((next_id % (RTE_CACHE_LINE_SIZE / sizeof(rxq->sw_ring[0]))) == 0)
		rte_prefetch0(&rxq->sw_ring[next_id]);

	/*
	 * It looks strange to prefetch depending on previous prefetch
	 * data, but measurements show that it is really efficient and
	 * increases packet rate.
	 */
	next_mbuf = rxq->sw_ring[next_id].mbuf;
	if (likely(next_mbuf != NULL)) {
		/* Prefetch the next mbuf structure */
		rte_mbuf_prefetch_part1(next_mbuf);

		/* Prefetch pseudo header of the next packet */
		/* data_off is not filled in yet */
		/* Yes, data could be not ready yet, but we hope */
		rte_prefetch0((uint8_t *)next_mbuf->buf_addr +
			      RTE_PKTMBUF_HEADROOM);
	}
}

static uint16_t
sfc_ef10_rx_prepared(struct sfc_ef10_rxq *rxq, struct rte_mbuf **rx_pkts,
		     uint16_t nb_pkts)
{
	uint16_t n_rx_pkts = RTE_MIN(nb_pkts, rxq->prepared);
	unsigned int completed = rxq->completed;
	unsigned int i;

	rxq->prepared -= n_rx_pkts;
	rxq->completed = completed + n_rx_pkts;

	for (i = 0; i < n_rx_pkts; ++i, ++completed)
		rx_pkts[i] = rxq->sw_ring[completed & rxq->ptr_mask].mbuf;

	return n_rx_pkts;
}

static void
sfc_ef10_rx_ev_to_offloads(struct sfc_ef10_rxq *rxq, const efx_qword_t rx_ev,
			   struct rte_mbuf *m)
{
	uint32_t tun_ptype = 0;
	/* Which event bit is mapped to PKT_RX_IP_CKSUM_* */
	int8_t ip_csum_err_bit;
	/* Which event bit is mapped to PKT_RX_L4_CKSUM_* */
	int8_t l4_csum_err_bit;
	uint32_t l2_ptype = 0;
	uint32_t l3_ptype = 0;
	uint32_t l4_ptype = 0;
	uint64_t ol_flags = 0;

	if (unlikely(EFX_TEST_QWORD_BIT(rx_ev, ESF_DZ_RX_PARSE_INCOMPLETE_LBN)))
		goto done;

	switch (EFX_QWORD_FIELD(rx_ev, ESF_EZ_RX_ENCAP_HDR)) {
	default:
		/* Unexpected encapsulation tag class */
		SFC_ASSERT(false);
		/* FALLTHROUGH */
	case ESE_EZ_ENCAP_HDR_NONE:
		break;
	case ESE_EZ_ENCAP_HDR_VXLAN:
		/*
		 * It is definitely UDP, but we have no information
		 * about IPv4 vs IPv6 and VLAN tagging.
		 */
		tun_ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP;
		break;
	case ESE_EZ_ENCAP_HDR_GRE:
		/*
		 * We have no information about IPv4 vs IPv6 and VLAN tagging.
		 */
		tun_ptype = RTE_PTYPE_TUNNEL_NVGRE;
		break;
	}

	if (tun_ptype == 0) {
		ip_csum_err_bit = ESF_DZ_RX_IPCKSUM_ERR_LBN;
		l4_csum_err_bit = ESF_DZ_RX_TCPUDP_CKSUM_ERR_LBN;
	} else {
		ip_csum_err_bit = ESF_EZ_RX_IP_INNER_CHKSUM_ERR_LBN;
		l4_csum_err_bit = ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR_LBN;
		if (unlikely(EFX_TEST_QWORD_BIT(rx_ev,
						ESF_DZ_RX_IPCKSUM_ERR_LBN)))
			ol_flags |= PKT_RX_EIP_CKSUM_BAD;
	}

	switch (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_ETH_TAG_CLASS)) {
	case ESE_DZ_ETH_TAG_CLASS_NONE:
		l2_ptype = (tun_ptype == 0) ? RTE_PTYPE_L2_ETHER :
			RTE_PTYPE_INNER_L2_ETHER;
		break;
	case ESE_DZ_ETH_TAG_CLASS_VLAN1:
		l2_ptype = (tun_ptype == 0) ? RTE_PTYPE_L2_ETHER_VLAN :
			RTE_PTYPE_INNER_L2_ETHER_VLAN;
		break;
	case ESE_DZ_ETH_TAG_CLASS_VLAN2:
		l2_ptype = (tun_ptype == 0) ? RTE_PTYPE_L2_ETHER_QINQ :
			RTE_PTYPE_INNER_L2_ETHER_QINQ;
		break;
	default:
		/* Unexpected Eth tag class */
		SFC_ASSERT(false);
	}

	switch (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_L3_CLASS)) {
	case ESE_DZ_L3_CLASS_IP4_FRAG:
		l4_ptype = (tun_ptype == 0) ? RTE_PTYPE_L4_FRAG :
			RTE_PTYPE_INNER_L4_FRAG;
		/* FALLTHROUGH */
	case ESE_DZ_L3_CLASS_IP4:
		l3_ptype = (tun_ptype == 0) ? RTE_PTYPE_L3_IPV4_EXT_UNKNOWN :
			RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
		ol_flags |= PKT_RX_RSS_HASH |
			((EFX_TEST_QWORD_BIT(rx_ev, ip_csum_err_bit)) ?
			 PKT_RX_IP_CKSUM_BAD : PKT_RX_IP_CKSUM_GOOD);
		break;
	case ESE_DZ_L3_CLASS_IP6_FRAG:
		l4_ptype = (tun_ptype == 0) ? RTE_PTYPE_L4_FRAG :
			RTE_PTYPE_INNER_L4_FRAG;
		/* FALLTHROUGH */
	case ESE_DZ_L3_CLASS_IP6:
		l3_ptype = (tun_ptype == 0) ? RTE_PTYPE_L3_IPV6_EXT_UNKNOWN :
			RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
		ol_flags |= PKT_RX_RSS_HASH;
		break;
	case ESE_DZ_L3_CLASS_ARP:
		/* Override Layer 2 packet type */
		/* There is no ARP classification for inner packets */
		if (tun_ptype == 0)
			l2_ptype = RTE_PTYPE_L2_ETHER_ARP;
		break;
	default:
		/* Unexpected Layer 3 class */
		SFC_ASSERT(false);
	}

	switch (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_L4_CLASS)) {
	case ESE_DZ_L4_CLASS_TCP:
		l4_ptype = (tun_ptype == 0) ? RTE_PTYPE_L4_TCP :
			RTE_PTYPE_INNER_L4_TCP;
		ol_flags |=
			(EFX_TEST_QWORD_BIT(rx_ev, l4_csum_err_bit)) ?
			PKT_RX_L4_CKSUM_BAD : PKT_RX_L4_CKSUM_GOOD;
		break;
	case ESE_DZ_L4_CLASS_UDP:
		l4_ptype = (tun_ptype == 0) ? RTE_PTYPE_L4_UDP :
			RTE_PTYPE_INNER_L4_UDP;
		ol_flags |=
			(EFX_TEST_QWORD_BIT(rx_ev, l4_csum_err_bit)) ?
			PKT_RX_L4_CKSUM_BAD : PKT_RX_L4_CKSUM_GOOD;
		break;
	case ESE_DZ_L4_CLASS_UNKNOWN:
		break;
	default:
		/* Unexpected Layer 4 class */
		SFC_ASSERT(false);
	}

	/* Remove RSS hash offload flag if RSS is not enabled */
	if (~rxq->flags & SFC_EF10_RXQ_RSS_HASH)
		ol_flags &= ~PKT_RX_RSS_HASH;

done:
	m->ol_flags = ol_flags;
	m->packet_type = tun_ptype | l2_ptype | l3_ptype | l4_ptype;
}

static uint16_t
sfc_ef10_rx_pseudo_hdr_get_len(const uint8_t *pseudo_hdr)
{
	return rte_le_to_cpu_16(*(const uint16_t *)&pseudo_hdr[8]);
}

static uint32_t
sfc_ef10_rx_pseudo_hdr_get_hash(const uint8_t *pseudo_hdr)
{
	return rte_le_to_cpu_32(*(const uint32_t *)pseudo_hdr);
}

static uint16_t
sfc_ef10_rx_process_event(struct sfc_ef10_rxq *rxq, efx_qword_t rx_ev,
			  struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
	const unsigned int ptr_mask = rxq->ptr_mask;
	unsigned int completed = rxq->completed;
	unsigned int ready;
	struct sfc_ef10_rx_sw_desc *rxd;
	struct rte_mbuf *m;
	struct rte_mbuf *m0;
	uint16_t n_rx_pkts;
	const uint8_t *pseudo_hdr;
	uint16_t pkt_len;

	ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) - completed) &
		EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
	SFC_ASSERT(ready > 0);

	if (rx_ev.eq_u64[0] &
	    rte_cpu_to_le_64((1ull << ESF_DZ_RX_ECC_ERR_LBN) |
			     (1ull << ESF_DZ_RX_ECRC_ERR_LBN))) {
		SFC_ASSERT(rxq->prepared == 0);
		rxq->completed += ready;
		while (ready-- > 0) {
			rxd = &rxq->sw_ring[completed++ & ptr_mask];
			rte_mempool_put(rxq->refill_mb_pool, rxd->mbuf);
		}
		return 0;
	}

	n_rx_pkts = RTE_MIN(ready, nb_pkts);
	rxq->prepared = ready - n_rx_pkts;
	rxq->completed += n_rx_pkts;

	rxd = &rxq->sw_ring[completed++ & ptr_mask];

	sfc_ef10_rx_prefetch_next(rxq, completed & ptr_mask);

	m = rxd->mbuf;

	*rx_pkts++ = m;

	RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) != sizeof(rxq->rearm_data));
	m->rearm_data[0] = rxq->rearm_data;

	/* Classify packet based on Rx event */
	sfc_ef10_rx_ev_to_offloads(rxq, rx_ev, m);

	/* data_off already moved past pseudo header */
	pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;

	/*
	 * Always get RSS hash from pseudo header to avoid
	 * condition/branching. If it is valid or not depends on
	 * PKT_RX_RSS_HASH in m->ol_flags.
	 */
	m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);

	if (ready == 1)
		pkt_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES) -
			rxq->prefix_size;
	else
		pkt_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
	SFC_ASSERT(pkt_len > 0);
	rte_pktmbuf_data_len(m) = pkt_len;
	rte_pktmbuf_pkt_len(m) = pkt_len;

	SFC_ASSERT(m->next == NULL);

	/* Remember mbuf to copy offload flags and packet type from */
	m0 = m;
	for (--ready; ready > 0; --ready) {
		rxd = &rxq->sw_ring[completed++ & ptr_mask];

		sfc_ef10_rx_prefetch_next(rxq, completed & ptr_mask);

		m = rxd->mbuf;

		if (ready > rxq->prepared)
			*rx_pkts++ = m;

		RTE_BUILD_BUG_ON(sizeof(m->rearm_data[0]) !=
				 sizeof(rxq->rearm_data));
		m->rearm_data[0] = rxq->rearm_data;

		/* Event-dependent information is the same */
		m->ol_flags = m0->ol_flags;
		m->packet_type = m0->packet_type;

		/* data_off already moved past pseudo header */
		pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;

		/*
		 * Always get RSS hash from pseudo header to avoid
		 * condition/branching. If it is valid or not depends on
		 * PKT_RX_RSS_HASH in m->ol_flags.
		 */
		m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);

		pkt_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
		SFC_ASSERT(pkt_len > 0);
		rte_pktmbuf_data_len(m) = pkt_len;
		rte_pktmbuf_pkt_len(m) = pkt_len;

		SFC_ASSERT(m->next == NULL);
	}

	return n_rx_pkts;
}

static bool
sfc_ef10_rx_get_event(struct sfc_ef10_rxq *rxq, efx_qword_t *rx_ev)
{
	*rx_ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask];

	if (!sfc_ef10_ev_present(*rx_ev))
		return false;

	if (unlikely(EFX_QWORD_FIELD(*rx_ev, FSF_AZ_EV_CODE) !=
		     FSE_AZ_EV_CODE_RX_EV)) {
		/*
		 * Do not move read_ptr to keep the event for exception
		 * handling by the control path.
		 */
		rxq->flags |= SFC_EF10_RXQ_EXCEPTION;
		sfc_ef10_rx_err(&rxq->dp.dpq,
				"RxQ exception at EvQ read ptr %#x",
				rxq->evq_read_ptr);
		return false;
	}

	rxq->evq_read_ptr++;
	return true;
}

static uint16_t
sfc_ef10_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(rx_queue);
	unsigned int evq_old_read_ptr;
	uint16_t n_rx_pkts;
	efx_qword_t rx_ev;

	if (unlikely(rxq->flags &
		     (SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
		return 0;

	n_rx_pkts = sfc_ef10_rx_prepared(rxq, rx_pkts, nb_pkts);

	evq_old_read_ptr = rxq->evq_read_ptr;
	while (n_rx_pkts != nb_pkts && sfc_ef10_rx_get_event(rxq, &rx_ev)) {
		/*
		 * DROP_EVENT is an internal to the NIC, software should
		 * never see it and, therefore, may ignore it.
		 */

		n_rx_pkts += sfc_ef10_rx_process_event(rxq, rx_ev,
						       rx_pkts + n_rx_pkts,
						       nb_pkts - n_rx_pkts);
	}

	sfc_ef10_ev_qclear(rxq->evq_hw_ring, rxq->ptr_mask, evq_old_read_ptr,
			   rxq->evq_read_ptr);

	/* It is not a problem if we refill in the case of exception */
	sfc_ef10_rx_qrefill(rxq);

	return n_rx_pkts;
}

static const uint32_t *
sfc_ef10_supported_ptypes_get(uint32_t tunnel_encaps)
{
	static const uint32_t ef10_native_ptypes[] = {
		RTE_PTYPE_L2_ETHER,
		RTE_PTYPE_L2_ETHER_ARP,
		RTE_PTYPE_L2_ETHER_VLAN,
		RTE_PTYPE_L2_ETHER_QINQ,
		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
		RTE_PTYPE_L4_FRAG,
		RTE_PTYPE_L4_TCP,
		RTE_PTYPE_L4_UDP,
		RTE_PTYPE_UNKNOWN
	};
	static const uint32_t ef10_overlay_ptypes[] = {
		RTE_PTYPE_L2_ETHER,
		RTE_PTYPE_L2_ETHER_ARP,
		RTE_PTYPE_L2_ETHER_VLAN,
		RTE_PTYPE_L2_ETHER_QINQ,
		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
		RTE_PTYPE_L4_FRAG,
		RTE_PTYPE_L4_TCP,
		RTE_PTYPE_L4_UDP,
		RTE_PTYPE_TUNNEL_VXLAN,
		RTE_PTYPE_TUNNEL_NVGRE,
		RTE_PTYPE_INNER_L2_ETHER,
		RTE_PTYPE_INNER_L2_ETHER_VLAN,
		RTE_PTYPE_INNER_L2_ETHER_QINQ,
		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
		RTE_PTYPE_INNER_L4_FRAG,
		RTE_PTYPE_INNER_L4_TCP,
		RTE_PTYPE_INNER_L4_UDP,
		RTE_PTYPE_UNKNOWN
	};

	/*
	 * The function returns static set of supported packet types,
	 * so we can't build it dynamically based on supported tunnel
	 * encapsulations and should limit to known sets.
	 */
	switch (tunnel_encaps) {
	case (1u << EFX_TUNNEL_PROTOCOL_VXLAN |
	      1u << EFX_TUNNEL_PROTOCOL_GENEVE |
	      1u << EFX_TUNNEL_PROTOCOL_NVGRE):
		return ef10_overlay_ptypes;
	default:
		RTE_LOG(ERR, PMD,
			"Unexpected set of supported tunnel encapsulations: %#x\n",
			tunnel_encaps);
		/* FALLTHROUGH */
	case 0:
		return ef10_native_ptypes;
	}
}

static sfc_dp_rx_qdesc_npending_t sfc_ef10_rx_qdesc_npending;
static unsigned int
sfc_ef10_rx_qdesc_npending(__rte_unused struct sfc_dp_rxq *dp_rxq)
{
	/*
	 * Correct implementation requires EvQ polling and events
	 * processing (keeping all ready mbufs in prepared).
	 */
	return -ENOTSUP;
}

static sfc_dp_rx_qdesc_status_t sfc_ef10_rx_qdesc_status;
static int
sfc_ef10_rx_qdesc_status(__rte_unused struct sfc_dp_rxq *dp_rxq,
			 __rte_unused uint16_t offset)
{
	return -ENOTSUP;
}


static sfc_dp_rx_get_dev_info_t sfc_ef10_rx_get_dev_info;
static void
sfc_ef10_rx_get_dev_info(struct rte_eth_dev_info *dev_info)
{
	/*
	 * Number of descriptors just defines maximum number of pushed
	 * descriptors (fill level).
	 */
	dev_info->rx_desc_lim.nb_min = SFC_RX_REFILL_BULK;
	dev_info->rx_desc_lim.nb_align = SFC_RX_REFILL_BULK;
}


static sfc_dp_rx_qsize_up_rings_t sfc_ef10_rx_qsize_up_rings;
static int
sfc_ef10_rx_qsize_up_rings(uint16_t nb_rx_desc,
			   unsigned int *rxq_entries,
			   unsigned int *evq_entries,
			   unsigned int *rxq_max_fill_level)
{
	/*
	 * rte_ethdev API guarantees that the number meets min, max and
	 * alignment requirements.
	 */
	if (nb_rx_desc <= EFX_RXQ_MINNDESCS)
		*rxq_entries = EFX_RXQ_MINNDESCS;
	else
		*rxq_entries = rte_align32pow2(nb_rx_desc);

	*evq_entries = *rxq_entries;

	*rxq_max_fill_level = RTE_MIN(nb_rx_desc,
				      SFC_EF10_RXQ_LIMIT(*evq_entries));
	return 0;
}


static uint64_t
sfc_ef10_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size)
{
	struct rte_mbuf m;

	memset(&m, 0, sizeof(m));

	rte_mbuf_refcnt_set(&m, 1);
	m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size;
	m.nb_segs = 1;
	m.port = port_id;

	/* rearm_data covers structure members filled in above */
	rte_compiler_barrier();
	RTE_BUILD_BUG_ON(sizeof(m.rearm_data[0]) != sizeof(uint64_t));
	return m.rearm_data[0];
}

static sfc_dp_rx_qcreate_t sfc_ef10_rx_qcreate;
static int
sfc_ef10_rx_qcreate(uint16_t port_id, uint16_t queue_id,
		    const struct rte_pci_addr *pci_addr, int socket_id,
		    const struct sfc_dp_rx_qcreate_info *info,
		    struct sfc_dp_rxq **dp_rxqp)
{
	struct sfc_ef10_rxq *rxq;
	int rc;

	rc = EINVAL;
	if (info->rxq_entries != info->evq_entries)
		goto fail_rxq_args;

	rc = ENOMEM;
	rxq = rte_zmalloc_socket("sfc-ef10-rxq", sizeof(*rxq),
				 RTE_CACHE_LINE_SIZE, socket_id);
	if (rxq == NULL)
		goto fail_rxq_alloc;

	sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);

	rc = ENOMEM;
	rxq->sw_ring = rte_calloc_socket("sfc-ef10-rxq-sw_ring",
					 info->rxq_entries,
					 sizeof(*rxq->sw_ring),
					 RTE_CACHE_LINE_SIZE, socket_id);
	if (rxq->sw_ring == NULL)
		goto fail_desc_alloc;

	rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
	if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
		rxq->flags |= SFC_EF10_RXQ_RSS_HASH;
	rxq->ptr_mask = info->rxq_entries - 1;
	rxq->evq_hw_ring = info->evq_hw_ring;
	rxq->max_fill_level = info->max_fill_level;
	rxq->refill_threshold = info->refill_threshold;
	rxq->rearm_data =
		sfc_ef10_mk_mbuf_rearm_data(port_id, info->prefix_size);
	rxq->prefix_size = info->prefix_size;
	rxq->buf_size = info->buf_size;
	rxq->refill_mb_pool = info->refill_mb_pool;
	rxq->rxq_hw_ring = info->rxq_hw_ring;
	rxq->doorbell = (volatile uint8_t *)info->mem_bar +
			ER_DZ_RX_DESC_UPD_REG_OFST +
			info->hw_index * ER_DZ_RX_DESC_UPD_REG_STEP;

	*dp_rxqp = &rxq->dp;
	return 0;

fail_desc_alloc:
	rte_free(rxq);

fail_rxq_alloc:
fail_rxq_args:
	return rc;
}

static sfc_dp_rx_qdestroy_t sfc_ef10_rx_qdestroy;
static void
sfc_ef10_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
{
	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);

	rte_free(rxq->sw_ring);
	rte_free(rxq);
}

static sfc_dp_rx_qstart_t sfc_ef10_rx_qstart;
static int
sfc_ef10_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr)
{
	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);

	rxq->prepared = 0;
	rxq->completed = rxq->added = 0;

	sfc_ef10_rx_qrefill(rxq);

	rxq->evq_read_ptr = evq_read_ptr;

	rxq->flags |= SFC_EF10_RXQ_STARTED;
	rxq->flags &= ~(SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION);

	return 0;
}

static sfc_dp_rx_qstop_t sfc_ef10_rx_qstop;
static void
sfc_ef10_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
{
	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);

	rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;

	*evq_read_ptr = rxq->evq_read_ptr;
}

static sfc_dp_rx_qrx_ev_t sfc_ef10_rx_qrx_ev;
static bool
sfc_ef10_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
{
	__rte_unused struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);

	SFC_ASSERT(rxq->flags & SFC_EF10_RXQ_NOT_RUNNING);

	/*
	 * It is safe to ignore Rx event since we free all mbufs on
	 * queue purge anyway.
	 */

	return false;
}

static sfc_dp_rx_qpurge_t sfc_ef10_rx_qpurge;
static void
sfc_ef10_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
{
	struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
	unsigned int i;
	struct sfc_ef10_rx_sw_desc *rxd;

	for (i = rxq->completed; i != rxq->added; ++i) {
		rxd = &rxq->sw_ring[i & rxq->ptr_mask];
		rte_mempool_put(rxq->refill_mb_pool, rxd->mbuf);
		rxd->mbuf = NULL;
	}

	rxq->flags &= ~SFC_EF10_RXQ_STARTED;
}

struct sfc_dp_rx sfc_ef10_rx = {
	.dp = {
		.name		= SFC_KVARG_DATAPATH_EF10,
		.type		= SFC_DP_RX,
		.hw_fw_caps	= SFC_DP_HW_FW_CAP_EF10,
	},
	.features		= SFC_DP_RX_FEAT_MULTI_PROCESS |
				  SFC_DP_RX_FEAT_TUNNELS,
	.get_dev_info		= sfc_ef10_rx_get_dev_info,
	.qsize_up_rings		= sfc_ef10_rx_qsize_up_rings,
	.qcreate		= sfc_ef10_rx_qcreate,
	.qdestroy		= sfc_ef10_rx_qdestroy,
	.qstart			= sfc_ef10_rx_qstart,
	.qstop			= sfc_ef10_rx_qstop,
	.qrx_ev			= sfc_ef10_rx_qrx_ev,
	.qpurge			= sfc_ef10_rx_qpurge,
	.supported_ptypes_get	= sfc_ef10_supported_ptypes_get,
	.qdesc_npending		= sfc_ef10_rx_qdesc_npending,
	.qdesc_status		= sfc_ef10_rx_qdesc_status,
	.pkt_burst		= sfc_ef10_recv_pkts,
};