summaryrefslogtreecommitdiffstats
path: root/drivers/net/szedata2/rte_eth_szedata2.c
blob: 8b091cfed4e36ac9f7fbce60ee2910bb3aaeede6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
/*-
 *   BSD LICENSE
 *
 *   Copyright (c) 2015 - 2016 CESNET
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of CESNET nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdint.h>
#include <unistd.h>
#include <stdbool.h>
#include <err.h>
#include <sys/types.h>
#include <dirent.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>

#include <libsze2.h>

#include <rte_mbuf.h>
#include <rte_ethdev.h>
#include <rte_malloc.h>
#include <rte_memcpy.h>
#include <rte_kvargs.h>
#include <rte_dev.h>
#include <rte_atomic.h>

#include "rte_eth_szedata2.h"

#define RTE_ETH_SZEDATA2_MAX_RX_QUEUES 32
#define RTE_ETH_SZEDATA2_MAX_TX_QUEUES 32
#define RTE_ETH_SZEDATA2_TX_LOCK_SIZE (32 * 1024 * 1024)

/**
 * size of szedata2_packet header with alignment
 */
#define RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED 8

#define RTE_SZEDATA2_DRIVER_NAME net_szedata2
#define RTE_SZEDATA2_PCI_DRIVER_NAME "rte_szedata2_pmd"

#define SZEDATA2_DEV_PATH_FMT "/dev/szedataII%u"

struct szedata2_rx_queue {
	struct szedata *sze;
	uint8_t rx_channel;
	uint8_t in_port;
	struct rte_mempool *mb_pool;
	volatile uint64_t rx_pkts;
	volatile uint64_t rx_bytes;
	volatile uint64_t err_pkts;
};

struct szedata2_tx_queue {
	struct szedata *sze;
	uint8_t tx_channel;
	volatile uint64_t tx_pkts;
	volatile uint64_t tx_bytes;
	volatile uint64_t err_pkts;
};

struct pmd_internals {
	struct szedata2_rx_queue rx_queue[RTE_ETH_SZEDATA2_MAX_RX_QUEUES];
	struct szedata2_tx_queue tx_queue[RTE_ETH_SZEDATA2_MAX_TX_QUEUES];
	uint16_t max_rx_queues;
	uint16_t max_tx_queues;
	char sze_dev[PATH_MAX];
};

static struct ether_addr eth_addr = {
	.addr_bytes = { 0x00, 0x11, 0x17, 0x00, 0x00, 0x00 }
};

static uint16_t
eth_szedata2_rx(void *queue,
		struct rte_mbuf **bufs,
		uint16_t nb_pkts)
{
	unsigned int i;
	struct rte_mbuf *mbuf;
	struct szedata2_rx_queue *sze_q = queue;
	struct rte_pktmbuf_pool_private *mbp_priv;
	uint16_t num_rx = 0;
	uint16_t buf_size;
	uint16_t sg_size;
	uint16_t hw_size;
	uint16_t packet_size;
	uint64_t num_bytes = 0;
	struct szedata *sze = sze_q->sze;
	uint8_t *header_ptr = NULL; /* header of packet */
	uint8_t *packet_ptr1 = NULL;
	uint8_t *packet_ptr2 = NULL;
	uint16_t packet_len1 = 0;
	uint16_t packet_len2 = 0;
	uint16_t hw_data_align;

	if (unlikely(sze_q->sze == NULL || nb_pkts == 0))
		return 0;

	/*
	 * Reads the given number of packets from szedata2 channel given
	 * by queue and copies the packet data into a newly allocated mbuf
	 * to return.
	 */
	for (i = 0; i < nb_pkts; i++) {
		mbuf = rte_pktmbuf_alloc(sze_q->mb_pool);

		if (unlikely(mbuf == NULL))
			break;

		/* get the next sze packet */
		if (sze->ct_rx_lck != NULL && !sze->ct_rx_rem_bytes &&
				sze->ct_rx_lck->next == NULL) {
			/* unlock old data */
			szedata_rx_unlock_data(sze_q->sze, sze->ct_rx_lck_orig);
			sze->ct_rx_lck_orig = NULL;
			sze->ct_rx_lck = NULL;
		}

		if (!sze->ct_rx_rem_bytes && sze->ct_rx_lck_orig == NULL) {
			/* nothing to read, lock new data */
			sze->ct_rx_lck = szedata_rx_lock_data(sze_q->sze, ~0U);
			sze->ct_rx_lck_orig = sze->ct_rx_lck;

			if (sze->ct_rx_lck == NULL) {
				/* nothing to lock */
				rte_pktmbuf_free(mbuf);
				break;
			}

			sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
			sze->ct_rx_rem_bytes = sze->ct_rx_lck->len;

			if (!sze->ct_rx_rem_bytes) {
				rte_pktmbuf_free(mbuf);
				break;
			}
		}

		if (sze->ct_rx_rem_bytes < RTE_SZE2_PACKET_HEADER_SIZE) {
			/*
			 * cut in header
			 * copy parts of header to merge buffer
			 */
			if (sze->ct_rx_lck->next == NULL) {
				rte_pktmbuf_free(mbuf);
				break;
			}

			/* copy first part of header */
			rte_memcpy(sze->ct_rx_buffer, sze->ct_rx_cur_ptr,
					sze->ct_rx_rem_bytes);

			/* copy second part of header */
			sze->ct_rx_lck = sze->ct_rx_lck->next;
			sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
			rte_memcpy(sze->ct_rx_buffer + sze->ct_rx_rem_bytes,
				sze->ct_rx_cur_ptr,
				RTE_SZE2_PACKET_HEADER_SIZE -
				sze->ct_rx_rem_bytes);

			sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE -
				sze->ct_rx_rem_bytes;
			sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
				RTE_SZE2_PACKET_HEADER_SIZE +
				sze->ct_rx_rem_bytes;

			header_ptr = (uint8_t *)sze->ct_rx_buffer;
		} else {
			/* not cut */
			header_ptr = (uint8_t *)sze->ct_rx_cur_ptr;
			sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE;
			sze->ct_rx_rem_bytes -= RTE_SZE2_PACKET_HEADER_SIZE;
		}

		sg_size = le16toh(*((uint16_t *)header_ptr));
		hw_size = le16toh(*(((uint16_t *)header_ptr) + 1));
		packet_size = sg_size -
			RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size);


		/* checks if packet all right */
		if (!sg_size)
			errx(5, "Zero segsize");

		/* check sg_size and hwsize */
		if (hw_size > sg_size - RTE_SZE2_PACKET_HEADER_SIZE) {
			errx(10, "Hwsize bigger than expected. Segsize: %d, "
				"hwsize: %d", sg_size, hw_size);
		}

		hw_data_align =
			RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size) -
			RTE_SZE2_PACKET_HEADER_SIZE;

		if (sze->ct_rx_rem_bytes >=
				(uint16_t)(sg_size -
				RTE_SZE2_PACKET_HEADER_SIZE)) {
			/* no cut */
			/* one packet ready - go to another */
			packet_ptr1 = sze->ct_rx_cur_ptr + hw_data_align;
			packet_len1 = packet_size;
			packet_ptr2 = NULL;
			packet_len2 = 0;

			sze->ct_rx_cur_ptr += RTE_SZE2_ALIGN8(sg_size) -
				RTE_SZE2_PACKET_HEADER_SIZE;
			sze->ct_rx_rem_bytes -= RTE_SZE2_ALIGN8(sg_size) -
				RTE_SZE2_PACKET_HEADER_SIZE;
		} else {
			/* cut in data */
			if (sze->ct_rx_lck->next == NULL) {
				errx(6, "Need \"next\" lock, "
					"but it is missing: %u",
					sze->ct_rx_rem_bytes);
			}

			/* skip hw data */
			if (sze->ct_rx_rem_bytes <= hw_data_align) {
				uint16_t rem_size = hw_data_align -
					sze->ct_rx_rem_bytes;

				/* MOVE to next lock */
				sze->ct_rx_lck = sze->ct_rx_lck->next;
				sze->ct_rx_cur_ptr =
					(void *)(((uint8_t *)
					(sze->ct_rx_lck->start)) + rem_size);

				packet_ptr1 = sze->ct_rx_cur_ptr;
				packet_len1 = packet_size;
				packet_ptr2 = NULL;
				packet_len2 = 0;

				sze->ct_rx_cur_ptr +=
					RTE_SZE2_ALIGN8(packet_size);
				sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
					rem_size - RTE_SZE2_ALIGN8(packet_size);
			} else {
				/* get pointer and length from first part */
				packet_ptr1 = sze->ct_rx_cur_ptr +
					hw_data_align;
				packet_len1 = sze->ct_rx_rem_bytes -
					hw_data_align;

				/* MOVE to next lock */
				sze->ct_rx_lck = sze->ct_rx_lck->next;
				sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;

				/* get pointer and length from second part */
				packet_ptr2 = sze->ct_rx_cur_ptr;
				packet_len2 = packet_size - packet_len1;

				sze->ct_rx_cur_ptr +=
					RTE_SZE2_ALIGN8(packet_size) -
					packet_len1;
				sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
					(RTE_SZE2_ALIGN8(packet_size) -
					 packet_len1);
			}
		}

		if (unlikely(packet_ptr1 == NULL)) {
			rte_pktmbuf_free(mbuf);
			break;
		}

		/* get the space available for data in the mbuf */
		mbp_priv = rte_mempool_get_priv(sze_q->mb_pool);
		buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size -
				RTE_PKTMBUF_HEADROOM);

		if (packet_size <= buf_size) {
			/* sze packet will fit in one mbuf, go ahead and copy */
			rte_memcpy(rte_pktmbuf_mtod(mbuf, void *),
					packet_ptr1, packet_len1);
			if (packet_ptr2 != NULL) {
				rte_memcpy((void *)(rte_pktmbuf_mtod(mbuf,
					uint8_t *) + packet_len1),
					packet_ptr2, packet_len2);
			}
			mbuf->data_len = (uint16_t)packet_size;

			mbuf->pkt_len = packet_size;
			mbuf->port = sze_q->in_port;
			bufs[num_rx] = mbuf;
			num_rx++;
			num_bytes += packet_size;
		} else {
			/*
			 * sze packet will not fit in one mbuf,
			 * scattered mode is not enabled, drop packet
			 */
			RTE_LOG(ERR, PMD,
				"SZE segment %d bytes will not fit in one mbuf "
				"(%d bytes), scattered mode is not enabled, "
				"drop packet!!\n",
				packet_size, buf_size);
			rte_pktmbuf_free(mbuf);
		}
	}

	sze_q->rx_pkts += num_rx;
	sze_q->rx_bytes += num_bytes;
	return num_rx;
}

static uint16_t
eth_szedata2_rx_scattered(void *queue,
		struct rte_mbuf **bufs,
		uint16_t nb_pkts)
{
	unsigned int i;
	struct rte_mbuf *mbuf;
	struct szedata2_rx_queue *sze_q = queue;
	struct rte_pktmbuf_pool_private *mbp_priv;
	uint16_t num_rx = 0;
	uint16_t buf_size;
	uint16_t sg_size;
	uint16_t hw_size;
	uint16_t packet_size;
	uint64_t num_bytes = 0;
	struct szedata *sze = sze_q->sze;
	uint8_t *header_ptr = NULL; /* header of packet */
	uint8_t *packet_ptr1 = NULL;
	uint8_t *packet_ptr2 = NULL;
	uint16_t packet_len1 = 0;
	uint16_t packet_len2 = 0;
	uint16_t hw_data_align;

	if (unlikely(sze_q->sze == NULL || nb_pkts == 0))
		return 0;

	/*
	 * Reads the given number of packets from szedata2 channel given
	 * by queue and copies the packet data into a newly allocated mbuf
	 * to return.
	 */
	for (i = 0; i < nb_pkts; i++) {
		const struct szedata_lock *ct_rx_lck_backup;
		unsigned int ct_rx_rem_bytes_backup;
		unsigned char *ct_rx_cur_ptr_backup;

		/* get the next sze packet */
		if (sze->ct_rx_lck != NULL && !sze->ct_rx_rem_bytes &&
				sze->ct_rx_lck->next == NULL) {
			/* unlock old data */
			szedata_rx_unlock_data(sze_q->sze, sze->ct_rx_lck_orig);
			sze->ct_rx_lck_orig = NULL;
			sze->ct_rx_lck = NULL;
		}

		/*
		 * Store items from sze structure which can be changed
		 * before mbuf allocating. Use these items in case of mbuf
		 * allocating failure.
		 */
		ct_rx_lck_backup = sze->ct_rx_lck;
		ct_rx_rem_bytes_backup = sze->ct_rx_rem_bytes;
		ct_rx_cur_ptr_backup = sze->ct_rx_cur_ptr;

		if (!sze->ct_rx_rem_bytes && sze->ct_rx_lck_orig == NULL) {
			/* nothing to read, lock new data */
			sze->ct_rx_lck = szedata_rx_lock_data(sze_q->sze, ~0U);
			sze->ct_rx_lck_orig = sze->ct_rx_lck;

			/*
			 * Backup items from sze structure must be updated
			 * after locking to contain pointers to new locks.
			 */
			ct_rx_lck_backup = sze->ct_rx_lck;
			ct_rx_rem_bytes_backup = sze->ct_rx_rem_bytes;
			ct_rx_cur_ptr_backup = sze->ct_rx_cur_ptr;

			if (sze->ct_rx_lck == NULL)
				/* nothing to lock */
				break;

			sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
			sze->ct_rx_rem_bytes = sze->ct_rx_lck->len;

			if (!sze->ct_rx_rem_bytes)
				break;
		}

		if (sze->ct_rx_rem_bytes < RTE_SZE2_PACKET_HEADER_SIZE) {
			/*
			 * cut in header - copy parts of header to merge buffer
			 */
			if (sze->ct_rx_lck->next == NULL)
				break;

			/* copy first part of header */
			rte_memcpy(sze->ct_rx_buffer, sze->ct_rx_cur_ptr,
					sze->ct_rx_rem_bytes);

			/* copy second part of header */
			sze->ct_rx_lck = sze->ct_rx_lck->next;
			sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
			rte_memcpy(sze->ct_rx_buffer + sze->ct_rx_rem_bytes,
				sze->ct_rx_cur_ptr,
				RTE_SZE2_PACKET_HEADER_SIZE -
				sze->ct_rx_rem_bytes);

			sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE -
				sze->ct_rx_rem_bytes;
			sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
				RTE_SZE2_PACKET_HEADER_SIZE +
				sze->ct_rx_rem_bytes;

			header_ptr = (uint8_t *)sze->ct_rx_buffer;
		} else {
			/* not cut */
			header_ptr = (uint8_t *)sze->ct_rx_cur_ptr;
			sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE;
			sze->ct_rx_rem_bytes -= RTE_SZE2_PACKET_HEADER_SIZE;
		}

		sg_size = le16toh(*((uint16_t *)header_ptr));
		hw_size = le16toh(*(((uint16_t *)header_ptr) + 1));
		packet_size = sg_size -
			RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size);


		/* checks if packet all right */
		if (!sg_size)
			errx(5, "Zero segsize");

		/* check sg_size and hwsize */
		if (hw_size > sg_size - RTE_SZE2_PACKET_HEADER_SIZE) {
			errx(10, "Hwsize bigger than expected. Segsize: %d, "
					"hwsize: %d", sg_size, hw_size);
		}

		hw_data_align =
			RTE_SZE2_ALIGN8((RTE_SZE2_PACKET_HEADER_SIZE +
			hw_size)) - RTE_SZE2_PACKET_HEADER_SIZE;

		if (sze->ct_rx_rem_bytes >=
				(uint16_t)(sg_size -
				RTE_SZE2_PACKET_HEADER_SIZE)) {
			/* no cut */
			/* one packet ready - go to another */
			packet_ptr1 = sze->ct_rx_cur_ptr + hw_data_align;
			packet_len1 = packet_size;
			packet_ptr2 = NULL;
			packet_len2 = 0;

			sze->ct_rx_cur_ptr += RTE_SZE2_ALIGN8(sg_size) -
				RTE_SZE2_PACKET_HEADER_SIZE;
			sze->ct_rx_rem_bytes -= RTE_SZE2_ALIGN8(sg_size) -
				RTE_SZE2_PACKET_HEADER_SIZE;
		} else {
			/* cut in data */
			if (sze->ct_rx_lck->next == NULL) {
				errx(6, "Need \"next\" lock, but it is "
					"missing: %u", sze->ct_rx_rem_bytes);
			}

			/* skip hw data */
			if (sze->ct_rx_rem_bytes <= hw_data_align) {
				uint16_t rem_size = hw_data_align -
					sze->ct_rx_rem_bytes;

				/* MOVE to next lock */
				sze->ct_rx_lck = sze->ct_rx_lck->next;
				sze->ct_rx_cur_ptr =
					(void *)(((uint8_t *)
					(sze->ct_rx_lck->start)) + rem_size);

				packet_ptr1 = sze->ct_rx_cur_ptr;
				packet_len1 = packet_size;
				packet_ptr2 = NULL;
				packet_len2 = 0;

				sze->ct_rx_cur_ptr +=
					RTE_SZE2_ALIGN8(packet_size);
				sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
					rem_size - RTE_SZE2_ALIGN8(packet_size);
			} else {
				/* get pointer and length from first part */
				packet_ptr1 = sze->ct_rx_cur_ptr +
					hw_data_align;
				packet_len1 = sze->ct_rx_rem_bytes -
					hw_data_align;

				/* MOVE to next lock */
				sze->ct_rx_lck = sze->ct_rx_lck->next;
				sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;

				/* get pointer and length from second part */
				packet_ptr2 = sze->ct_rx_cur_ptr;
				packet_len2 = packet_size - packet_len1;

				sze->ct_rx_cur_ptr +=
					RTE_SZE2_ALIGN8(packet_size) -
					packet_len1;
				sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
					(RTE_SZE2_ALIGN8(packet_size) -
					 packet_len1);
			}
		}

		if (unlikely(packet_ptr1 == NULL))
			break;

		mbuf = rte_pktmbuf_alloc(sze_q->mb_pool);

		if (unlikely(mbuf == NULL)) {
			/*
			 * Restore items from sze structure to state after
			 * unlocking (eventually locking).
			 */
			sze->ct_rx_lck = ct_rx_lck_backup;
			sze->ct_rx_rem_bytes = ct_rx_rem_bytes_backup;
			sze->ct_rx_cur_ptr = ct_rx_cur_ptr_backup;
			break;
		}

		/* get the space available for data in the mbuf */
		mbp_priv = rte_mempool_get_priv(sze_q->mb_pool);
		buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size -
				RTE_PKTMBUF_HEADROOM);

		if (packet_size <= buf_size) {
			/* sze packet will fit in one mbuf, go ahead and copy */
			rte_memcpy(rte_pktmbuf_mtod(mbuf, void *),
					packet_ptr1, packet_len1);
			if (packet_ptr2 != NULL) {
				rte_memcpy((void *)
					(rte_pktmbuf_mtod(mbuf, uint8_t *) +
					packet_len1), packet_ptr2, packet_len2);
			}
			mbuf->data_len = (uint16_t)packet_size;
		} else {
			/*
			 * sze packet will not fit in one mbuf,
			 * scatter packet into more mbufs
			 */
			struct rte_mbuf *m = mbuf;
			uint16_t len = rte_pktmbuf_tailroom(mbuf);

			/* copy first part of packet */
			/* fill first mbuf */
			rte_memcpy(rte_pktmbuf_append(mbuf, len), packet_ptr1,
				len);
			packet_len1 -= len;
			packet_ptr1 = ((uint8_t *)packet_ptr1) + len;

			while (packet_len1 > 0) {
				/* fill new mbufs */
				m->next = rte_pktmbuf_alloc(sze_q->mb_pool);

				if (unlikely(m->next == NULL)) {
					rte_pktmbuf_free(mbuf);
					/*
					 * Restore items from sze structure
					 * to state after unlocking (eventually
					 * locking).
					 */
					sze->ct_rx_lck = ct_rx_lck_backup;
					sze->ct_rx_rem_bytes =
						ct_rx_rem_bytes_backup;
					sze->ct_rx_cur_ptr =
						ct_rx_cur_ptr_backup;
					goto finish;
				}

				m = m->next;

				len = RTE_MIN(rte_pktmbuf_tailroom(m),
					packet_len1);
				rte_memcpy(rte_pktmbuf_append(mbuf, len),
					packet_ptr1, len);

				(mbuf->nb_segs)++;
				packet_len1 -= len;
				packet_ptr1 = ((uint8_t *)packet_ptr1) + len;
			}

			if (packet_ptr2 != NULL) {
				/* copy second part of packet, if exists */
				/* fill the rest of currently last mbuf */
				len = rte_pktmbuf_tailroom(m);
				rte_memcpy(rte_pktmbuf_append(mbuf, len),
					packet_ptr2, len);
				packet_len2 -= len;
				packet_ptr2 = ((uint8_t *)packet_ptr2) + len;

				while (packet_len2 > 0) {
					/* fill new mbufs */
					m->next = rte_pktmbuf_alloc(
							sze_q->mb_pool);

					if (unlikely(m->next == NULL)) {
						rte_pktmbuf_free(mbuf);
						/*
						 * Restore items from sze
						 * structure to state after
						 * unlocking (eventually
						 * locking).
						 */
						sze->ct_rx_lck =
							ct_rx_lck_backup;
						sze->ct_rx_rem_bytes =
							ct_rx_rem_bytes_backup;
						sze->ct_rx_cur_ptr =
							ct_rx_cur_ptr_backup;
						goto finish;
					}

					m = m->next;

					len = RTE_MIN(rte_pktmbuf_tailroom(m),
						packet_len2);
					rte_memcpy(
						rte_pktmbuf_append(mbuf, len),
						packet_ptr2, len);

					(mbuf->nb_segs)++;
					packet_len2 -= len;
					packet_ptr2 = ((uint8_t *)packet_ptr2) +
						len;
				}
			}
		}
		mbuf->pkt_len = packet_size;
		mbuf->port = sze_q->in_port;
		bufs[num_rx] = mbuf;
		num_rx++;
		num_bytes += packet_size;
	}

finish:
	sze_q->rx_pkts += num_rx;
	sze_q->rx_bytes += num_bytes;
	return num_rx;
}

static uint16_t
eth_szedata2_tx(void *queue,
		struct rte_mbuf **bufs,
		uint16_t nb_pkts)
{
	struct rte_mbuf *mbuf;
	struct szedata2_tx_queue *sze_q = queue;
	uint16_t num_tx = 0;
	uint64_t num_bytes = 0;

	const struct szedata_lock *lck;
	uint32_t lock_size;
	uint32_t lock_size2;
	void *dst;
	uint32_t pkt_len;
	uint32_t hwpkt_len;
	uint32_t unlock_size;
	uint32_t rem_len;
	uint8_t mbuf_segs;
	uint16_t pkt_left = nb_pkts;

	if (sze_q->sze == NULL || nb_pkts == 0)
		return 0;

	while (pkt_left > 0) {
		unlock_size = 0;
		lck = szedata_tx_lock_data(sze_q->sze,
			RTE_ETH_SZEDATA2_TX_LOCK_SIZE,
			sze_q->tx_channel);
		if (lck == NULL)
			continue;

		dst = lck->start;
		lock_size = lck->len;
		lock_size2 = lck->next ? lck->next->len : 0;

next_packet:
		mbuf = bufs[nb_pkts - pkt_left];

		pkt_len = mbuf->pkt_len;
		mbuf_segs = mbuf->nb_segs;

		hwpkt_len = RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
			RTE_SZE2_ALIGN8(pkt_len);

		if (lock_size + lock_size2 < hwpkt_len) {
			szedata_tx_unlock_data(sze_q->sze, lck, unlock_size);
			continue;
		}

		num_bytes += pkt_len;

		if (lock_size > hwpkt_len) {
			void *tmp_dst;

			rem_len = 0;

			/* write packet length at first 2 bytes in 8B header */
			*((uint16_t *)dst) = htole16(
					RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
					pkt_len);
			*(((uint16_t *)dst) + 1) = htole16(0);

			/* copy packet from mbuf */
			tmp_dst = ((uint8_t *)(dst)) +
				RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;
			if (mbuf_segs == 1) {
				/*
				 * non-scattered packet,
				 * transmit from one mbuf
				 */
				rte_memcpy(tmp_dst,
					rte_pktmbuf_mtod(mbuf, const void *),
					pkt_len);
			} else {
				/* scattered packet, transmit from more mbufs */
				struct rte_mbuf *m = mbuf;
				while (m) {
					rte_memcpy(tmp_dst,
						rte_pktmbuf_mtod(m,
						const void *),
						m->data_len);
					tmp_dst = ((uint8_t *)(tmp_dst)) +
						m->data_len;
					m = m->next;
				}
			}


			dst = ((uint8_t *)dst) + hwpkt_len;
			unlock_size += hwpkt_len;
			lock_size -= hwpkt_len;

			rte_pktmbuf_free(mbuf);
			num_tx++;
			pkt_left--;
			if (pkt_left == 0) {
				szedata_tx_unlock_data(sze_q->sze, lck,
					unlock_size);
				break;
			}
			goto next_packet;
		} else if (lock_size + lock_size2 >= hwpkt_len) {
			void *tmp_dst;
			uint16_t write_len;

			/* write packet length at first 2 bytes in 8B header */
			*((uint16_t *)dst) =
				htole16(RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
					pkt_len);
			*(((uint16_t *)dst) + 1) = htole16(0);

			/*
			 * If the raw packet (pkt_len) is smaller than lock_size
			 * get the correct length for memcpy
			 */
			write_len =
				pkt_len < lock_size -
				RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED ?
				pkt_len :
				lock_size - RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;

			rem_len = hwpkt_len - lock_size;

			tmp_dst = ((uint8_t *)(dst)) +
				RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;
			if (mbuf_segs == 1) {
				/*
				 * non-scattered packet,
				 * transmit from one mbuf
				 */
				/* copy part of packet to first area */
				rte_memcpy(tmp_dst,
					rte_pktmbuf_mtod(mbuf, const void *),
					write_len);

				if (lck->next)
					dst = lck->next->start;

				/* copy part of packet to second area */
				rte_memcpy(dst,
					(const void *)(rte_pktmbuf_mtod(mbuf,
							const uint8_t *) +
					write_len), pkt_len - write_len);
			} else {
				/* scattered packet, transmit from more mbufs */
				struct rte_mbuf *m = mbuf;
				uint16_t written = 0;
				uint16_t to_write = 0;
				bool new_mbuf = true;
				uint16_t write_off = 0;

				/* copy part of packet to first area */
				while (m && written < write_len) {
					to_write = RTE_MIN(m->data_len,
							write_len - written);
					rte_memcpy(tmp_dst,
						rte_pktmbuf_mtod(m,
							const void *),
						to_write);

					tmp_dst = ((uint8_t *)(tmp_dst)) +
						to_write;
					if (m->data_len <= write_len -
							written) {
						m = m->next;
						new_mbuf = true;
					} else {
						new_mbuf = false;
					}
					written += to_write;
				}

				if (lck->next)
					dst = lck->next->start;

				tmp_dst = dst;
				written = 0;
				write_off = new_mbuf ? 0 : to_write;

				/* copy part of packet to second area */
				while (m && written < pkt_len - write_len) {
					rte_memcpy(tmp_dst, (const void *)
						(rte_pktmbuf_mtod(m,
						uint8_t *) + write_off),
						m->data_len - write_off);

					tmp_dst = ((uint8_t *)(tmp_dst)) +
						(m->data_len - write_off);
					written += m->data_len - write_off;
					m = m->next;
					write_off = 0;
				}
			}

			dst = ((uint8_t *)dst) + rem_len;
			unlock_size += hwpkt_len;
			lock_size = lock_size2 - rem_len;
			lock_size2 = 0;

			rte_pktmbuf_free(mbuf);
			num_tx++;
		}

		szedata_tx_unlock_data(sze_q->sze, lck, unlock_size);
		pkt_left--;
	}

	sze_q->tx_pkts += num_tx;
	sze_q->err_pkts += nb_pkts - num_tx;
	sze_q->tx_bytes += num_bytes;
	return num_tx;
}

static int
eth_rx_queue_start(struct rte_eth_dev *dev, uint16_t rxq_id)
{
	struct szedata2_rx_queue *rxq = dev->data->rx_queues[rxq_id];
	int ret;
	struct pmd_internals *internals = (struct pmd_internals *)
		dev->data->dev_private;

	if (rxq->sze == NULL) {
		uint32_t rx = 1 << rxq->rx_channel;
		uint32_t tx = 0;
		rxq->sze = szedata_open(internals->sze_dev);
		if (rxq->sze == NULL)
			return -EINVAL;
		ret = szedata_subscribe3(rxq->sze, &rx, &tx);
		if (ret != 0 || rx == 0)
			goto err;
	}

	ret = szedata_start(rxq->sze);
	if (ret != 0)
		goto err;
	dev->data->rx_queue_state[rxq_id] = RTE_ETH_QUEUE_STATE_STARTED;
	return 0;

err:
	szedata_close(rxq->sze);
	rxq->sze = NULL;
	return -EINVAL;
}

static int
eth_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rxq_id)
{
	struct szedata2_rx_queue *rxq = dev->data->rx_queues[rxq_id];

	if (rxq->sze != NULL) {
		szedata_close(rxq->sze);
		rxq->sze = NULL;
	}

	dev->data->rx_queue_state[rxq_id] = RTE_ETH_QUEUE_STATE_STOPPED;
	return 0;
}

static int
eth_tx_queue_start(struct rte_eth_dev *dev, uint16_t txq_id)
{
	struct szedata2_tx_queue *txq = dev->data->tx_queues[txq_id];
	int ret;
	struct pmd_internals *internals = (struct pmd_internals *)
		dev->data->dev_private;

	if (txq->sze == NULL) {
		uint32_t rx = 0;
		uint32_t tx = 1 << txq->tx_channel;
		txq->sze = szedata_open(internals->sze_dev);
		if (txq->sze == NULL)
			return -EINVAL;
		ret = szedata_subscribe3(txq->sze, &rx, &tx);
		if (ret != 0 || tx == 0)
			goto err;
	}

	ret = szedata_start(txq->sze);
	if (ret != 0)
		goto err;
	dev->data->tx_queue_state[txq_id] = RTE_ETH_QUEUE_STATE_STARTED;
	return 0;

err:
	szedata_close(txq->sze);
	txq->sze = NULL;
	return -EINVAL;
}

static int
eth_tx_queue_stop(struct rte_eth_dev *dev, uint16_t txq_id)
{
	struct szedata2_tx_queue *txq = dev->data->tx_queues[txq_id];

	if (txq->sze != NULL) {
		szedata_close(txq->sze);
		txq->sze = NULL;
	}

	dev->data->tx_queue_state[txq_id] = RTE_ETH_QUEUE_STATE_STOPPED;
	return 0;
}

static int
eth_dev_start(struct rte_eth_dev *dev)
{
	int ret;
	uint16_t i;
	uint16_t nb_rx = dev->data->nb_rx_queues;
	uint16_t nb_tx = dev->data->nb_tx_queues;

	for (i = 0; i < nb_rx; i++) {
		ret = eth_rx_queue_start(dev, i);
		if (ret != 0)
			goto err_rx;
	}

	for (i = 0; i < nb_tx; i++) {
		ret = eth_tx_queue_start(dev, i);
		if (ret != 0)
			goto err_tx;
	}

	return 0;

err_tx:
	for (i = 0; i < nb_tx; i++)
		eth_tx_queue_stop(dev, i);
err_rx:
	for (i = 0; i < nb_rx; i++)
		eth_rx_queue_stop(dev, i);
	return ret;
}

static void
eth_dev_stop(struct rte_eth_dev *dev)
{
	uint16_t i;
	uint16_t nb_rx = dev->data->nb_rx_queues;
	uint16_t nb_tx = dev->data->nb_tx_queues;

	for (i = 0; i < nb_tx; i++)
		eth_tx_queue_stop(dev, i);

	for (i = 0; i < nb_rx; i++)
		eth_rx_queue_stop(dev, i);
}

static int
eth_dev_configure(struct rte_eth_dev *dev)
{
	struct rte_eth_dev_data *data = dev->data;
	if (data->dev_conf.rxmode.enable_scatter == 1) {
		dev->rx_pkt_burst = eth_szedata2_rx_scattered;
		data->scattered_rx = 1;
	} else {
		dev->rx_pkt_burst = eth_szedata2_rx;
		data->scattered_rx = 0;
	}
	return 0;
}

static void
eth_dev_info(struct rte_eth_dev *dev,
		struct rte_eth_dev_info *dev_info)
{
	struct pmd_internals *internals = dev->data->dev_private;
	dev_info->if_index = 0;
	dev_info->max_mac_addrs = 1;
	dev_info->max_rx_pktlen = (uint32_t)-1;
	dev_info->max_rx_queues = internals->max_rx_queues;
	dev_info->max_tx_queues = internals->max_tx_queues;
	dev_info->min_rx_bufsize = 0;
	dev_info->speed_capa = ETH_LINK_SPEED_100G;
}

static void
eth_stats_get(struct rte_eth_dev *dev,
		struct rte_eth_stats *stats)
{
	uint16_t i;
	uint16_t nb_rx = dev->data->nb_rx_queues;
	uint16_t nb_tx = dev->data->nb_tx_queues;
	uint64_t rx_total = 0;
	uint64_t tx_total = 0;
	uint64_t tx_err_total = 0;
	uint64_t rx_total_bytes = 0;
	uint64_t tx_total_bytes = 0;

	for (i = 0; i < nb_rx; i++) {
		struct szedata2_rx_queue *rxq = dev->data->rx_queues[i];

		if (i < RTE_ETHDEV_QUEUE_STAT_CNTRS) {
			stats->q_ipackets[i] = rxq->rx_pkts;
			stats->q_ibytes[i] = rxq->rx_bytes;
		}
		rx_total += rxq->rx_pkts;
		rx_total_bytes += rxq->rx_bytes;
	}

	for (i = 0; i < nb_tx; i++) {
		struct szedata2_tx_queue *txq = dev->data->tx_queues[i];

		if (i < RTE_ETHDEV_QUEUE_STAT_CNTRS) {
			stats->q_opackets[i] = txq->tx_pkts;
			stats->q_obytes[i] = txq->tx_bytes;
			stats->q_errors[i] = txq->err_pkts;
		}
		tx_total += txq->tx_pkts;
		tx_total_bytes += txq->tx_bytes;
		tx_err_total += txq->err_pkts;
	}

	stats->ipackets = rx_total;
	stats->opackets = tx_total;
	stats->ibytes = rx_total_bytes;
	stats->obytes = tx_total_bytes;
	stats->oerrors = tx_err_total;
}

static void
eth_stats_reset(struct rte_eth_dev *dev)
{
	uint16_t i;
	uint16_t nb_rx = dev->data->nb_rx_queues;
	uint16_t nb_tx = dev->data->nb_tx_queues;
	struct pmd_internals *internals = dev->data->dev_private;

	for (i = 0; i < nb_rx; i++) {
		internals->rx_queue[i].rx_pkts = 0;
		internals->rx_queue[i].rx_bytes = 0;
		internals->rx_queue[i].err_pkts = 0;
	}
	for (i = 0; i < nb_tx; i++) {
		internals->tx_queue[i].tx_pkts = 0;
		internals->tx_queue[i].tx_bytes = 0;
		internals->tx_queue[i].err_pkts = 0;
	}
}

static void
eth_rx_queue_release(void *q)
{
	struct szedata2_rx_queue *rxq = (struct szedata2_rx_queue *)q;
	if (rxq->sze != NULL) {
		szedata_close(rxq->sze);
		rxq->sze = NULL;
	}
}

static void
eth_tx_queue_release(void *q)
{
	struct szedata2_tx_queue *txq = (struct szedata2_tx_queue *)q;
	if (txq->sze != NULL) {
		szedata_close(txq->sze);
		txq->sze = NULL;
	}
}

static void
eth_dev_close(struct rte_eth_dev *dev)
{
	uint16_t i;
	uint16_t nb_rx = dev->data->nb_rx_queues;
	uint16_t nb_tx = dev->data->nb_tx_queues;

	eth_dev_stop(dev);

	for (i = 0; i < nb_rx; i++) {
		eth_rx_queue_release(dev->data->rx_queues[i]);
		dev->data->rx_queues[i] = NULL;
	}
	dev->data->nb_rx_queues = 0;
	for (i = 0; i < nb_tx; i++) {
		eth_tx_queue_release(dev->data->tx_queues[i]);
		dev->data->tx_queues[i] = NULL;
	}
	dev->data->nb_tx_queues = 0;
}

static int
eth_link_update(struct rte_eth_dev *dev,
		int wait_to_complete __rte_unused)
{
	struct rte_eth_link link;
	struct rte_eth_link *link_ptr = &link;
	struct rte_eth_link *dev_link = &dev->data->dev_link;
	volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
			dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
			volatile struct szedata2_cgmii_ibuf *);

	switch (cgmii_link_speed(ibuf)) {
	case SZEDATA2_LINK_SPEED_10G:
		link.link_speed = ETH_SPEED_NUM_10G;
		break;
	case SZEDATA2_LINK_SPEED_40G:
		link.link_speed = ETH_SPEED_NUM_40G;
		break;
	case SZEDATA2_LINK_SPEED_100G:
		link.link_speed = ETH_SPEED_NUM_100G;
		break;
	default:
		link.link_speed = ETH_SPEED_NUM_10G;
		break;
	}

	/* szedata2 uses only full duplex */
	link.link_duplex = ETH_LINK_FULL_DUPLEX;

	link.link_status = (cgmii_ibuf_is_enabled(ibuf) &&
			cgmii_ibuf_is_link_up(ibuf)) ? ETH_LINK_UP : ETH_LINK_DOWN;

	link.link_autoneg = ETH_LINK_FIXED;

	rte_atomic64_cmpset((uint64_t *)dev_link, *(uint64_t *)dev_link,
			*(uint64_t *)link_ptr);

	return 0;
}

static int
eth_dev_set_link_up(struct rte_eth_dev *dev)
{
	volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
			dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
			volatile struct szedata2_cgmii_ibuf *);
	volatile struct szedata2_cgmii_obuf *obuf = SZEDATA2_PCI_RESOURCE_PTR(
			dev, SZEDATA2_CGMII_OBUF_BASE_OFF,
			volatile struct szedata2_cgmii_obuf *);

	cgmii_ibuf_enable(ibuf);
	cgmii_obuf_enable(obuf);
	return 0;
}

static int
eth_dev_set_link_down(struct rte_eth_dev *dev)
{
	volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
			dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
			volatile struct szedata2_cgmii_ibuf *);
	volatile struct szedata2_cgmii_obuf *obuf = SZEDATA2_PCI_RESOURCE_PTR(
			dev, SZEDATA2_CGMII_OBUF_BASE_OFF,
			volatile struct szedata2_cgmii_obuf *);

	cgmii_ibuf_disable(ibuf);
	cgmii_obuf_disable(obuf);
	return 0;
}

static int
eth_rx_queue_setup(struct rte_eth_dev *dev,
		uint16_t rx_queue_id,
		uint16_t nb_rx_desc __rte_unused,
		unsigned int socket_id __rte_unused,
		const struct rte_eth_rxconf *rx_conf __rte_unused,
		struct rte_mempool *mb_pool)
{
	struct pmd_internals *internals = dev->data->dev_private;
	struct szedata2_rx_queue *rxq = &internals->rx_queue[rx_queue_id];
	int ret;
	uint32_t rx = 1 << rx_queue_id;
	uint32_t tx = 0;

	rxq->sze = szedata_open(internals->sze_dev);
	if (rxq->sze == NULL)
		return -EINVAL;
	ret = szedata_subscribe3(rxq->sze, &rx, &tx);
	if (ret != 0 || rx == 0) {
		szedata_close(rxq->sze);
		rxq->sze = NULL;
		return -EINVAL;
	}
	rxq->rx_channel = rx_queue_id;
	rxq->in_port = dev->data->port_id;
	rxq->mb_pool = mb_pool;
	rxq->rx_pkts = 0;
	rxq->rx_bytes = 0;
	rxq->err_pkts = 0;

	dev->data->rx_queues[rx_queue_id] = rxq;
	return 0;
}

static int
eth_tx_queue_setup(struct rte_eth_dev *dev,
		uint16_t tx_queue_id,
		uint16_t nb_tx_desc __rte_unused,
		unsigned int socket_id __rte_unused,
		const struct rte_eth_txconf *tx_conf __rte_unused)
{
	struct pmd_internals *internals = dev->data->dev_private;
	struct szedata2_tx_queue *txq = &internals->tx_queue[tx_queue_id];
	int ret;
	uint32_t rx = 0;
	uint32_t tx = 1 << tx_queue_id;

	txq->sze = szedata_open(internals->sze_dev);
	if (txq->sze == NULL)
		return -EINVAL;
	ret = szedata_subscribe3(txq->sze, &rx, &tx);
	if (ret != 0 || tx == 0) {
		szedata_close(txq->sze);
		txq->sze = NULL;
		return -EINVAL;
	}
	txq->tx_channel = tx_queue_id;
	txq->tx_pkts = 0;
	txq->tx_bytes = 0;
	txq->err_pkts = 0;

	dev->data->tx_queues[tx_queue_id] = txq;
	return 0;
}

static void
eth_mac_addr_set(struct rte_eth_dev *dev __rte_unused,
		struct ether_addr *mac_addr __rte_unused)
{
}

static void
eth_promiscuous_enable(struct rte_eth_dev *dev)
{
	volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
			dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
			volatile struct szedata2_cgmii_ibuf *);
	cgmii_ibuf_mac_mode_write(ibuf, SZEDATA2_MAC_CHMODE_PROMISC);
}

static void
eth_promiscuous_disable(struct rte_eth_dev *dev)
{
	volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
			dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
			volatile struct szedata2_cgmii_ibuf *);
	cgmii_ibuf_mac_mode_write(ibuf, SZEDATA2_MAC_CHMODE_ONLY_VALID);
}

static void
eth_allmulticast_enable(struct rte_eth_dev *dev)
{
	volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
			dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
			volatile struct szedata2_cgmii_ibuf *);
	cgmii_ibuf_mac_mode_write(ibuf, SZEDATA2_MAC_CHMODE_ALL_MULTICAST);
}

static void
eth_allmulticast_disable(struct rte_eth_dev *dev)
{
	volatile struct szedata2_cgmii_ibuf *ibuf = SZEDATA2_PCI_RESOURCE_PTR(
			dev, SZEDATA2_CGMII_IBUF_BASE_OFF,
			volatile struct szedata2_cgmii_ibuf *);
	cgmii_ibuf_mac_mode_write(ibuf, SZEDATA2_MAC_CHMODE_ONLY_VALID);
}

static const struct eth_dev_ops ops = {
	.dev_start          = eth_dev_start,
	.dev_stop           = eth_dev_stop,
	.dev_set_link_up    = eth_dev_set_link_up,
	.dev_set_link_down  = eth_dev_set_link_down,
	.dev_close          = eth_dev_close,
	.dev_configure      = eth_dev_configure,
	.dev_infos_get      = eth_dev_info,
	.promiscuous_enable   = eth_promiscuous_enable,
	.promiscuous_disable  = eth_promiscuous_disable,
	.allmulticast_enable  = eth_allmulticast_enable,
	.allmulticast_disable = eth_allmulticast_disable,
	.rx_queue_start     = eth_rx_queue_start,
	.rx_queue_stop      = eth_rx_queue_stop,
	.tx_queue_start     = eth_tx_queue_start,
	.tx_queue_stop      = eth_tx_queue_stop,
	.rx_queue_setup     = eth_rx_queue_setup,
	.tx_queue_setup     = eth_tx_queue_setup,
	.rx_queue_release   = eth_rx_queue_release,
	.tx_queue_release   = eth_tx_queue_release,
	.link_update        = eth_link_update,
	.stats_get          = eth_stats_get,
	.stats_reset        = eth_stats_reset,
	.mac_addr_set       = eth_mac_addr_set,
};

/*
 * This function goes through sysfs and looks for an index of szedata2
 * device file (/dev/szedataIIX, where X is the index).
 *
 * @return
 *           0 on success
 *          -1 on error
 */
static int
get_szedata2_index(struct rte_eth_dev *dev, uint32_t *index)
{
	DIR *dir;
	struct dirent *entry;
	int ret;
	uint32_t tmp_index;
	FILE *fd;
	char pcislot_path[PATH_MAX];
	struct rte_pci_addr pcislot_addr = dev->pci_dev->addr;
	uint32_t domain;
	uint8_t bus;
	uint8_t devid;
	uint8_t function;

	dir = opendir("/sys/class/combo");
	if (dir == NULL)
		return -1;

	/*
	 * Iterate through all combosixX directories.
	 * When the value in /sys/class/combo/combosixX/device/pcislot
	 * file is the location of the ethernet device dev, "X" is the
	 * index of the device.
	 */
	while ((entry = readdir(dir)) != NULL) {
		ret = sscanf(entry->d_name, "combosix%u", &tmp_index);
		if (ret != 1)
			continue;

		snprintf(pcislot_path, PATH_MAX,
			"/sys/class/combo/combosix%u/device/pcislot",
			tmp_index);

		fd = fopen(pcislot_path, "r");
		if (fd == NULL)
			continue;

		ret = fscanf(fd, "%8" SCNx32 ":%2" SCNx8 ":%2" SCNx8 ".%" SCNx8,
				&domain, &bus, &devid, &function);
		fclose(fd);
		if (ret != 4)
			continue;

		if (pcislot_addr.domain == domain &&
				pcislot_addr.bus == bus &&
				pcislot_addr.devid == devid &&
				pcislot_addr.function == function) {
			*index = tmp_index;
			closedir(dir);
			return 0;
		}
	}

	closedir(dir);
	return -1;
}

static int
rte_szedata2_eth_dev_init(struct rte_eth_dev *dev)
{
	struct rte_eth_dev_data *data = dev->data;
	struct pmd_internals *internals = (struct pmd_internals *)
		data->dev_private;
	struct szedata *szedata_temp;
	int ret;
	uint32_t szedata2_index;
	struct rte_pci_addr *pci_addr = &dev->pci_dev->addr;
	struct rte_mem_resource *pci_rsc =
		&dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER];
	char rsc_filename[PATH_MAX];
	void *pci_resource_ptr = NULL;
	int fd;

	RTE_LOG(INFO, PMD, "Initializing szedata2 device (" PCI_PRI_FMT ")\n",
			pci_addr->domain, pci_addr->bus, pci_addr->devid,
			pci_addr->function);

	/* Get index of szedata2 device file and create path to device file */
	ret = get_szedata2_index(dev, &szedata2_index);
	if (ret != 0) {
		RTE_LOG(ERR, PMD, "Failed to get szedata2 device index!\n");
		return -ENODEV;
	}
	snprintf(internals->sze_dev, PATH_MAX, SZEDATA2_DEV_PATH_FMT,
			szedata2_index);

	RTE_LOG(INFO, PMD, "SZEDATA2 path: %s\n", internals->sze_dev);

	/*
	 * Get number of available DMA RX and TX channels, which is maximum
	 * number of queues that can be created and store it in private device
	 * data structure.
	 */
	szedata_temp = szedata_open(internals->sze_dev);
	if (szedata_temp == NULL) {
		RTE_LOG(ERR, PMD, "szedata_open(): failed to open %s",
				internals->sze_dev);
		return -EINVAL;
	}
	internals->max_rx_queues = szedata_ifaces_available(szedata_temp,
			SZE2_DIR_RX);
	internals->max_tx_queues = szedata_ifaces_available(szedata_temp,
			SZE2_DIR_TX);
	szedata_close(szedata_temp);

	RTE_LOG(INFO, PMD, "Available DMA channels RX: %u TX: %u\n",
			internals->max_rx_queues, internals->max_tx_queues);

	/* Set rx, tx burst functions */
	if (data->dev_conf.rxmode.enable_scatter == 1 ||
		data->scattered_rx == 1) {
		dev->rx_pkt_burst = eth_szedata2_rx_scattered;
		data->scattered_rx = 1;
	} else {
		dev->rx_pkt_burst = eth_szedata2_rx;
		data->scattered_rx = 0;
	}
	dev->tx_pkt_burst = eth_szedata2_tx;

	/* Set function callbacks for Ethernet API */
	dev->dev_ops = &ops;

	rte_eth_copy_pci_info(dev, dev->pci_dev);

	/* mmap pci resource0 file to rte_mem_resource structure */
	if (dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].phys_addr ==
			0) {
		RTE_LOG(ERR, PMD, "Missing resource%u file\n",
				PCI_RESOURCE_NUMBER);
		return -EINVAL;
	}
	snprintf(rsc_filename, PATH_MAX,
		"%s/" PCI_PRI_FMT "/resource%u", pci_get_sysfs_path(),
		pci_addr->domain, pci_addr->bus,
		pci_addr->devid, pci_addr->function, PCI_RESOURCE_NUMBER);
	fd = open(rsc_filename, O_RDWR);
	if (fd < 0) {
		RTE_LOG(ERR, PMD, "Could not open file %s\n", rsc_filename);
		return -EINVAL;
	}

	pci_resource_ptr = mmap(0,
			dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].len,
			PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
	close(fd);
	if (pci_resource_ptr == MAP_FAILED) {
		RTE_LOG(ERR, PMD, "Could not mmap file %s (fd = %d)\n",
				rsc_filename, fd);
		return -EINVAL;
	}
	dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr =
		pci_resource_ptr;

	RTE_LOG(DEBUG, PMD, "resource%u phys_addr = 0x%llx len = %llu "
			"virt addr = %llx\n", PCI_RESOURCE_NUMBER,
			(unsigned long long)pci_rsc->phys_addr,
			(unsigned long long)pci_rsc->len,
			(unsigned long long)pci_rsc->addr);

	/* Get link state */
	eth_link_update(dev, 0);

	/* Allocate space for one mac address */
	data->mac_addrs = rte_zmalloc(data->name, sizeof(struct ether_addr),
			RTE_CACHE_LINE_SIZE);
	if (data->mac_addrs == NULL) {
		RTE_LOG(ERR, PMD, "Could not alloc space for MAC address!\n");
		munmap(dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr,
			dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].len);
		return -EINVAL;
	}

	ether_addr_copy(&eth_addr, data->mac_addrs);

	/* At initial state COMBO card is in promiscuous mode so disable it */
	eth_promiscuous_disable(dev);

	RTE_LOG(INFO, PMD, "szedata2 device ("
			PCI_PRI_FMT ") successfully initialized\n",
			pci_addr->domain, pci_addr->bus, pci_addr->devid,
			pci_addr->function);

	return 0;
}

static int
rte_szedata2_eth_dev_uninit(struct rte_eth_dev *dev)
{
	struct rte_pci_addr *pci_addr = &dev->pci_dev->addr;

	rte_free(dev->data->mac_addrs);
	dev->data->mac_addrs = NULL;
	munmap(dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].addr,
		dev->pci_dev->mem_resource[PCI_RESOURCE_NUMBER].len);

	RTE_LOG(INFO, PMD, "szedata2 device ("
			PCI_PRI_FMT ") successfully uninitialized\n",
			pci_addr->domain, pci_addr->bus, pci_addr->devid,
			pci_addr->function);

	return 0;
}

static const struct rte_pci_id rte_szedata2_pci_id_table[] = {
	{
		RTE_PCI_DEVICE(PCI_VENDOR_ID_NETCOPE,
				PCI_DEVICE_ID_NETCOPE_COMBO80G)
	},
	{
		RTE_PCI_DEVICE(PCI_VENDOR_ID_NETCOPE,
				PCI_DEVICE_ID_NETCOPE_COMBO100G)
	},
	{
		RTE_PCI_DEVICE(PCI_VENDOR_ID_NETCOPE,
				PCI_DEVICE_ID_NETCOPE_COMBO100G2)
	},
	{
		.vendor_id = 0,
	}
};

static struct eth_driver szedata2_eth_driver = {
	.pci_drv = {
		.id_table = rte_szedata2_pci_id_table,
		.probe = rte_eth_dev_pci_probe,
		.remove = rte_eth_dev_pci_remove,
	},
	.eth_dev_init     = rte_szedata2_eth_dev_init,
	.eth_dev_uninit   = rte_szedata2_eth_dev_uninit,
	.dev_private_size = sizeof(struct pmd_internals),
};

RTE_PMD_REGISTER_PCI(RTE_SZEDATA2_DRIVER_NAME, szedata2_eth_driver.pci_drv);
RTE_PMD_REGISTER_PCI_TABLE(RTE_SZEDATA2_DRIVER_NAME, rte_szedata2_pci_id_table);