1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
|
/*-
* BSD LICENSE
*
* Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <tmmintrin.h>
#include <rte_cycles.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_branch_prediction.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_prefetch.h>
#include <rte_string_fns.h>
#include <rte_errno.h>
#include <rte_byteorder.h>
#include "virtio_logs.h"
#include "virtio_ethdev.h"
#include "virtqueue.h"
#include "virtio_rxtx.h"
#define RTE_VIRTIO_VPMD_RX_BURST 32
#define RTE_VIRTIO_DESC_PER_LOOP 8
#define RTE_VIRTIO_VPMD_RX_REARM_THRESH RTE_VIRTIO_VPMD_RX_BURST
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif
int __attribute__((cold))
virtqueue_enqueue_recv_refill_simple(struct virtqueue *vq,
struct rte_mbuf *cookie)
{
struct vq_desc_extra *dxp;
struct vring_desc *start_dp;
uint16_t desc_idx;
desc_idx = vq->vq_avail_idx & (vq->vq_nentries - 1);
dxp = &vq->vq_descx[desc_idx];
dxp->cookie = (void *)cookie;
vq->sw_ring[desc_idx] = cookie;
start_dp = vq->vq_ring.desc;
start_dp[desc_idx].addr = (uint64_t)((uintptr_t)cookie->buf_physaddr +
RTE_PKTMBUF_HEADROOM - vq->hw->vtnet_hdr_size);
start_dp[desc_idx].len = cookie->buf_len -
RTE_PKTMBUF_HEADROOM + vq->hw->vtnet_hdr_size;
vq->vq_free_cnt--;
vq->vq_avail_idx++;
return 0;
}
static inline void
virtio_rxq_rearm_vec(struct virtqueue *rxvq)
{
int i;
uint16_t desc_idx;
struct rte_mbuf **sw_ring;
struct vring_desc *start_dp;
int ret;
desc_idx = rxvq->vq_avail_idx & (rxvq->vq_nentries - 1);
sw_ring = &rxvq->sw_ring[desc_idx];
start_dp = &rxvq->vq_ring.desc[desc_idx];
ret = rte_mempool_get_bulk(rxvq->mpool, (void **)sw_ring,
RTE_VIRTIO_VPMD_RX_REARM_THRESH);
if (unlikely(ret)) {
rte_eth_devices[rxvq->port_id].data->rx_mbuf_alloc_failed +=
RTE_VIRTIO_VPMD_RX_REARM_THRESH;
return;
}
for (i = 0; i < RTE_VIRTIO_VPMD_RX_REARM_THRESH; i++) {
uintptr_t p;
p = (uintptr_t)&sw_ring[i]->rearm_data;
*(uint64_t *)p = rxvq->mbuf_initializer;
start_dp[i].addr =
(uint64_t)((uintptr_t)sw_ring[i]->buf_physaddr +
RTE_PKTMBUF_HEADROOM - rxvq->hw->vtnet_hdr_size);
start_dp[i].len = sw_ring[i]->buf_len -
RTE_PKTMBUF_HEADROOM + rxvq->hw->vtnet_hdr_size;
}
rxvq->vq_avail_idx += RTE_VIRTIO_VPMD_RX_REARM_THRESH;
rxvq->vq_free_cnt -= RTE_VIRTIO_VPMD_RX_REARM_THRESH;
vq_update_avail_idx(rxvq);
}
/* virtio vPMD receive routine, only accept(nb_pkts >= RTE_VIRTIO_DESC_PER_LOOP)
*
* This routine is for non-mergeable RX, one desc for each guest buffer.
* This routine is based on the RX ring layout optimization. Each entry in the
* avail ring points to the desc with the same index in the desc ring and this
* will never be changed in the driver.
*
* - nb_pkts < RTE_VIRTIO_DESC_PER_LOOP, just return no packet
*/
uint16_t
virtio_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct virtqueue *rxvq = rx_queue;
uint16_t nb_used;
uint16_t desc_idx;
struct vring_used_elem *rused;
struct rte_mbuf **sw_ring;
struct rte_mbuf **sw_ring_end;
uint16_t nb_pkts_received;
__m128i shuf_msk1, shuf_msk2, len_adjust;
shuf_msk1 = _mm_set_epi8(
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, /* vlan tci */
5, 4, /* dat len */
0xFF, 0xFF, 5, 4, /* pkt len */
0xFF, 0xFF, 0xFF, 0xFF /* packet type */
);
shuf_msk2 = _mm_set_epi8(
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, /* vlan tci */
13, 12, /* dat len */
0xFF, 0xFF, 13, 12, /* pkt len */
0xFF, 0xFF, 0xFF, 0xFF /* packet type */
);
/* Subtract the header length.
* In which case do we need the header length in used->len ?
*/
len_adjust = _mm_set_epi16(
0, 0,
0,
(uint16_t)-rxvq->hw->vtnet_hdr_size,
0, (uint16_t)-rxvq->hw->vtnet_hdr_size,
0, 0);
if (unlikely(nb_pkts < RTE_VIRTIO_DESC_PER_LOOP))
return 0;
nb_used = *(volatile uint16_t *)&rxvq->vq_ring.used->idx -
rxvq->vq_used_cons_idx;
rte_compiler_barrier();
if (unlikely(nb_used == 0))
return 0;
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_VIRTIO_DESC_PER_LOOP);
nb_used = RTE_MIN(nb_used, nb_pkts);
desc_idx = (uint16_t)(rxvq->vq_used_cons_idx & (rxvq->vq_nentries - 1));
rused = &rxvq->vq_ring.used->ring[desc_idx];
sw_ring = &rxvq->sw_ring[desc_idx];
sw_ring_end = &rxvq->sw_ring[rxvq->vq_nentries];
_mm_prefetch((const void *)rused, _MM_HINT_T0);
if (rxvq->vq_free_cnt >= RTE_VIRTIO_VPMD_RX_REARM_THRESH) {
virtio_rxq_rearm_vec(rxvq);
if (unlikely(virtqueue_kick_prepare(rxvq)))
virtqueue_notify(rxvq);
}
for (nb_pkts_received = 0;
nb_pkts_received < nb_used;) {
__m128i desc[RTE_VIRTIO_DESC_PER_LOOP / 2];
__m128i mbp[RTE_VIRTIO_DESC_PER_LOOP / 2];
__m128i pkt_mb[RTE_VIRTIO_DESC_PER_LOOP];
mbp[0] = _mm_loadu_si128((__m128i *)(sw_ring + 0));
desc[0] = _mm_loadu_si128((__m128i *)(rused + 0));
_mm_storeu_si128((__m128i *)&rx_pkts[0], mbp[0]);
mbp[1] = _mm_loadu_si128((__m128i *)(sw_ring + 2));
desc[1] = _mm_loadu_si128((__m128i *)(rused + 2));
_mm_storeu_si128((__m128i *)&rx_pkts[2], mbp[1]);
mbp[2] = _mm_loadu_si128((__m128i *)(sw_ring + 4));
desc[2] = _mm_loadu_si128((__m128i *)(rused + 4));
_mm_storeu_si128((__m128i *)&rx_pkts[4], mbp[2]);
mbp[3] = _mm_loadu_si128((__m128i *)(sw_ring + 6));
desc[3] = _mm_loadu_si128((__m128i *)(rused + 6));
_mm_storeu_si128((__m128i *)&rx_pkts[6], mbp[3]);
pkt_mb[1] = _mm_shuffle_epi8(desc[0], shuf_msk2);
pkt_mb[0] = _mm_shuffle_epi8(desc[0], shuf_msk1);
pkt_mb[1] = _mm_add_epi16(pkt_mb[1], len_adjust);
pkt_mb[0] = _mm_add_epi16(pkt_mb[0], len_adjust);
_mm_storeu_si128((void *)&rx_pkts[1]->rx_descriptor_fields1,
pkt_mb[1]);
_mm_storeu_si128((void *)&rx_pkts[0]->rx_descriptor_fields1,
pkt_mb[0]);
pkt_mb[3] = _mm_shuffle_epi8(desc[1], shuf_msk2);
pkt_mb[2] = _mm_shuffle_epi8(desc[1], shuf_msk1);
pkt_mb[3] = _mm_add_epi16(pkt_mb[3], len_adjust);
pkt_mb[2] = _mm_add_epi16(pkt_mb[2], len_adjust);
_mm_storeu_si128((void *)&rx_pkts[3]->rx_descriptor_fields1,
pkt_mb[3]);
_mm_storeu_si128((void *)&rx_pkts[2]->rx_descriptor_fields1,
pkt_mb[2]);
pkt_mb[5] = _mm_shuffle_epi8(desc[2], shuf_msk2);
pkt_mb[4] = _mm_shuffle_epi8(desc[2], shuf_msk1);
pkt_mb[5] = _mm_add_epi16(pkt_mb[5], len_adjust);
pkt_mb[4] = _mm_add_epi16(pkt_mb[4], len_adjust);
_mm_storeu_si128((void *)&rx_pkts[5]->rx_descriptor_fields1,
pkt_mb[5]);
_mm_storeu_si128((void *)&rx_pkts[4]->rx_descriptor_fields1,
pkt_mb[4]);
pkt_mb[7] = _mm_shuffle_epi8(desc[3], shuf_msk2);
pkt_mb[6] = _mm_shuffle_epi8(desc[3], shuf_msk1);
pkt_mb[7] = _mm_add_epi16(pkt_mb[7], len_adjust);
pkt_mb[6] = _mm_add_epi16(pkt_mb[6], len_adjust);
_mm_storeu_si128((void *)&rx_pkts[7]->rx_descriptor_fields1,
pkt_mb[7]);
_mm_storeu_si128((void *)&rx_pkts[6]->rx_descriptor_fields1,
pkt_mb[6]);
if (unlikely(nb_used <= RTE_VIRTIO_DESC_PER_LOOP)) {
if (sw_ring + nb_used <= sw_ring_end)
nb_pkts_received += nb_used;
else
nb_pkts_received += sw_ring_end - sw_ring;
break;
} else {
if (unlikely(sw_ring + RTE_VIRTIO_DESC_PER_LOOP >=
sw_ring_end)) {
nb_pkts_received += sw_ring_end - sw_ring;
break;
} else {
nb_pkts_received += RTE_VIRTIO_DESC_PER_LOOP;
rx_pkts += RTE_VIRTIO_DESC_PER_LOOP;
sw_ring += RTE_VIRTIO_DESC_PER_LOOP;
rused += RTE_VIRTIO_DESC_PER_LOOP;
nb_used -= RTE_VIRTIO_DESC_PER_LOOP;
}
}
}
rxvq->vq_used_cons_idx += nb_pkts_received;
rxvq->vq_free_cnt += nb_pkts_received;
rxvq->packets += nb_pkts_received;
return nb_pkts_received;
}
#define VIRTIO_TX_FREE_THRESH 32
#define VIRTIO_TX_MAX_FREE_BUF_SZ 32
#define VIRTIO_TX_FREE_NR 32
/* TODO: vq->tx_free_cnt could mean num of free slots so we could avoid shift */
static inline void
virtio_xmit_cleanup(struct virtqueue *vq)
{
uint16_t i, desc_idx;
int nb_free = 0;
struct rte_mbuf *m, *free[VIRTIO_TX_MAX_FREE_BUF_SZ];
desc_idx = (uint16_t)(vq->vq_used_cons_idx &
((vq->vq_nentries >> 1) - 1));
m = (struct rte_mbuf *)vq->vq_descx[desc_idx++].cookie;
m = __rte_pktmbuf_prefree_seg(m);
if (likely(m != NULL)) {
free[0] = m;
nb_free = 1;
for (i = 1; i < VIRTIO_TX_FREE_NR; i++) {
m = (struct rte_mbuf *)vq->vq_descx[desc_idx++].cookie;
m = __rte_pktmbuf_prefree_seg(m);
if (likely(m != NULL)) {
if (likely(m->pool == free[0]->pool))
free[nb_free++] = m;
else {
rte_mempool_put_bulk(free[0]->pool,
(void **)free, nb_free);
free[0] = m;
nb_free = 1;
}
}
}
rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
} else {
for (i = 1; i < VIRTIO_TX_FREE_NR; i++) {
m = (struct rte_mbuf *)vq->vq_descx[desc_idx++].cookie;
m = __rte_pktmbuf_prefree_seg(m);
if (m != NULL)
rte_mempool_put(m->pool, m);
}
}
vq->vq_used_cons_idx += VIRTIO_TX_FREE_NR;
vq->vq_free_cnt += (VIRTIO_TX_FREE_NR << 1);
}
uint16_t
virtio_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct virtqueue *txvq = tx_queue;
uint16_t nb_used;
uint16_t desc_idx;
struct vring_desc *start_dp;
uint16_t nb_tail, nb_commit;
int i;
uint16_t desc_idx_max = (txvq->vq_nentries >> 1) - 1;
nb_used = VIRTQUEUE_NUSED(txvq);
rte_compiler_barrier();
if (nb_used >= VIRTIO_TX_FREE_THRESH)
virtio_xmit_cleanup(tx_queue);
nb_commit = nb_pkts = RTE_MIN((txvq->vq_free_cnt >> 1), nb_pkts);
desc_idx = (uint16_t) (txvq->vq_avail_idx & desc_idx_max);
start_dp = txvq->vq_ring.desc;
nb_tail = (uint16_t) (desc_idx_max + 1 - desc_idx);
if (nb_commit >= nb_tail) {
for (i = 0; i < nb_tail; i++)
txvq->vq_descx[desc_idx + i].cookie = tx_pkts[i];
for (i = 0; i < nb_tail; i++) {
start_dp[desc_idx].addr =
rte_mbuf_data_dma_addr(*tx_pkts);
start_dp[desc_idx].len = (*tx_pkts)->pkt_len;
tx_pkts++;
desc_idx++;
}
nb_commit -= nb_tail;
desc_idx = 0;
}
for (i = 0; i < nb_commit; i++)
txvq->vq_descx[desc_idx + i].cookie = tx_pkts[i];
for (i = 0; i < nb_commit; i++) {
start_dp[desc_idx].addr = rte_mbuf_data_dma_addr(*tx_pkts);
start_dp[desc_idx].len = (*tx_pkts)->pkt_len;
tx_pkts++;
desc_idx++;
}
rte_compiler_barrier();
txvq->vq_free_cnt -= (uint16_t)(nb_pkts << 1);
txvq->vq_avail_idx += nb_pkts;
txvq->vq_ring.avail->idx = txvq->vq_avail_idx;
txvq->packets += nb_pkts;
if (likely(nb_pkts)) {
if (unlikely(virtqueue_kick_prepare(txvq)))
virtqueue_notify(txvq);
}
return nb_pkts;
}
int __attribute__((cold))
virtio_rxq_vec_setup(struct virtqueue *rxq)
{
uintptr_t p;
struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
mb_def.nb_segs = 1;
mb_def.data_off = RTE_PKTMBUF_HEADROOM;
mb_def.port = rxq->port_id;
rte_mbuf_refcnt_set(&mb_def, 1);
/* prevent compiler reordering: rearm_data covers previous fields */
rte_compiler_barrier();
p = (uintptr_t)&mb_def.rearm_data;
rxq->mbuf_initializer = *(uint64_t *)p;
return 0;
}
|