1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
|
/*
* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
* Copyright 2017 Cavium, Inc.
*/
#include "pipeline_common.h"
static __rte_always_inline void
worker_fwd_event(struct rte_event *ev, uint8_t sched)
{
ev->event_type = RTE_EVENT_TYPE_CPU;
ev->op = RTE_EVENT_OP_FORWARD;
ev->sched_type = sched;
}
static __rte_always_inline void
worker_event_enqueue(const uint8_t dev, const uint8_t port,
struct rte_event *ev)
{
while (rte_event_enqueue_burst(dev, port, ev, 1) != 1)
rte_pause();
}
static __rte_always_inline void
worker_event_enqueue_burst(const uint8_t dev, const uint8_t port,
struct rte_event *ev, const uint16_t nb_rx)
{
uint16_t enq;
enq = rte_event_enqueue_burst(dev, port, ev, nb_rx);
while (enq < nb_rx) {
enq += rte_event_enqueue_burst(dev, port,
ev + enq, nb_rx - enq);
}
}
static __rte_always_inline void
worker_tx_pkt(const uint8_t dev, const uint8_t port, struct rte_event *ev)
{
exchange_mac(ev->mbuf);
rte_event_eth_tx_adapter_txq_set(ev->mbuf, 0);
while (!rte_event_eth_tx_adapter_enqueue(dev, port, ev, 1))
rte_pause();
}
/* Single stage pipeline workers */
static int
worker_do_tx_single(void *arg)
{
struct worker_data *data = (struct worker_data *)arg;
const uint8_t dev = data->dev_id;
const uint8_t port = data->port_id;
size_t fwd = 0, received = 0, tx = 0;
struct rte_event ev;
while (!fdata->done) {
if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
rte_pause();
continue;
}
received++;
if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
worker_tx_pkt(dev, port, &ev);
tx++;
} else {
work();
ev.queue_id++;
worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
worker_event_enqueue(dev, port, &ev);
fwd++;
}
}
if (!cdata.quiet)
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
rte_lcore_id(), received, fwd, tx);
return 0;
}
static int
worker_do_tx_single_atq(void *arg)
{
struct worker_data *data = (struct worker_data *)arg;
const uint8_t dev = data->dev_id;
const uint8_t port = data->port_id;
size_t fwd = 0, received = 0, tx = 0;
struct rte_event ev;
while (!fdata->done) {
if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
rte_pause();
continue;
}
received++;
if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
worker_tx_pkt(dev, port, &ev);
tx++;
} else {
work();
worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
worker_event_enqueue(dev, port, &ev);
fwd++;
}
}
if (!cdata.quiet)
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
rte_lcore_id(), received, fwd, tx);
return 0;
}
static int
worker_do_tx_single_burst(void *arg)
{
struct rte_event ev[BATCH_SIZE + 1];
struct worker_data *data = (struct worker_data *)arg;
const uint8_t dev = data->dev_id;
const uint8_t port = data->port_id;
size_t fwd = 0, received = 0, tx = 0;
while (!fdata->done) {
uint16_t i;
uint16_t nb_rx = rte_event_dequeue_burst(dev, port, ev,
BATCH_SIZE, 0);
if (!nb_rx) {
rte_pause();
continue;
}
received += nb_rx;
for (i = 0; i < nb_rx; i++) {
rte_prefetch0(ev[i + 1].mbuf);
if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
worker_tx_pkt(dev, port, &ev[i]);
ev[i].op = RTE_EVENT_OP_RELEASE;
tx++;
} else {
ev[i].queue_id++;
worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
}
work();
}
worker_event_enqueue_burst(dev, port, ev, nb_rx);
fwd += nb_rx;
}
if (!cdata.quiet)
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
rte_lcore_id(), received, fwd, tx);
return 0;
}
static int
worker_do_tx_single_burst_atq(void *arg)
{
struct rte_event ev[BATCH_SIZE + 1];
struct worker_data *data = (struct worker_data *)arg;
const uint8_t dev = data->dev_id;
const uint8_t port = data->port_id;
size_t fwd = 0, received = 0, tx = 0;
while (!fdata->done) {
uint16_t i;
uint16_t nb_rx = rte_event_dequeue_burst(dev, port, ev,
BATCH_SIZE, 0);
if (!nb_rx) {
rte_pause();
continue;
}
received += nb_rx;
for (i = 0; i < nb_rx; i++) {
rte_prefetch0(ev[i + 1].mbuf);
if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
worker_tx_pkt(dev, port, &ev[i]);
ev[i].op = RTE_EVENT_OP_RELEASE;
tx++;
} else
worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
work();
}
worker_event_enqueue_burst(dev, port, ev, nb_rx);
fwd += nb_rx;
}
if (!cdata.quiet)
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
rte_lcore_id(), received, fwd, tx);
return 0;
}
/* Multi stage Pipeline Workers */
static int
worker_do_tx(void *arg)
{
struct rte_event ev;
struct worker_data *data = (struct worker_data *)arg;
const uint8_t dev = data->dev_id;
const uint8_t port = data->port_id;
const uint8_t lst_qid = cdata.num_stages - 1;
size_t fwd = 0, received = 0, tx = 0;
while (!fdata->done) {
if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
rte_pause();
continue;
}
received++;
const uint8_t cq_id = ev.queue_id % cdata.num_stages;
if (cq_id >= lst_qid) {
if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
worker_tx_pkt(dev, port, &ev);
tx++;
continue;
}
worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
ev.queue_id = (cq_id == lst_qid) ?
cdata.next_qid[ev.queue_id] : ev.queue_id;
} else {
ev.queue_id = cdata.next_qid[ev.queue_id];
worker_fwd_event(&ev, cdata.queue_type);
}
work();
worker_event_enqueue(dev, port, &ev);
fwd++;
}
if (!cdata.quiet)
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
rte_lcore_id(), received, fwd, tx);
return 0;
}
static int
worker_do_tx_atq(void *arg)
{
struct rte_event ev;
struct worker_data *data = (struct worker_data *)arg;
const uint8_t dev = data->dev_id;
const uint8_t port = data->port_id;
const uint8_t lst_qid = cdata.num_stages - 1;
size_t fwd = 0, received = 0, tx = 0;
while (!fdata->done) {
if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
rte_pause();
continue;
}
received++;
const uint8_t cq_id = ev.sub_event_type % cdata.num_stages;
if (cq_id == lst_qid) {
if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
worker_tx_pkt(dev, port, &ev);
tx++;
continue;
}
worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
} else {
ev.sub_event_type++;
worker_fwd_event(&ev, cdata.queue_type);
}
work();
worker_event_enqueue(dev, port, &ev);
fwd++;
}
if (!cdata.quiet)
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
rte_lcore_id(), received, fwd, tx);
return 0;
}
static int
worker_do_tx_burst(void *arg)
{
struct rte_event ev[BATCH_SIZE];
struct worker_data *data = (struct worker_data *)arg;
uint8_t dev = data->dev_id;
uint8_t port = data->port_id;
uint8_t lst_qid = cdata.num_stages - 1;
size_t fwd = 0, received = 0, tx = 0;
while (!fdata->done) {
uint16_t i;
const uint16_t nb_rx = rte_event_dequeue_burst(dev, port,
ev, BATCH_SIZE, 0);
if (nb_rx == 0) {
rte_pause();
continue;
}
received += nb_rx;
for (i = 0; i < nb_rx; i++) {
const uint8_t cq_id = ev[i].queue_id % cdata.num_stages;
if (cq_id >= lst_qid) {
if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
worker_tx_pkt(dev, port, &ev[i]);
tx++;
ev[i].op = RTE_EVENT_OP_RELEASE;
continue;
}
ev[i].queue_id = (cq_id == lst_qid) ?
cdata.next_qid[ev[i].queue_id] :
ev[i].queue_id;
worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
} else {
ev[i].queue_id = cdata.next_qid[ev[i].queue_id];
worker_fwd_event(&ev[i], cdata.queue_type);
}
work();
}
worker_event_enqueue_burst(dev, port, ev, nb_rx);
fwd += nb_rx;
}
if (!cdata.quiet)
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
rte_lcore_id(), received, fwd, tx);
return 0;
}
static int
worker_do_tx_burst_atq(void *arg)
{
struct rte_event ev[BATCH_SIZE];
struct worker_data *data = (struct worker_data *)arg;
uint8_t dev = data->dev_id;
uint8_t port = data->port_id;
uint8_t lst_qid = cdata.num_stages - 1;
size_t fwd = 0, received = 0, tx = 0;
while (!fdata->done) {
uint16_t i;
const uint16_t nb_rx = rte_event_dequeue_burst(dev, port,
ev, BATCH_SIZE, 0);
if (nb_rx == 0) {
rte_pause();
continue;
}
received += nb_rx;
for (i = 0; i < nb_rx; i++) {
const uint8_t cq_id = ev[i].sub_event_type %
cdata.num_stages;
if (cq_id == lst_qid) {
if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
worker_tx_pkt(dev, port, &ev[i]);
tx++;
ev[i].op = RTE_EVENT_OP_RELEASE;
continue;
}
worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
} else {
ev[i].sub_event_type++;
worker_fwd_event(&ev[i], cdata.queue_type);
}
work();
}
worker_event_enqueue_burst(dev, port, ev, nb_rx);
fwd += nb_rx;
}
if (!cdata.quiet)
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
rte_lcore_id(), received, fwd, tx);
return 0;
}
static int
setup_eventdev_worker_tx_enq(struct worker_data *worker_data)
{
uint8_t i;
const uint8_t atq = cdata.all_type_queues ? 1 : 0;
const uint8_t dev_id = 0;
const uint8_t nb_ports = cdata.num_workers;
uint8_t nb_slots = 0;
uint8_t nb_queues = rte_eth_dev_count_avail();
/*
* In case where all type queues are not enabled, use queues equal to
* number of stages * eth_dev_count and one extra queue per pipeline
* for Tx.
*/
if (!atq) {
nb_queues *= cdata.num_stages;
nb_queues += rte_eth_dev_count_avail();
}
struct rte_event_dev_config config = {
.nb_event_queues = nb_queues,
.nb_event_ports = nb_ports,
.nb_events_limit = 4096,
.nb_event_queue_flows = 1024,
.nb_event_port_dequeue_depth = 128,
.nb_event_port_enqueue_depth = 128,
};
struct rte_event_port_conf wkr_p_conf = {
.dequeue_depth = cdata.worker_cq_depth,
.enqueue_depth = 64,
.new_event_threshold = 4096,
};
struct rte_event_queue_conf wkr_q_conf = {
.schedule_type = cdata.queue_type,
.priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
.nb_atomic_flows = 1024,
.nb_atomic_order_sequences = 1024,
};
int ret, ndev = rte_event_dev_count();
if (ndev < 1) {
printf("%d: No Eventdev Devices Found\n", __LINE__);
return -1;
}
struct rte_event_dev_info dev_info;
ret = rte_event_dev_info_get(dev_id, &dev_info);
printf("\tEventdev %d: %s\n", dev_id, dev_info.driver_name);
if (dev_info.max_event_port_dequeue_depth <
config.nb_event_port_dequeue_depth)
config.nb_event_port_dequeue_depth =
dev_info.max_event_port_dequeue_depth;
if (dev_info.max_event_port_enqueue_depth <
config.nb_event_port_enqueue_depth)
config.nb_event_port_enqueue_depth =
dev_info.max_event_port_enqueue_depth;
ret = rte_event_dev_configure(dev_id, &config);
if (ret < 0) {
printf("%d: Error configuring device\n", __LINE__);
return -1;
}
printf(" Stages:\n");
for (i = 0; i < nb_queues; i++) {
if (atq) {
nb_slots = cdata.num_stages;
wkr_q_conf.event_queue_cfg =
RTE_EVENT_QUEUE_CFG_ALL_TYPES;
} else {
uint8_t slot;
nb_slots = cdata.num_stages + 1;
slot = i % nb_slots;
wkr_q_conf.schedule_type = slot == cdata.num_stages ?
RTE_SCHED_TYPE_ATOMIC : cdata.queue_type;
}
if (rte_event_queue_setup(dev_id, i, &wkr_q_conf) < 0) {
printf("%d: error creating qid %d\n", __LINE__, i);
return -1;
}
cdata.qid[i] = i;
cdata.next_qid[i] = i+1;
if (cdata.enable_queue_priorities) {
const uint32_t prio_delta =
(RTE_EVENT_DEV_PRIORITY_LOWEST) /
nb_slots;
/* higher priority for queues closer to tx */
wkr_q_conf.priority =
RTE_EVENT_DEV_PRIORITY_LOWEST - prio_delta *
(i % nb_slots);
}
const char *type_str = "Atomic";
switch (wkr_q_conf.schedule_type) {
case RTE_SCHED_TYPE_ORDERED:
type_str = "Ordered";
break;
case RTE_SCHED_TYPE_PARALLEL:
type_str = "Parallel";
break;
}
printf("\tStage %d, Type %s\tPriority = %d\n", i, type_str,
wkr_q_conf.priority);
}
printf("\n");
if (wkr_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth)
wkr_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth;
if (wkr_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth)
wkr_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth;
/* set up one port per worker, linking to all stage queues */
for (i = 0; i < cdata.num_workers; i++) {
struct worker_data *w = &worker_data[i];
w->dev_id = dev_id;
if (rte_event_port_setup(dev_id, i, &wkr_p_conf) < 0) {
printf("Error setting up port %d\n", i);
return -1;
}
if (rte_event_port_link(dev_id, i, NULL, NULL, 0)
!= nb_queues) {
printf("%d: error creating link for port %d\n",
__LINE__, i);
return -1;
}
w->port_id = i;
}
/*
* Reduce the load on ingress event queue by splitting the traffic
* across multiple event queues.
* for example, nb_stages = 2 and nb_ethdev = 2 then
*
* nb_queues = (2 * 2) + 2 = 6 (non atq)
* rx_stride = 3
*
* So, traffic is split across queue 0 and queue 3 since queue id for
* rx adapter is chosen <ethport_id> * <rx_stride> i.e in the above
* case eth port 0, 1 will inject packets into event queue 0, 3
* respectively.
*
* This forms two set of queue pipelines 0->1->2->tx and 3->4->5->tx.
*/
cdata.rx_stride = atq ? 1 : nb_slots;
ret = rte_event_dev_service_id_get(dev_id,
&fdata->evdev_service_id);
if (ret != -ESRCH && ret != 0) {
printf("Error getting the service ID\n");
return -1;
}
rte_service_runstate_set(fdata->evdev_service_id, 1);
rte_service_set_runstate_mapped_check(fdata->evdev_service_id, 0);
if (rte_event_dev_start(dev_id) < 0)
rte_exit(EXIT_FAILURE, "Error starting eventdev");
return dev_id;
}
struct rx_adptr_services {
uint16_t nb_rx_adptrs;
uint32_t *rx_adpt_arr;
};
static int32_t
service_rx_adapter(void *arg)
{
int i;
struct rx_adptr_services *adptr_services = arg;
for (i = 0; i < adptr_services->nb_rx_adptrs; i++)
rte_service_run_iter_on_app_lcore(
adptr_services->rx_adpt_arr[i], 1);
return 0;
}
static void
init_adapters(uint16_t nb_ports)
{
int i;
int ret;
uint8_t evdev_id = 0;
struct rx_adptr_services *adptr_services = NULL;
struct rte_event_dev_info dev_info;
ret = rte_event_dev_info_get(evdev_id, &dev_info);
adptr_services = rte_zmalloc(NULL, sizeof(struct rx_adptr_services), 0);
struct rte_event_port_conf adptr_p_conf = {
.dequeue_depth = cdata.worker_cq_depth,
.enqueue_depth = 64,
.new_event_threshold = 4096,
};
if (adptr_p_conf.dequeue_depth > dev_info.max_event_port_dequeue_depth)
adptr_p_conf.dequeue_depth =
dev_info.max_event_port_dequeue_depth;
if (adptr_p_conf.enqueue_depth > dev_info.max_event_port_enqueue_depth)
adptr_p_conf.enqueue_depth =
dev_info.max_event_port_enqueue_depth;
struct rte_event_eth_rx_adapter_queue_conf queue_conf;
memset(&queue_conf, 0, sizeof(queue_conf));
queue_conf.ev.sched_type = cdata.queue_type;
for (i = 0; i < nb_ports; i++) {
uint32_t cap;
uint32_t service_id;
ret = rte_event_eth_rx_adapter_create(i, evdev_id,
&adptr_p_conf);
if (ret)
rte_exit(EXIT_FAILURE,
"failed to create rx adapter[%d]", i);
ret = rte_event_eth_rx_adapter_caps_get(evdev_id, i, &cap);
if (ret)
rte_exit(EXIT_FAILURE,
"failed to get event rx adapter "
"capabilities");
queue_conf.ev.queue_id = cdata.rx_stride ?
(i * cdata.rx_stride)
: (uint8_t)cdata.qid[0];
ret = rte_event_eth_rx_adapter_queue_add(i, i, -1, &queue_conf);
if (ret)
rte_exit(EXIT_FAILURE,
"Failed to add queues to Rx adapter");
/* Producer needs to be scheduled. */
if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) {
ret = rte_event_eth_rx_adapter_service_id_get(i,
&service_id);
if (ret != -ESRCH && ret != 0) {
rte_exit(EXIT_FAILURE,
"Error getting the service ID for rx adptr\n");
}
rte_service_runstate_set(service_id, 1);
rte_service_set_runstate_mapped_check(service_id, 0);
adptr_services->nb_rx_adptrs++;
adptr_services->rx_adpt_arr = rte_realloc(
adptr_services->rx_adpt_arr,
adptr_services->nb_rx_adptrs *
sizeof(uint32_t), 0);
adptr_services->rx_adpt_arr[
adptr_services->nb_rx_adptrs - 1] =
service_id;
}
ret = rte_event_eth_rx_adapter_start(i);
if (ret)
rte_exit(EXIT_FAILURE, "Rx adapter[%d] start failed",
i);
}
/* We already know that Tx adapter has INTERNAL port cap*/
ret = rte_event_eth_tx_adapter_create(cdata.tx_adapter_id, evdev_id,
&adptr_p_conf);
if (ret)
rte_exit(EXIT_FAILURE, "failed to create tx adapter[%d]",
cdata.tx_adapter_id);
for (i = 0; i < nb_ports; i++) {
ret = rte_event_eth_tx_adapter_queue_add(cdata.tx_adapter_id, i,
-1);
if (ret)
rte_exit(EXIT_FAILURE,
"Failed to add queues to Tx adapter");
}
ret = rte_event_eth_tx_adapter_start(cdata.tx_adapter_id);
if (ret)
rte_exit(EXIT_FAILURE, "Tx adapter[%d] start failed",
cdata.tx_adapter_id);
if (adptr_services->nb_rx_adptrs) {
struct rte_service_spec service;
memset(&service, 0, sizeof(struct rte_service_spec));
snprintf(service.name, sizeof(service.name), "rx_service");
service.callback = service_rx_adapter;
service.callback_userdata = (void *)adptr_services;
int32_t ret = rte_service_component_register(&service,
&fdata->rxadptr_service_id);
if (ret)
rte_exit(EXIT_FAILURE,
"Rx adapter service register failed");
rte_service_runstate_set(fdata->rxadptr_service_id, 1);
rte_service_component_runstate_set(fdata->rxadptr_service_id,
1);
rte_service_set_runstate_mapped_check(fdata->rxadptr_service_id,
0);
} else {
memset(fdata->rx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
rte_free(adptr_services);
}
if (!adptr_services->nb_rx_adptrs && (dev_info.event_dev_cap &
RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED))
fdata->cap.scheduler = NULL;
}
static void
worker_tx_enq_opt_check(void)
{
int i;
int ret;
uint32_t cap = 0;
uint8_t rx_needed = 0;
uint8_t sched_needed = 0;
struct rte_event_dev_info eventdev_info;
memset(&eventdev_info, 0, sizeof(struct rte_event_dev_info));
rte_event_dev_info_get(0, &eventdev_info);
if (cdata.all_type_queues && !(eventdev_info.event_dev_cap &
RTE_EVENT_DEV_CAP_QUEUE_ALL_TYPES))
rte_exit(EXIT_FAILURE,
"Event dev doesn't support all type queues\n");
sched_needed = !(eventdev_info.event_dev_cap &
RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED);
RTE_ETH_FOREACH_DEV(i) {
ret = rte_event_eth_rx_adapter_caps_get(0, i, &cap);
if (ret)
rte_exit(EXIT_FAILURE,
"failed to get event rx adapter capabilities");
rx_needed |=
!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT);
}
if (cdata.worker_lcore_mask == 0 ||
(rx_needed && cdata.rx_lcore_mask == 0) ||
(sched_needed && cdata.sched_lcore_mask == 0)) {
printf("Core part of pipeline was not assigned any cores. "
"This will stall the pipeline, please check core masks "
"(use -h for details on setting core masks):\n"
"\trx: %"PRIu64"\n\tsched: %"PRIu64
"\n\tworkers: %"PRIu64"\n", cdata.rx_lcore_mask,
cdata.sched_lcore_mask, cdata.worker_lcore_mask);
rte_exit(-1, "Fix core masks\n");
}
if (!sched_needed)
memset(fdata->sched_core, 0,
sizeof(unsigned int) * MAX_NUM_CORE);
if (!rx_needed)
memset(fdata->rx_core, 0,
sizeof(unsigned int) * MAX_NUM_CORE);
memset(fdata->tx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
}
static worker_loop
get_worker_loop_single_burst(uint8_t atq)
{
if (atq)
return worker_do_tx_single_burst_atq;
return worker_do_tx_single_burst;
}
static worker_loop
get_worker_loop_single_non_burst(uint8_t atq)
{
if (atq)
return worker_do_tx_single_atq;
return worker_do_tx_single;
}
static worker_loop
get_worker_loop_burst(uint8_t atq)
{
if (atq)
return worker_do_tx_burst_atq;
return worker_do_tx_burst;
}
static worker_loop
get_worker_loop_non_burst(uint8_t atq)
{
if (atq)
return worker_do_tx_atq;
return worker_do_tx;
}
static worker_loop
get_worker_single_stage(bool burst)
{
uint8_t atq = cdata.all_type_queues ? 1 : 0;
if (burst)
return get_worker_loop_single_burst(atq);
return get_worker_loop_single_non_burst(atq);
}
static worker_loop
get_worker_multi_stage(bool burst)
{
uint8_t atq = cdata.all_type_queues ? 1 : 0;
if (burst)
return get_worker_loop_burst(atq);
return get_worker_loop_non_burst(atq);
}
void
set_worker_tx_enq_setup_data(struct setup_data *caps, bool burst)
{
if (cdata.num_stages == 1)
caps->worker = get_worker_single_stage(burst);
else
caps->worker = get_worker_multi_stage(burst);
caps->check_opt = worker_tx_enq_opt_check;
caps->scheduler = schedule_devices;
caps->evdev_setup = setup_eventdev_worker_tx_enq;
caps->adptr_setup = init_adapters;
}
|