aboutsummaryrefslogtreecommitdiffstats
path: root/examples/flow_classify/flow_classify.c
blob: 32d9b1d3011f6f5fe22c65cd9dbe31139a9fb423 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2017 Intel Corporation
 */

#include <stdint.h>
#include <inttypes.h>
#include <getopt.h>

#include <rte_eal.h>
#include <rte_ethdev.h>
#include <rte_cycles.h>
#include <rte_lcore.h>
#include <rte_mbuf.h>
#include <rte_flow.h>
#include <rte_flow_classify.h>
#include <rte_table_acl.h>

#define RX_RING_SIZE 1024
#define TX_RING_SIZE 1024

#define NUM_MBUFS 8191
#define MBUF_CACHE_SIZE 250
#define BURST_SIZE 32

#define MAX_NUM_CLASSIFY 30
#define FLOW_CLASSIFY_MAX_RULE_NUM 91
#define FLOW_CLASSIFY_MAX_PRIORITY 8
#define FLOW_CLASSIFIER_NAME_SIZE 64

#define COMMENT_LEAD_CHAR	('#')
#define OPTION_RULE_IPV4	"rule_ipv4"
#define RTE_LOGTYPE_FLOW_CLASSIFY	RTE_LOGTYPE_USER3
#define flow_classify_log(format, ...) \
		RTE_LOG(ERR, FLOW_CLASSIFY, format, ##__VA_ARGS__)

#define uint32_t_to_char(ip, a, b, c, d) do {\
		*a = (unsigned char)(ip >> 24 & 0xff);\
		*b = (unsigned char)(ip >> 16 & 0xff);\
		*c = (unsigned char)(ip >> 8 & 0xff);\
		*d = (unsigned char)(ip & 0xff);\
	} while (0)

enum {
	CB_FLD_SRC_ADDR,
	CB_FLD_DST_ADDR,
	CB_FLD_SRC_PORT,
	CB_FLD_SRC_PORT_DLM,
	CB_FLD_SRC_PORT_MASK,
	CB_FLD_DST_PORT,
	CB_FLD_DST_PORT_DLM,
	CB_FLD_DST_PORT_MASK,
	CB_FLD_PROTO,
	CB_FLD_PRIORITY,
	CB_FLD_NUM,
};

static struct{
	const char *rule_ipv4_name;
} parm_config;
const char cb_port_delim[] = ":";

static const struct rte_eth_conf port_conf_default = {
	.rxmode = {
		.max_rx_pkt_len = ETHER_MAX_LEN,
		.ignore_offload_bitfield = 1,
	},
};

struct flow_classifier {
	struct rte_flow_classifier *cls;
};

struct flow_classifier_acl {
	struct flow_classifier cls;
} __rte_cache_aligned;

/* ACL field definitions for IPv4 5 tuple rule */

enum {
	PROTO_FIELD_IPV4,
	SRC_FIELD_IPV4,
	DST_FIELD_IPV4,
	SRCP_FIELD_IPV4,
	DSTP_FIELD_IPV4,
	NUM_FIELDS_IPV4
};

enum {
	PROTO_INPUT_IPV4,
	SRC_INPUT_IPV4,
	DST_INPUT_IPV4,
	SRCP_DESTP_INPUT_IPV4
};

static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
	/* first input field - always one byte long. */
	{
		.type = RTE_ACL_FIELD_TYPE_BITMASK,
		.size = sizeof(uint8_t),
		.field_index = PROTO_FIELD_IPV4,
		.input_index = PROTO_INPUT_IPV4,
		.offset = sizeof(struct ether_hdr) +
			offsetof(struct ipv4_hdr, next_proto_id),
	},
	/* next input field (IPv4 source address) - 4 consecutive bytes. */
	{
		/* rte_flow uses a bit mask for IPv4 addresses */
		.type = RTE_ACL_FIELD_TYPE_BITMASK,
		.size = sizeof(uint32_t),
		.field_index = SRC_FIELD_IPV4,
		.input_index = SRC_INPUT_IPV4,
		.offset = sizeof(struct ether_hdr) +
			offsetof(struct ipv4_hdr, src_addr),
	},
	/* next input field (IPv4 destination address) - 4 consecutive bytes. */
	{
		/* rte_flow uses a bit mask for IPv4 addresses */
		.type = RTE_ACL_FIELD_TYPE_BITMASK,
		.size = sizeof(uint32_t),
		.field_index = DST_FIELD_IPV4,
		.input_index = DST_INPUT_IPV4,
		.offset = sizeof(struct ether_hdr) +
			offsetof(struct ipv4_hdr, dst_addr),
	},
	/*
	 * Next 2 fields (src & dst ports) form 4 consecutive bytes.
	 * They share the same input index.
	 */
	{
		/* rte_flow uses a bit mask for protocol ports */
		.type = RTE_ACL_FIELD_TYPE_BITMASK,
		.size = sizeof(uint16_t),
		.field_index = SRCP_FIELD_IPV4,
		.input_index = SRCP_DESTP_INPUT_IPV4,
		.offset = sizeof(struct ether_hdr) +
			sizeof(struct ipv4_hdr) +
			offsetof(struct tcp_hdr, src_port),
	},
	{
		/* rte_flow uses a bit mask for protocol ports */
		.type = RTE_ACL_FIELD_TYPE_BITMASK,
		.size = sizeof(uint16_t),
		.field_index = DSTP_FIELD_IPV4,
		.input_index = SRCP_DESTP_INPUT_IPV4,
		.offset = sizeof(struct ether_hdr) +
			sizeof(struct ipv4_hdr) +
			offsetof(struct tcp_hdr, dst_port),
	},
};

/* flow classify data */
static int num_classify_rules;
static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY];
static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats;
static struct rte_flow_classify_stats classify_stats = {
		.stats = (void **)&ntuple_stats
};

/* parameters for rte_flow_classify_validate and
 * rte_flow_classify_table_entry_add functions
 */

static struct rte_flow_item  eth_item = { RTE_FLOW_ITEM_TYPE_ETH,
	0, 0, 0 };
static struct rte_flow_item  end_item = { RTE_FLOW_ITEM_TYPE_END,
	0, 0, 0 };

/* sample actions:
 * "actions count / end"
 */
struct rte_flow_query_count count = {
	.reset = 1,
	.hits_set = 1,
	.bytes_set = 1,
	.hits = 0,
	.bytes = 0,
};
static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT,
	&count};
static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0};
static struct rte_flow_action actions[2];

/* sample attributes */
static struct rte_flow_attr attr;

/* flow_classify.c: * Based on DPDK skeleton forwarding example. */

/*
 * Initializes a given port using global settings and with the RX buffers
 * coming from the mbuf_pool passed as a parameter.
 */
static inline int
port_init(uint8_t port, struct rte_mempool *mbuf_pool)
{
	struct rte_eth_conf port_conf = port_conf_default;
	struct ether_addr addr;
	const uint16_t rx_rings = 1, tx_rings = 1;
	int retval;
	uint16_t q;
	struct rte_eth_dev_info dev_info;
	struct rte_eth_txconf txconf;

	if (port >= rte_eth_dev_count())
		return -1;

	rte_eth_dev_info_get(port, &dev_info);
	if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
		port_conf.txmode.offloads |=
			DEV_TX_OFFLOAD_MBUF_FAST_FREE;

	/* Configure the Ethernet device. */
	retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
	if (retval != 0)
		return retval;

	/* Allocate and set up 1 RX queue per Ethernet port. */
	for (q = 0; q < rx_rings; q++) {
		retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
				rte_eth_dev_socket_id(port), NULL, mbuf_pool);
		if (retval < 0)
			return retval;
	}

	txconf = dev_info.default_txconf;
	txconf.txq_flags = ETH_TXQ_FLAGS_IGNORE;
	txconf.offloads = port_conf.txmode.offloads;
	/* Allocate and set up 1 TX queue per Ethernet port. */
	for (q = 0; q < tx_rings; q++) {
		retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
				rte_eth_dev_socket_id(port), &txconf);
		if (retval < 0)
			return retval;
	}

	/* Start the Ethernet port. */
	retval = rte_eth_dev_start(port);
	if (retval < 0)
		return retval;

	/* Display the port MAC address. */
	rte_eth_macaddr_get(port, &addr);
	printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
			   " %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
			port,
			addr.addr_bytes[0], addr.addr_bytes[1],
			addr.addr_bytes[2], addr.addr_bytes[3],
			addr.addr_bytes[4], addr.addr_bytes[5]);

	/* Enable RX in promiscuous mode for the Ethernet device. */
	rte_eth_promiscuous_enable(port);

	return 0;
}

/*
 * The lcore main. This is the main thread that does the work, reading from
 * an input port classifying the packets and writing to an output port.
 */
static __attribute__((noreturn)) void
lcore_main(struct flow_classifier *cls_app)
{
	const uint8_t nb_ports = rte_eth_dev_count();
	uint8_t port;
	int ret;
	int i = 0;

	ret = rte_flow_classify_table_entry_delete(cls_app->cls,
			rules[7]);
	if (ret)
		printf("table_entry_delete failed [7] %d\n\n", ret);
	else
		printf("table_entry_delete succeeded [7]\n\n");

	/*
	 * Check that the port is on the same NUMA node as the polling thread
	 * for best performance.
	 */
	for (port = 0; port < nb_ports; port++)
		if (rte_eth_dev_socket_id(port) > 0 &&
			rte_eth_dev_socket_id(port) != (int)rte_socket_id()) {
			printf("\n\n");
			printf("WARNING: port %u is on remote NUMA node\n",
			       port);
			printf("to polling thread.\n");
			printf("Performance will not be optimal.\n");
		}
	printf("\nCore %u forwarding packets. ", rte_lcore_id());
	printf("[Ctrl+C to quit]\n");

	/* Run until the application is quit or killed. */
	for (;;) {
		/*
		 * Receive packets on a port, classify them and forward them
		 * on the paired port.
		 * The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
		 */
		for (port = 0; port < nb_ports; port++) {
			/* Get burst of RX packets, from first port of pair. */
			struct rte_mbuf *bufs[BURST_SIZE];
			const uint16_t nb_rx = rte_eth_rx_burst(port, 0,
					bufs, BURST_SIZE);

			if (unlikely(nb_rx == 0))
				continue;

			for (i = 0; i < MAX_NUM_CLASSIFY; i++) {
				if (rules[i]) {
					ret = rte_flow_classifier_query(
						cls_app->cls,
						bufs, nb_rx, rules[i],
						&classify_stats);
					if (ret)
						printf(
							"rule [%d] query failed ret [%d]\n\n",
							i, ret);
					else {
						printf(
						"rule[%d] count=%"PRIu64"\n",
						i, ntuple_stats.counter1);

						printf("proto = %d\n",
						ntuple_stats.ipv4_5tuple.proto);
					}
				}
			}

			/* Send burst of TX packets, to second port of pair. */
			const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,
					bufs, nb_rx);

			/* Free any unsent packets. */
			if (unlikely(nb_tx < nb_rx)) {
				uint16_t buf;

				for (buf = nb_tx; buf < nb_rx; buf++)
					rte_pktmbuf_free(bufs[buf]);
			}
		}
	}
}

/*
 * Parse IPv4 5 tuple rules file, ipv4_rules_file.txt.
 * Expected format:
 * <src_ipv4_addr>'/'<masklen> <space> \
 * <dst_ipv4_addr>'/'<masklen> <space> \
 * <src_port> <space> ":" <src_port_mask> <space> \
 * <dst_port> <space> ":" <dst_port_mask> <space> \
 * <proto>'/'<proto_mask> <space> \
 * <priority>
 */

static int
get_cb_field(char **in, uint32_t *fd, int base, unsigned long lim,
		char dlm)
{
	unsigned long val;
	char *end;

	errno = 0;
	val = strtoul(*in, &end, base);
	if (errno != 0 || end[0] != dlm || val > lim)
		return -EINVAL;
	*fd = (uint32_t)val;
	*in = end + 1;
	return 0;
}

static int
parse_ipv4_net(char *in, uint32_t *addr, uint32_t *mask_len)
{
	uint32_t a, b, c, d, m;

	if (get_cb_field(&in, &a, 0, UINT8_MAX, '.'))
		return -EINVAL;
	if (get_cb_field(&in, &b, 0, UINT8_MAX, '.'))
		return -EINVAL;
	if (get_cb_field(&in, &c, 0, UINT8_MAX, '.'))
		return -EINVAL;
	if (get_cb_field(&in, &d, 0, UINT8_MAX, '/'))
		return -EINVAL;
	if (get_cb_field(&in, &m, 0, sizeof(uint32_t) * CHAR_BIT, 0))
		return -EINVAL;

	addr[0] = IPv4(a, b, c, d);
	mask_len[0] = m;
	return 0;
}

static int
parse_ipv4_5tuple_rule(char *str, struct rte_eth_ntuple_filter *ntuple_filter)
{
	int i, ret;
	char *s, *sp, *in[CB_FLD_NUM];
	static const char *dlm = " \t\n";
	int dim = CB_FLD_NUM;
	uint32_t temp;

	s = str;
	for (i = 0; i != dim; i++, s = NULL) {
		in[i] = strtok_r(s, dlm, &sp);
		if (in[i] == NULL)
			return -EINVAL;
	}

	ret = parse_ipv4_net(in[CB_FLD_SRC_ADDR],
			&ntuple_filter->src_ip,
			&ntuple_filter->src_ip_mask);
	if (ret != 0) {
		flow_classify_log("failed to read source address/mask: %s\n",
			in[CB_FLD_SRC_ADDR]);
		return ret;
	}

	ret = parse_ipv4_net(in[CB_FLD_DST_ADDR],
			&ntuple_filter->dst_ip,
			&ntuple_filter->dst_ip_mask);
	if (ret != 0) {
		flow_classify_log("failed to read source address/mask: %s\n",
			in[CB_FLD_DST_ADDR]);
		return ret;
	}

	if (get_cb_field(&in[CB_FLD_SRC_PORT], &temp, 0, UINT16_MAX, 0))
		return -EINVAL;
	ntuple_filter->src_port = (uint16_t)temp;

	if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim,
			sizeof(cb_port_delim)) != 0)
		return -EINVAL;

	if (get_cb_field(&in[CB_FLD_SRC_PORT_MASK], &temp, 0, UINT16_MAX, 0))
		return -EINVAL;
	ntuple_filter->src_port_mask = (uint16_t)temp;

	if (get_cb_field(&in[CB_FLD_DST_PORT], &temp, 0, UINT16_MAX, 0))
		return -EINVAL;
	ntuple_filter->dst_port = (uint16_t)temp;

	if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim,
			sizeof(cb_port_delim)) != 0)
		return -EINVAL;

	if (get_cb_field(&in[CB_FLD_DST_PORT_MASK], &temp, 0, UINT16_MAX, 0))
		return -EINVAL;
	ntuple_filter->dst_port_mask = (uint16_t)temp;

	if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, '/'))
		return -EINVAL;
	ntuple_filter->proto = (uint8_t)temp;

	if (get_cb_field(&in[CB_FLD_PROTO], &temp, 0, UINT8_MAX, 0))
		return -EINVAL;
	ntuple_filter->proto_mask = (uint8_t)temp;

	if (get_cb_field(&in[CB_FLD_PRIORITY], &temp, 0, UINT16_MAX, 0))
		return -EINVAL;
	ntuple_filter->priority = (uint16_t)temp;
	if (ntuple_filter->priority > FLOW_CLASSIFY_MAX_PRIORITY)
		ret = -EINVAL;

	return ret;
}

/* Bypass comment and empty lines */
static inline int
is_bypass_line(char *buff)
{
	int i = 0;

	/* comment line */
	if (buff[0] == COMMENT_LEAD_CHAR)
		return 1;
	/* empty line */
	while (buff[i] != '\0') {
		if (!isspace(buff[i]))
			return 0;
		i++;
	}
	return 1;
}

static uint32_t
convert_depth_to_bitmask(uint32_t depth_val)
{
	uint32_t bitmask = 0;
	int i, j;

	for (i = depth_val, j = 0; i > 0; i--, j++)
		bitmask |= (1 << (31 - j));
	return bitmask;
}

static int
add_classify_rule(struct rte_eth_ntuple_filter *ntuple_filter,
		struct flow_classifier *cls_app)
{
	int ret = -1;
	int key_found;
	struct rte_flow_error error;
	struct rte_flow_item_ipv4 ipv4_spec;
	struct rte_flow_item_ipv4 ipv4_mask;
	struct rte_flow_item ipv4_udp_item;
	struct rte_flow_item ipv4_tcp_item;
	struct rte_flow_item ipv4_sctp_item;
	struct rte_flow_item_udp udp_spec;
	struct rte_flow_item_udp udp_mask;
	struct rte_flow_item udp_item;
	struct rte_flow_item_tcp tcp_spec;
	struct rte_flow_item_tcp tcp_mask;
	struct rte_flow_item tcp_item;
	struct rte_flow_item_sctp sctp_spec;
	struct rte_flow_item_sctp sctp_mask;
	struct rte_flow_item sctp_item;
	struct rte_flow_item pattern_ipv4_5tuple[4];
	struct rte_flow_classify_rule *rule;
	uint8_t ipv4_proto;

	if (num_classify_rules >= MAX_NUM_CLASSIFY) {
		printf(
			"\nINFO:  classify rule capacity %d reached\n",
			num_classify_rules);
		return ret;
	}

	/* set up parameters for validate and add */
	memset(&ipv4_spec, 0, sizeof(ipv4_spec));
	ipv4_spec.hdr.next_proto_id = ntuple_filter->proto;
	ipv4_spec.hdr.src_addr = ntuple_filter->src_ip;
	ipv4_spec.hdr.dst_addr = ntuple_filter->dst_ip;
	ipv4_proto = ipv4_spec.hdr.next_proto_id;

	memset(&ipv4_mask, 0, sizeof(ipv4_mask));
	ipv4_mask.hdr.next_proto_id = ntuple_filter->proto_mask;
	ipv4_mask.hdr.src_addr = ntuple_filter->src_ip_mask;
	ipv4_mask.hdr.src_addr =
		convert_depth_to_bitmask(ipv4_mask.hdr.src_addr);
	ipv4_mask.hdr.dst_addr = ntuple_filter->dst_ip_mask;
	ipv4_mask.hdr.dst_addr =
		convert_depth_to_bitmask(ipv4_mask.hdr.dst_addr);

	switch (ipv4_proto) {
	case IPPROTO_UDP:
		ipv4_udp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
		ipv4_udp_item.spec = &ipv4_spec;
		ipv4_udp_item.mask = &ipv4_mask;
		ipv4_udp_item.last = NULL;

		udp_spec.hdr.src_port = ntuple_filter->src_port;
		udp_spec.hdr.dst_port = ntuple_filter->dst_port;
		udp_spec.hdr.dgram_len = 0;
		udp_spec.hdr.dgram_cksum = 0;

		udp_mask.hdr.src_port = ntuple_filter->src_port_mask;
		udp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
		udp_mask.hdr.dgram_len = 0;
		udp_mask.hdr.dgram_cksum = 0;

		udp_item.type = RTE_FLOW_ITEM_TYPE_UDP;
		udp_item.spec = &udp_spec;
		udp_item.mask = &udp_mask;
		udp_item.last = NULL;

		attr.priority = ntuple_filter->priority;
		pattern_ipv4_5tuple[1] = ipv4_udp_item;
		pattern_ipv4_5tuple[2] = udp_item;
		break;
	case IPPROTO_TCP:
		ipv4_tcp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
		ipv4_tcp_item.spec = &ipv4_spec;
		ipv4_tcp_item.mask = &ipv4_mask;
		ipv4_tcp_item.last = NULL;

		memset(&tcp_spec, 0, sizeof(tcp_spec));
		tcp_spec.hdr.src_port = ntuple_filter->src_port;
		tcp_spec.hdr.dst_port = ntuple_filter->dst_port;

		memset(&tcp_mask, 0, sizeof(tcp_mask));
		tcp_mask.hdr.src_port = ntuple_filter->src_port_mask;
		tcp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;

		tcp_item.type = RTE_FLOW_ITEM_TYPE_TCP;
		tcp_item.spec = &tcp_spec;
		tcp_item.mask = &tcp_mask;
		tcp_item.last = NULL;

		attr.priority = ntuple_filter->priority;
		pattern_ipv4_5tuple[1] = ipv4_tcp_item;
		pattern_ipv4_5tuple[2] = tcp_item;
		break;
	case IPPROTO_SCTP:
		ipv4_sctp_item.type = RTE_FLOW_ITEM_TYPE_IPV4;
		ipv4_sctp_item.spec = &ipv4_spec;
		ipv4_sctp_item.mask = &ipv4_mask;
		ipv4_sctp_item.last = NULL;

		sctp_spec.hdr.src_port = ntuple_filter->src_port;
		sctp_spec.hdr.dst_port = ntuple_filter->dst_port;
		sctp_spec.hdr.cksum = 0;
		sctp_spec.hdr.tag = 0;

		sctp_mask.hdr.src_port = ntuple_filter->src_port_mask;
		sctp_mask.hdr.dst_port = ntuple_filter->dst_port_mask;
		sctp_mask.hdr.cksum = 0;
		sctp_mask.hdr.tag = 0;

		sctp_item.type = RTE_FLOW_ITEM_TYPE_SCTP;
		sctp_item.spec = &sctp_spec;
		sctp_item.mask = &sctp_mask;
		sctp_item.last = NULL;

		attr.priority = ntuple_filter->priority;
		pattern_ipv4_5tuple[1] = ipv4_sctp_item;
		pattern_ipv4_5tuple[2] = sctp_item;
		break;
	default:
		return ret;
	}

	attr.ingress = 1;
	pattern_ipv4_5tuple[0] = eth_item;
	pattern_ipv4_5tuple[3] = end_item;
	actions[0] = count_action;
	actions[1] = end_action;

	/* Validate and add rule */
	ret = rte_flow_classify_validate(cls_app->cls, &attr,
			pattern_ipv4_5tuple, actions, &error);
	if (ret) {
		printf("table entry validate failed ipv4_proto = %u\n",
			ipv4_proto);
		return ret;
	}

	rule = rte_flow_classify_table_entry_add(
			cls_app->cls, &attr, pattern_ipv4_5tuple,
			actions, &key_found, &error);
	if (rule == NULL) {
		printf("table entry add failed ipv4_proto = %u\n",
			ipv4_proto);
		ret = -1;
		return ret;
	}

	rules[num_classify_rules] = rule;
	num_classify_rules++;
	return 0;
}

static int
add_rules(const char *rule_path, struct flow_classifier *cls_app)
{
	FILE *fh;
	char buff[LINE_MAX];
	unsigned int i = 0;
	unsigned int total_num = 0;
	struct rte_eth_ntuple_filter ntuple_filter;
	int ret;

	fh = fopen(rule_path, "rb");
	if (fh == NULL)
		rte_exit(EXIT_FAILURE, "%s: fopen %s failed\n", __func__,
			rule_path);

	ret = fseek(fh, 0, SEEK_SET);
	if (ret)
		rte_exit(EXIT_FAILURE, "%s: fseek %d failed\n", __func__,
			ret);

	i = 0;
	while (fgets(buff, LINE_MAX, fh) != NULL) {
		i++;

		if (is_bypass_line(buff))
			continue;

		if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) {
			printf("\nINFO: classify rule capacity %d reached\n",
				total_num);
			break;
		}

		if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0)
			rte_exit(EXIT_FAILURE,
				"%s Line %u: parse rules error\n",
				rule_path, i);

		if (add_classify_rule(&ntuple_filter, cls_app) != 0)
			rte_exit(EXIT_FAILURE, "add rule error\n");

		total_num++;
	}

	fclose(fh);
	return 0;
}

/* display usage */
static void
print_usage(const char *prgname)
{
	printf("%s usage:\n", prgname);
	printf("[EAL options] --  --"OPTION_RULE_IPV4"=FILE: ");
	printf("specify the ipv4 rules file.\n");
	printf("Each rule occupies one line in the file.\n");
}

/* Parse the argument given in the command line of the application */
static int
parse_args(int argc, char **argv)
{
	int opt, ret;
	char **argvopt;
	int option_index;
	char *prgname = argv[0];
	static struct option lgopts[] = {
		{OPTION_RULE_IPV4, 1, 0, 0},
		{NULL, 0, 0, 0}
	};

	argvopt = argv;

	while ((opt = getopt_long(argc, argvopt, "",
				lgopts, &option_index)) != EOF) {

		switch (opt) {
		/* long options */
		case 0:
			if (!strncmp(lgopts[option_index].name,
					OPTION_RULE_IPV4,
					sizeof(OPTION_RULE_IPV4)))
				parm_config.rule_ipv4_name = optarg;
			break;
		default:
			print_usage(prgname);
			return -1;
		}
	}

	if (optind >= 0)
		argv[optind-1] = prgname;

	ret = optind-1;
	optind = 1; /* reset getopt lib */
	return ret;
}

/*
 * The main function, which does initialization and calls the lcore_main
 * function.
 */
int
main(int argc, char *argv[])
{
	struct rte_mempool *mbuf_pool;
	uint8_t nb_ports;
	uint8_t portid;
	int ret;
	int socket_id;
	struct rte_table_acl_params table_acl_params;
	struct rte_flow_classify_table_params cls_table_params;
	struct flow_classifier *cls_app;
	struct rte_flow_classifier_params cls_params;
	uint32_t size;

	/* Initialize the Environment Abstraction Layer (EAL). */
	ret = rte_eal_init(argc, argv);
	if (ret < 0)
		rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");

	argc -= ret;
	argv += ret;

	/* parse application arguments (after the EAL ones) */
	ret = parse_args(argc, argv);
	if (ret < 0)
		rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n");

	/* Check that there is an even number of ports to send/receive on. */
	nb_ports = rte_eth_dev_count();
	if (nb_ports < 2 || (nb_ports & 1))
		rte_exit(EXIT_FAILURE, "Error: number of ports must be even\n");

	/* Creates a new mempool in memory to hold the mbufs. */
	mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
		MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());

	if (mbuf_pool == NULL)
		rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");

	/* Initialize all ports. */
	for (portid = 0; portid < nb_ports; portid++)
		if (port_init(portid, mbuf_pool) != 0)
			rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",
					portid);

	if (rte_lcore_count() > 1)
		printf("\nWARNING: Too many lcores enabled. Only 1 used.\n");

	socket_id = rte_eth_dev_socket_id(0);

	/* Memory allocation */
	size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl));
	cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE);
	if (cls_app == NULL)
		rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n");

	cls_params.name = "flow_classifier";
	cls_params.socket_id = socket_id;

	cls_app->cls = rte_flow_classifier_create(&cls_params);
	if (cls_app->cls == NULL) {
		rte_free(cls_app);
		rte_exit(EXIT_FAILURE, "Cannot create classifier\n");
	}

	/* initialise ACL table params */
	table_acl_params.name = "table_acl_ipv4_5tuple";
	table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM;
	table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs);
	memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs));

	/* initialise table create params */
	cls_table_params.ops = &rte_table_acl_ops;
	cls_table_params.arg_create = &table_acl_params;
	cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE;

	ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params);
	if (ret) {
		rte_flow_classifier_free(cls_app->cls);
		rte_free(cls_app);
		rte_exit(EXIT_FAILURE, "Failed to create classifier table\n");
	}

	/* read file of IPv4 5 tuple rules and initialize parameters
	 * for rte_flow_classify_validate and rte_flow_classify_table_entry_add
	 * API's.
	 */
	if (add_rules(parm_config.rule_ipv4_name, cls_app)) {
		rte_flow_classifier_free(cls_app->cls);
		rte_free(cls_app);
		rte_exit(EXIT_FAILURE, "Failed to add rules\n");
	}

	/* Call lcore_main on the master core only. */
	lcore_main(cls_app);

	return 0;
}