aboutsummaryrefslogtreecommitdiffstats
path: root/examples/ipv4_multicast/main.c
blob: 331c32e7179a1e6b62036f7ee2ff91d67681920d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2014 Intel Corporation
 */

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>

#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_eal.h>
#include <rte_launch.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_interrupts.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_fbk_hash.h>
#include <rte_ip.h>

#define RTE_LOGTYPE_IPv4_MULTICAST RTE_LOGTYPE_USER1

#define MAX_PORTS 16

#define	MCAST_CLONE_PORTS	2
#define	MCAST_CLONE_SEGS	2

#define	PKT_MBUF_DATA_SIZE	RTE_MBUF_DEFAULT_BUF_SIZE
#define	NB_PKT_MBUF	8192

#define	HDR_MBUF_DATA_SIZE	(2 * RTE_PKTMBUF_HEADROOM)
#define	NB_HDR_MBUF	(NB_PKT_MBUF * MAX_PORTS)

#define	NB_CLONE_MBUF	(NB_PKT_MBUF * MCAST_CLONE_PORTS * MCAST_CLONE_SEGS * 2)

/* allow max jumbo frame 9.5 KB */
#define	JUMBO_FRAME_MAX_SIZE	0x2600

#define MAX_PKT_BURST 32
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */

/* Configure how many packets ahead to prefetch, when reading packets */
#define PREFETCH_OFFSET	3

/*
 * Construct Ethernet multicast address from IPv4 multicast address.
 * Citing RFC 1112, section 6.4:
 * "An IP host group address is mapped to an Ethernet multicast address
 * by placing the low-order 23-bits of the IP address into the low-order
 * 23 bits of the Ethernet multicast address 01-00-5E-00-00-00 (hex)."
 */
#define	ETHER_ADDR_FOR_IPV4_MCAST(x)	\
	(rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16)

/*
 * Configurable number of RX/TX ring descriptors
 */
#define RTE_TEST_RX_DESC_DEFAULT 1024
#define RTE_TEST_TX_DESC_DEFAULT 1024
static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;

/* ethernet addresses of ports */
static struct ether_addr ports_eth_addr[MAX_PORTS];

/* mask of enabled ports */
static uint32_t enabled_port_mask = 0;

static uint16_t nb_ports;

static int rx_queue_per_lcore = 1;

struct mbuf_table {
	uint16_t len;
	struct rte_mbuf *m_table[MAX_PKT_BURST];
};

#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_TX_QUEUE_PER_PORT 16
struct lcore_queue_conf {
	uint64_t tx_tsc;
	uint16_t n_rx_queue;
	uint8_t rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
	uint16_t tx_queue_id[MAX_PORTS];
	struct mbuf_table tx_mbufs[MAX_PORTS];
} __rte_cache_aligned;
static struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];

static struct rte_eth_conf port_conf = {
	.rxmode = {
		.max_rx_pkt_len = JUMBO_FRAME_MAX_SIZE,
		.split_hdr_size = 0,
		.offloads = (DEV_RX_OFFLOAD_JUMBO_FRAME |
			     DEV_RX_OFFLOAD_CRC_STRIP),
	},
	.txmode = {
		.mq_mode = ETH_MQ_TX_NONE,
		.offloads = DEV_TX_OFFLOAD_MULTI_SEGS,
	},
};

static struct rte_mempool *packet_pool, *header_pool, *clone_pool;


/* Multicast */
static struct rte_fbk_hash_params mcast_hash_params = {
	.name = "MCAST_HASH",
	.entries = 1024,
	.entries_per_bucket = 4,
	.socket_id = 0,
	.hash_func = NULL,
	.init_val = 0,
};

struct rte_fbk_hash_table *mcast_hash = NULL;

struct mcast_group_params {
	uint32_t ip;
	uint16_t port_mask;
};

static struct mcast_group_params mcast_group_table[] = {
		{IPv4(224,0,0,101), 0x1},
		{IPv4(224,0,0,102), 0x2},
		{IPv4(224,0,0,103), 0x3},
		{IPv4(224,0,0,104), 0x4},
		{IPv4(224,0,0,105), 0x5},
		{IPv4(224,0,0,106), 0x6},
		{IPv4(224,0,0,107), 0x7},
		{IPv4(224,0,0,108), 0x8},
		{IPv4(224,0,0,109), 0x9},
		{IPv4(224,0,0,110), 0xA},
		{IPv4(224,0,0,111), 0xB},
		{IPv4(224,0,0,112), 0xC},
		{IPv4(224,0,0,113), 0xD},
		{IPv4(224,0,0,114), 0xE},
		{IPv4(224,0,0,115), 0xF},
};

#define N_MCAST_GROUPS \
	(sizeof (mcast_group_table) / sizeof (mcast_group_table[0]))


/* Send burst of packets on an output interface */
static void
send_burst(struct lcore_queue_conf *qconf, uint16_t port)
{
	struct rte_mbuf **m_table;
	uint16_t n, queueid;
	int ret;

	queueid = qconf->tx_queue_id[port];
	m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
	n = qconf->tx_mbufs[port].len;

	ret = rte_eth_tx_burst(port, queueid, m_table, n);
	while (unlikely (ret < n)) {
		rte_pktmbuf_free(m_table[ret]);
		ret++;
	}

	qconf->tx_mbufs[port].len = 0;
}

/* Get number of bits set. */
static inline uint32_t
bitcnt(uint32_t v)
{
	uint32_t n;

	for (n = 0; v != 0; v &= v - 1, n++)
		;

	return n;
}

/**
 * Create the output multicast packet based on the given input packet.
 * There are two approaches for creating outgoing packet, though both
 * are based on data zero-copy idea, they differ in few details:
 * First one creates a clone of the input packet, e.g - walk though all
 * segments of the input packet, and for each of them create a new packet
 * mbuf and attach that new mbuf to the segment (refer to rte_pktmbuf_clone()
 * for more details). Then new mbuf is allocated for the packet header
 * and is prepended to the 'clone' mbuf.
 * Second approach doesn't make a clone, it just increment refcnt for all
 * input packet segments. Then it allocates new mbuf for the packet header
 * and prepends it to the input packet.
 * Basically first approach reuses only input packet's data, but creates
 * it's own copy of packet's metadata. Second approach reuses both input's
 * packet data and metadata.
 * The advantage of first approach - is that each outgoing packet has it's
 * own copy of metadata, so we can safely modify data pointer of the
 * input packet. That allows us to skip creation if the output packet for
 * the last destination port, but instead modify input packet's header inplace,
 * e.g: for N destination ports we need to invoke mcast_out_pkt (N-1) times.
 * The advantage of second approach - less work for each outgoing packet,
 * e.g: we skip "clone" operation completely. Though it comes with a price -
 * input packet's metadata has to be intact. So for N destination ports we
 * need to invoke mcast_out_pkt N times.
 * So for small number of outgoing ports (and segments in the input packet)
 * first approach will be faster.
 * As number of outgoing ports (and/or input segments) will grow,
 * second way will become more preferable.
 *
 *  @param pkt
 *  Input packet mbuf.
 *  @param use_clone
 *  Control which of the two approaches described above should be used:
 *  - 0 - use second approach:
 *    Don't "clone" input packet.
 *    Prepend new header directly to the input packet
 *  - 1 - use first approach:
 *    Make a "clone" of input packet first.
 *    Prepend new header to the clone of the input packet
 *  @return
 *  - The pointer to the new outgoing packet.
 *  - NULL if operation failed.
 */
static inline struct rte_mbuf *
mcast_out_pkt(struct rte_mbuf *pkt, int use_clone)
{
	struct rte_mbuf *hdr;

	/* Create new mbuf for the header. */
	if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL))
		return NULL;

	/* If requested, then make a new clone packet. */
	if (use_clone != 0 &&
	    unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) {
		rte_pktmbuf_free(hdr);
		return NULL;
	}

	/* prepend new header */
	hdr->next = pkt;


	/* update header's fields */
	hdr->pkt_len = (uint16_t)(hdr->data_len + pkt->pkt_len);
	hdr->nb_segs = pkt->nb_segs + 1;

	/* copy metadata from source packet*/
	hdr->port = pkt->port;
	hdr->vlan_tci = pkt->vlan_tci;
	hdr->vlan_tci_outer = pkt->vlan_tci_outer;
	hdr->tx_offload = pkt->tx_offload;
	hdr->hash = pkt->hash;

	hdr->ol_flags = pkt->ol_flags;

	__rte_mbuf_sanity_check(hdr, 1);
	return hdr;
}

/*
 * Write new Ethernet header to the outgoing packet,
 * and put it into the outgoing queue for the given port.
 */
static inline void
mcast_send_pkt(struct rte_mbuf *pkt, struct ether_addr *dest_addr,
		struct lcore_queue_conf *qconf, uint16_t port)
{
	struct ether_hdr *ethdr;
	uint16_t len;

	/* Construct Ethernet header. */
	ethdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t)sizeof(*ethdr));
	RTE_ASSERT(ethdr != NULL);

	ether_addr_copy(dest_addr, &ethdr->d_addr);
	ether_addr_copy(&ports_eth_addr[port], &ethdr->s_addr);
	ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4);

	/* Put new packet into the output queue */
	len = qconf->tx_mbufs[port].len;
	qconf->tx_mbufs[port].m_table[len] = pkt;
	qconf->tx_mbufs[port].len = ++len;

	/* Transmit packets */
	if (unlikely(MAX_PKT_BURST == len))
		send_burst(qconf, port);
}

/* Multicast forward of the input packet */
static inline void
mcast_forward(struct rte_mbuf *m, struct lcore_queue_conf *qconf)
{
	struct rte_mbuf *mc;
	struct ipv4_hdr *iphdr;
	uint32_t dest_addr, port_mask, port_num, use_clone;
	int32_t hash;
	uint16_t port;
	union {
		uint64_t as_int;
		struct ether_addr as_addr;
	} dst_eth_addr;

	/* Remove the Ethernet header from the input packet */
	iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, (uint16_t)sizeof(struct ether_hdr));
	RTE_ASSERT(iphdr != NULL);

	dest_addr = rte_be_to_cpu_32(iphdr->dst_addr);

	/*
	 * Check that it is a valid multicast address and
	 * we have some active ports assigned to it.
	 */
	if(!IS_IPV4_MCAST(dest_addr) ||
	    (hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 ||
	    (port_mask = hash & enabled_port_mask) == 0) {
		rte_pktmbuf_free(m);
		return;
	}

	/* Calculate number of destination ports. */
	port_num = bitcnt(port_mask);

	/* Should we use rte_pktmbuf_clone() or not. */
	use_clone = (port_num <= MCAST_CLONE_PORTS &&
	    m->nb_segs <= MCAST_CLONE_SEGS);

	/* Mark all packet's segments as referenced port_num times */
	if (use_clone == 0)
		rte_pktmbuf_refcnt_update(m, (uint16_t)port_num);

	/* construct destination ethernet address */
	dst_eth_addr.as_int = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr);

	for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) {

		/* Prepare output packet and send it out. */
		if ((port_mask & 1) != 0) {
			if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL))
				mcast_send_pkt(mc, &dst_eth_addr.as_addr,
						qconf, port);
			else if (use_clone == 0)
				rte_pktmbuf_free(m);
		}
	}

	/*
	 * If we making clone packets, then, for the last destination port,
	 * we can overwrite input packet's metadata.
	 */
	if (use_clone != 0)
		mcast_send_pkt(m, &dst_eth_addr.as_addr, qconf, port);
	else
		rte_pktmbuf_free(m);
}

/* Send burst of outgoing packet, if timeout expires. */
static inline void
send_timeout_burst(struct lcore_queue_conf *qconf)
{
	uint64_t cur_tsc;
	uint16_t portid;
	const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;

	cur_tsc = rte_rdtsc();
	if (likely (cur_tsc < qconf->tx_tsc + drain_tsc))
		return;

	for (portid = 0; portid < MAX_PORTS; portid++) {
		if (qconf->tx_mbufs[portid].len != 0)
			send_burst(qconf, portid);
	}
	qconf->tx_tsc = cur_tsc;
}

/* main processing loop */
static int
main_loop(__rte_unused void *dummy)
{
	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
	unsigned lcore_id;
	int i, j, nb_rx;
	uint16_t portid;
	struct lcore_queue_conf *qconf;

	lcore_id = rte_lcore_id();
	qconf = &lcore_queue_conf[lcore_id];


	if (qconf->n_rx_queue == 0) {
		RTE_LOG(INFO, IPv4_MULTICAST, "lcore %u has nothing to do\n",
		    lcore_id);
		return 0;
	}

	RTE_LOG(INFO, IPv4_MULTICAST, "entering main loop on lcore %u\n",
	    lcore_id);

	for (i = 0; i < qconf->n_rx_queue; i++) {

		portid = qconf->rx_queue_list[i];
		RTE_LOG(INFO, IPv4_MULTICAST, " -- lcoreid=%u portid=%d\n",
		    lcore_id, portid);
	}

	while (1) {

		/*
		 * Read packet from RX queues
		 */
		for (i = 0; i < qconf->n_rx_queue; i++) {

			portid = qconf->rx_queue_list[i];
			nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,
						 MAX_PKT_BURST);

			/* Prefetch first packets */
			for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
				rte_prefetch0(rte_pktmbuf_mtod(
						pkts_burst[j], void *));
			}

			/* Prefetch and forward already prefetched packets */
			for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
				rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
						j + PREFETCH_OFFSET], void *));
				mcast_forward(pkts_burst[j], qconf);
			}

			/* Forward remaining prefetched packets */
			for (; j < nb_rx; j++) {
				mcast_forward(pkts_burst[j], qconf);
			}
		}

		/* Send out packets from TX queues */
		send_timeout_burst(qconf);
	}
}

/* display usage */
static void
print_usage(const char *prgname)
{
	printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n"
	    "  -p PORTMASK: hexadecimal bitmask of ports to configure\n"
	    "  -q NQ: number of queue (=ports) per lcore (default is 1)\n",
	    prgname);
}

static uint32_t
parse_portmask(const char *portmask)
{
	char *end = NULL;
	unsigned long pm;

	/* parse hexadecimal string */
	pm = strtoul(portmask, &end, 16);
	if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
		return 0;

	return (uint32_t)pm;
}

static int
parse_nqueue(const char *q_arg)
{
	char *end = NULL;
	unsigned long n;

	/* parse numerical string */
	errno = 0;
	n = strtoul(q_arg, &end, 0);
	if (errno != 0 || end == NULL || *end != '\0' ||
			n == 0 || n >= MAX_RX_QUEUE_PER_LCORE)
		return -1;

	return n;
}

/* Parse the argument given in the command line of the application */
static int
parse_args(int argc, char **argv)
{
	int opt, ret;
	char **argvopt;
	int option_index;
	char *prgname = argv[0];
	static struct option lgopts[] = {
		{NULL, 0, 0, 0}
	};

	argvopt = argv;

	while ((opt = getopt_long(argc, argvopt, "p:q:",
				  lgopts, &option_index)) != EOF) {

		switch (opt) {
		/* portmask */
		case 'p':
			enabled_port_mask = parse_portmask(optarg);
			if (enabled_port_mask == 0) {
				printf("invalid portmask\n");
				print_usage(prgname);
				return -1;
			}
			break;

		/* nqueue */
		case 'q':
			rx_queue_per_lcore = parse_nqueue(optarg);
			if (rx_queue_per_lcore < 0) {
				printf("invalid queue number\n");
				print_usage(prgname);
				return -1;
			}
			break;

		default:
			print_usage(prgname);
			return -1;
		}
	}

	if (optind >= 0)
		argv[optind-1] = prgname;

	ret = optind-1;
	optind = 1; /* reset getopt lib */
	return ret;
}

static void
print_ethaddr(const char *name, struct ether_addr *eth_addr)
{
	char buf[ETHER_ADDR_FMT_SIZE];
	ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
	printf("%s%s", name, buf);
}

static int
init_mcast_hash(void)
{
	uint32_t i;

	mcast_hash_params.socket_id = rte_socket_id();
	mcast_hash = rte_fbk_hash_create(&mcast_hash_params);
	if (mcast_hash == NULL){
		return -1;
	}

	for (i = 0; i < N_MCAST_GROUPS; i ++){
		if (rte_fbk_hash_add_key(mcast_hash,
			mcast_group_table[i].ip,
			mcast_group_table[i].port_mask) < 0) {
			return -1;
		}
	}

	return 0;
}

/* Check the link status of all ports in up to 9s, and print them finally */
static void
check_all_ports_link_status(uint32_t port_mask)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
	uint16_t portid;
	uint8_t count, all_ports_up, print_flag = 0;
	struct rte_eth_link link;

	printf("\nChecking link status");
	fflush(stdout);
	for (count = 0; count <= MAX_CHECK_TIME; count++) {
		all_ports_up = 1;
		RTE_ETH_FOREACH_DEV(portid) {
			if ((port_mask & (1 << portid)) == 0)
				continue;
			memset(&link, 0, sizeof(link));
			rte_eth_link_get_nowait(portid, &link);
			/* print link status if flag set */
			if (print_flag == 1) {
				if (link.link_status)
					printf(
					"Port%d Link Up. Speed %u Mbps - %s\n",
					portid, link.link_speed,
				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
					("full-duplex") : ("half-duplex\n"));
				else
					printf("Port %d Link Down\n", portid);
				continue;
			}
			/* clear all_ports_up flag if any link down */
			if (link.link_status == ETH_LINK_DOWN) {
				all_ports_up = 0;
				break;
			}
		}
		/* after finally printing all link status, get out */
		if (print_flag == 1)
			break;

		if (all_ports_up == 0) {
			printf(".");
			fflush(stdout);
			rte_delay_ms(CHECK_INTERVAL);
		}

		/* set the print_flag if all ports up or timeout */
		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
			print_flag = 1;
			printf("done\n");
		}
	}
}

int
main(int argc, char **argv)
{
	struct lcore_queue_conf *qconf;
	struct rte_eth_dev_info dev_info;
	struct rte_eth_txconf *txconf;
	int ret;
	uint16_t queueid;
	unsigned lcore_id = 0, rx_lcore_id = 0;
	uint32_t n_tx_queue, nb_lcores;
	uint16_t portid;

	/* init EAL */
	ret = rte_eal_init(argc, argv);
	if (ret < 0)
		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
	argc -= ret;
	argv += ret;

	/* parse application arguments (after the EAL ones) */
	ret = parse_args(argc, argv);
	if (ret < 0)
		rte_exit(EXIT_FAILURE, "Invalid IPV4_MULTICAST parameters\n");

	/* create the mbuf pools */
	packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32,
		0, PKT_MBUF_DATA_SIZE, rte_socket_id());

	if (packet_pool == NULL)
		rte_exit(EXIT_FAILURE, "Cannot init packet mbuf pool\n");

	header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32,
		0, HDR_MBUF_DATA_SIZE, rte_socket_id());

	if (header_pool == NULL)
		rte_exit(EXIT_FAILURE, "Cannot init header mbuf pool\n");

	clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32,
		0, 0, rte_socket_id());

	if (clone_pool == NULL)
		rte_exit(EXIT_FAILURE, "Cannot init clone mbuf pool\n");

	nb_ports = rte_eth_dev_count_avail();
	if (nb_ports == 0)
		rte_exit(EXIT_FAILURE, "No physical ports!\n");
	if (nb_ports > MAX_PORTS)
		nb_ports = MAX_PORTS;

	nb_lcores = rte_lcore_count();

	/* initialize all ports */
	RTE_ETH_FOREACH_DEV(portid) {
		struct rte_eth_rxconf rxq_conf;
		struct rte_eth_conf local_port_conf = port_conf;

		/* skip ports that are not enabled */
		if ((enabled_port_mask & (1 << portid)) == 0) {
			printf("Skipping disabled port %d\n", portid);
			continue;
		}

		qconf = &lcore_queue_conf[rx_lcore_id];

		/* limit the frame size to the maximum supported by NIC */
		rte_eth_dev_info_get(portid, &dev_info);
		local_port_conf.rxmode.max_rx_pkt_len = RTE_MIN(
		    dev_info.max_rx_pktlen,
		    local_port_conf.rxmode.max_rx_pkt_len);

		/* get the lcore_id for this port */
		while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
		       qconf->n_rx_queue == (unsigned)rx_queue_per_lcore) {

			rx_lcore_id ++;
			qconf = &lcore_queue_conf[rx_lcore_id];

			if (rx_lcore_id >= RTE_MAX_LCORE)
				rte_exit(EXIT_FAILURE, "Not enough cores\n");
		}
		qconf->rx_queue_list[qconf->n_rx_queue] = portid;
		qconf->n_rx_queue++;

		/* init port */
		printf("Initializing port %d on lcore %u... ", portid,
		       rx_lcore_id);
		fflush(stdout);

		n_tx_queue = nb_lcores;
		if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
			n_tx_queue = MAX_TX_QUEUE_PER_PORT;

		ret = rte_eth_dev_configure(portid, 1, (uint16_t)n_tx_queue,
					    &local_port_conf);
		if (ret < 0)
			rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
				  ret, portid);

		ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
						       &nb_txd);
		if (ret < 0)
			rte_exit(EXIT_FAILURE,
				 "Cannot adjust number of descriptors: err=%d, port=%d\n",
				 ret, portid);

		rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
		print_ethaddr(" Address:", &ports_eth_addr[portid]);
		printf(", ");

		/* init one RX queue */
		queueid = 0;
		printf("rxq=%hu ", queueid);
		fflush(stdout);
		rxq_conf = dev_info.default_rxconf;
		rxq_conf.offloads = local_port_conf.rxmode.offloads;
		ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
					     rte_eth_dev_socket_id(portid),
					     &rxq_conf,
					     packet_pool);
		if (ret < 0)
			rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%d\n",
				  ret, portid);

		/* init one TX queue per couple (lcore,port) */
		queueid = 0;

		RTE_LCORE_FOREACH(lcore_id) {
			if (rte_lcore_is_enabled(lcore_id) == 0)
				continue;
			printf("txq=%u,%hu ", lcore_id, queueid);
			fflush(stdout);

			txconf = &dev_info.default_txconf;
			txconf->offloads = local_port_conf.txmode.offloads;
			ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
						     rte_lcore_to_socket_id(lcore_id), txconf);
			if (ret < 0)
				rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
					  "port=%d\n", ret, portid);

			qconf = &lcore_queue_conf[lcore_id];
			qconf->tx_queue_id[portid] = queueid;
			queueid++;
		}

		/* Start device */
		ret = rte_eth_dev_start(portid);
		if (ret < 0)
			rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
				  ret, portid);

		printf("done:\n");
	}

	check_all_ports_link_status(enabled_port_mask);

	/* initialize the multicast hash */
	int retval = init_mcast_hash();
	if (retval != 0)
		rte_exit(EXIT_FAILURE, "Cannot build the multicast hash\n");

	/* launch per-lcore init on every lcore */
	rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
		if (rte_eal_wait_lcore(lcore_id) < 0)
			return -1;
	}

	return 0;
}