1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
|
/*
* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2015 Intel Corporation.
* Copyright 2010-2011 Dmitry Vyukov
*/
#ifndef LTHREAD_QUEUE_H_
#define LTHREAD_QUEUE_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <string.h>
#include <rte_prefetch.h>
#include <rte_per_lcore.h>
#include "lthread_int.h"
#include "lthread.h"
#include "lthread_diag.h"
#include "lthread_pool.h"
struct lthread_queue;
/*
* This file implements an unbounded FIFO queue based on a lock free
* linked list.
*
* The queue is non-intrusive in that it uses intermediate nodes, and does
* not require these nodes to be inserted into the object being placed
* in the queue.
*
* This is slightly more efficient than the very similar queue in lthread_pool
* in that it does not have to swing a stub node as the queue becomes empty.
*
* The queue access functions allocate and free intermediate node
* transparently from/to a per scheduler pool ( see lthread_pool.h ).
*
* The queue provides both MPSC and SPSC insert methods
*/
/*
* define a queue of lthread nodes
*/
struct lthread_queue {
struct qnode *head;
struct qnode *tail __rte_cache_aligned;
struct lthread_queue *p;
char name[LT_MAX_NAME_SIZE];
DIAG_COUNT_DEFINE(rd);
DIAG_COUNT_DEFINE(wr);
DIAG_COUNT_DEFINE(size);
} __rte_cache_aligned;
static inline struct lthread_queue *
_lthread_queue_create(const char *name)
{
struct qnode *stub;
struct lthread_queue *new_queue;
new_queue = rte_malloc_socket(NULL, sizeof(struct lthread_queue),
RTE_CACHE_LINE_SIZE,
rte_socket_id());
if (new_queue == NULL)
return NULL;
/* allocated stub node */
stub = _qnode_alloc();
RTE_ASSERT(stub);
if (name != NULL)
strncpy(new_queue->name, name, sizeof(new_queue->name));
new_queue->name[sizeof(new_queue->name)-1] = 0;
/* initialize queue as empty */
stub->next = NULL;
new_queue->head = stub;
new_queue->tail = stub;
DIAG_COUNT_INIT(new_queue, rd);
DIAG_COUNT_INIT(new_queue, wr);
DIAG_COUNT_INIT(new_queue, size);
return new_queue;
}
/**
* Return true if the queue is empty
*/
static __rte_always_inline int
_lthread_queue_empty(struct lthread_queue *q)
{
return q->tail == q->head;
}
/**
* Destroy a queue
* fail if queue is not empty
*/
static inline int _lthread_queue_destroy(struct lthread_queue *q)
{
if (q == NULL)
return -1;
if (!_lthread_queue_empty(q))
return -1;
_qnode_free(q->head);
rte_free(q);
return 0;
}
RTE_DECLARE_PER_LCORE(struct lthread_sched *, this_sched);
/*
* Insert a node into a queue
* this implementation is multi producer safe
*/
static __rte_always_inline struct qnode *
_lthread_queue_insert_mp(struct lthread_queue
*q, void *data)
{
struct qnode *prev;
struct qnode *n = _qnode_alloc();
if (n == NULL)
return NULL;
/* set object in node */
n->data = data;
n->next = NULL;
/* this is an MPSC method, perform a locked update */
prev = n;
prev =
(struct qnode *)__sync_lock_test_and_set((uint64_t *) &(q)->head,
(uint64_t) prev);
/* there is a window of inconsistency until prev next is set,
* which is why remove must retry
*/
prev->next = n;
DIAG_COUNT_INC(q, wr);
DIAG_COUNT_INC(q, size);
return n;
}
/*
* Insert an node into a queue in single producer mode
* this implementation is NOT mult producer safe
*/
static __rte_always_inline struct qnode *
_lthread_queue_insert_sp(struct lthread_queue
*q, void *data)
{
/* allocate a queue node */
struct qnode *prev;
struct qnode *n = _qnode_alloc();
if (n == NULL)
return NULL;
/* set data in node */
n->data = data;
n->next = NULL;
/* this is an SPSC method, no need for locked exchange operation */
prev = q->head;
prev->next = q->head = n;
DIAG_COUNT_INC(q, wr);
DIAG_COUNT_INC(q, size);
return n;
}
/*
* Remove a node from a queue
*/
static __rte_always_inline void *
_lthread_queue_poll(struct lthread_queue *q)
{
void *data = NULL;
struct qnode *tail = q->tail;
struct qnode *next = (struct qnode *)tail->next;
/*
* There is a small window of inconsistency between producer and
* consumer whereby the queue may appear empty if consumer and
* producer access it at the same time.
* The consumer must handle this by retrying
*/
if (likely(next != NULL)) {
q->tail = next;
tail->data = next->data;
data = tail->data;
/* free the node */
_qnode_free(tail);
DIAG_COUNT_INC(q, rd);
DIAG_COUNT_DEC(q, size);
return data;
}
return NULL;
}
/*
* Remove a node from a queue
*/
static __rte_always_inline void *
_lthread_queue_remove(struct lthread_queue *q)
{
void *data = NULL;
/*
* There is a small window of inconsistency between producer and
* consumer whereby the queue may appear empty if consumer and
* producer access it at the same time. We handle this by retrying
*/
do {
data = _lthread_queue_poll(q);
if (likely(data != NULL)) {
DIAG_COUNT_INC(q, rd);
DIAG_COUNT_DEC(q, size);
return data;
}
rte_compiler_barrier();
} while (unlikely(!_lthread_queue_empty(q)));
return NULL;
}
#ifdef __cplusplus
}
#endif
#endif /* LTHREAD_QUEUE_H_ */
|