summaryrefslogtreecommitdiffstats
path: root/examples/performance-thread/pthread_shim/main.c
blob: 964ea252ddebc79b3082ba80ba93d5cee7bde8a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2015 Intel Corporation
 */

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <unistd.h>
#include <sched.h>
#include <pthread.h>

#include <rte_common.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_timer.h>

#include "lthread_api.h"
#include "lthread_diag_api.h"
#include "pthread_shim.h"

#define DEBUG_APP 0
#define HELLOW_WORLD_MAX_LTHREADS 10

#ifndef __GLIBC__ /* sched_getcpu() is glibc-specific */
#define sched_getcpu() rte_lcore_id()
#endif

__thread int print_count;
__thread pthread_mutex_t print_lock;

__thread pthread_mutex_t exit_lock;
__thread pthread_cond_t exit_cond;

/*
 * A simple thread that demonstrates use of a mutex, a condition
 * variable, thread local storage, explicit yield, and thread exit.
 *
 * The thread uses a mutex to protect a shared counter which is incremented
 * and then it waits on condition variable before exiting.
 *
 * The thread argument is stored in and retrieved from TLS, using
 * the pthread key create, get and set specific APIs.
 *
 * The thread yields while holding the mutex, to provide opportunity
 * for other threads to contend.
 *
 * All of the pthread API functions used by this thread are actually
 * resolved to corresponding lthread functions by the pthread shim
 * implemented in pthread_shim.c
 */
void *helloworld_pthread(void *arg);
void *helloworld_pthread(void *arg)
{
	pthread_key_t key;

	/* create a key for TLS */
	pthread_key_create(&key, NULL);

	/* store the arg in TLS */
	pthread_setspecific(key, arg);

	/* grab lock and increment shared counter */
	pthread_mutex_lock(&print_lock);
	print_count++;

	/* yield thread to give opportunity for lock contention */
	pthread_yield();

	/* retrieve arg from TLS */
	uint64_t thread_no = (uint64_t) pthread_getspecific(key);

	printf("Hello - lcore = %d count = %d thread_no = %d thread_id = %p\n",
			sched_getcpu(),
			print_count,
			(int) thread_no,
			(void *)pthread_self());

	/* release the lock */
	pthread_mutex_unlock(&print_lock);

	/*
	 * wait on condition variable
	 * before exiting
	 */
	pthread_mutex_lock(&exit_lock);
	pthread_cond_wait(&exit_cond, &exit_lock);
	pthread_mutex_unlock(&exit_lock);

	/* exit */
	pthread_exit((void *) thread_no);
}


/*
 * This is the initial thread
 *
 * It demonstrates pthread, mutex and condition variable creation,
 * broadcast and pthread join APIs.
 *
 * This initial thread must always start life as an lthread.
 *
 * This thread creates many more threads then waits a short time
 * before signalling them to exit using a broadcast.
 *
 * All of the pthread API functions used by this thread are actually
 * resolved to corresponding lthread functions by the pthread shim
 * implemented in pthread_shim.c
 *
 * After all threads have finished the lthread scheduler is shutdown
 * and normal pthread operation is restored
 */
__thread pthread_t tid[HELLOW_WORLD_MAX_LTHREADS];

static void initial_lthread(void *args);
static void initial_lthread(void *args __attribute__((unused)))
{
	int lcore = (int) rte_lcore_id();
	/*
	 *
	 * We can now enable pthread API override
	 * and start to use the pthread APIs
	 */
	pthread_override_set(1);

	uint64_t i;
	int ret;

	/* initialize mutex for shared counter */
	print_count = 0;
	pthread_mutex_init(&print_lock, NULL);

	/* initialize mutex and condition variable controlling thread exit */
	pthread_mutex_init(&exit_lock, NULL);
	pthread_cond_init(&exit_cond, NULL);

	/* spawn a number of threads */
	for (i = 0; i < HELLOW_WORLD_MAX_LTHREADS; i++) {

		/*
		 * Not strictly necessary but
		 * for the sake of this example
		 * use an attribute to pass the desired lcore
		 */
		pthread_attr_t attr;
		rte_cpuset_t cpuset;

		CPU_ZERO(&cpuset);
		CPU_SET(lcore, &cpuset);
		pthread_attr_init(&attr);
		pthread_attr_setaffinity_np(&attr, sizeof(rte_cpuset_t), &cpuset);

		/* create the thread */
		ret = pthread_create(&tid[i], &attr,
				helloworld_pthread, (void *) i);
		if (ret != 0)
			rte_exit(EXIT_FAILURE, "Cannot create helloworld thread\n");
	}

	/* wait for 1s to allow threads
	 * to block on the condition variable
	 * N.B. nanosleep() is resolved to lthread_sleep()
	 * by the shim.
	 */
	struct timespec time;

	time.tv_sec = 1;
	time.tv_nsec = 0;
	nanosleep(&time, NULL);

	/* wake up all the threads */
	pthread_cond_broadcast(&exit_cond);

	/* wait for them to finish */
	for (i = 0; i < HELLOW_WORLD_MAX_LTHREADS; i++) {

		uint64_t thread_no;

		pthread_join(tid[i], (void *) &thread_no);
		if (thread_no != i)
			printf("error on thread exit\n");
	}

	pthread_cond_destroy(&exit_cond);
	pthread_mutex_destroy(&print_lock);
	pthread_mutex_destroy(&exit_lock);

	/* shutdown the lthread scheduler */
	lthread_scheduler_shutdown(rte_lcore_id());
	lthread_detach();
}



/* This thread creates a single initial lthread
 * and then runs the scheduler
 * An instance of this thread is created on each thread
 * in the core mask
 */
static int
lthread_scheduler(void *args);
static int
lthread_scheduler(void *args __attribute__((unused)))
{
	/* create initial thread  */
	struct lthread *lt;

	lthread_create(&lt, -1, initial_lthread, (void *) NULL);

	/* run the lthread scheduler */
	lthread_run();

	/* restore genuine pthread operation */
	pthread_override_set(0);
	return 0;
}

int main(int argc, char **argv)
{
	int num_sched = 0;

	/* basic DPDK initialization is all that is necessary to run lthreads*/
	int ret = rte_eal_init(argc, argv);

	if (ret < 0)
		rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");

	/* enable timer subsystem */
	rte_timer_subsystem_init();

#if DEBUG_APP
	lthread_diagnostic_set_mask(LT_DIAG_ALL);
#endif

	/* create a scheduler on every core in the core mask
	 * and launch an initial lthread that will spawn many more.
	 */
	unsigned lcore_id;

	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
		if (rte_lcore_is_enabled(lcore_id))
			num_sched++;
	}

	/* set the number of schedulers, this forces all schedulers synchronize
	 * before entering their main loop
	 */
	lthread_num_schedulers_set(num_sched);

	/* launch all threads */
	rte_eal_mp_remote_launch(lthread_scheduler, (void *)NULL, CALL_MASTER);

	/* wait for threads to stop */
	RTE_LCORE_FOREACH_SLAVE(lcore_id) {
		rte_eal_wait_lcore(lcore_id);
	}
	return 0;
}