summaryrefslogtreecommitdiffstats
path: root/examples/vm_power_manager/power_manager.c
blob: b7769c3c329945185708690f3b8d5da271dc8c5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2014 Intel Corporation
 */

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/un.h>
#include <fcntl.h>
#include <unistd.h>
#include <dirent.h>
#include <errno.h>

#include <sys/sysinfo.h>
#include <sys/types.h>

#include <rte_log.h>
#include <rte_power.h>
#include <rte_spinlock.h>

#include "channel_manager.h"
#include "power_manager.h"
#include "oob_monitor.h"

#define POWER_SCALE_CORE(DIRECTION, core_num , ret) do { \
	if (core_num >= ci.core_count) \
		return -1; \
	if (!(ci.cd[core_num].global_enabled_cpus)) \
		return -1; \
	rte_spinlock_lock(&global_core_freq_info[core_num].power_sl); \
	ret = rte_power_freq_##DIRECTION(core_num); \
	rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl); \
} while (0)

#define POWER_SCALE_MASK(DIRECTION, core_mask, ret) do { \
	int i; \
	for (i = 0; core_mask; core_mask &= ~(1 << i++)) { \
		if ((core_mask >> i) & 1) { \
			if (!(ci.cd[i].global_enabled_cpus)) \
				continue; \
			rte_spinlock_lock(&global_core_freq_info[i].power_sl); \
			if (rte_power_freq_##DIRECTION(i) != 1) \
				ret = -1; \
			rte_spinlock_unlock(&global_core_freq_info[i].power_sl); \
		} \
	} \
} while (0)

struct freq_info {
	rte_spinlock_t power_sl;
	uint32_t freqs[RTE_MAX_LCORE_FREQS];
	unsigned num_freqs;
} __rte_cache_aligned;

static struct freq_info global_core_freq_info[POWER_MGR_MAX_CPUS];

struct core_info ci;

#define SYSFS_CPU_PATH "/sys/devices/system/cpu/cpu%u/topology/core_id"

struct core_info *
get_core_info(void)
{
	return &ci;
}

int
core_info_init(void)
{
	struct core_info *ci;
	int i;

	ci = get_core_info();

	ci->core_count = get_nprocs_conf();
	ci->branch_ratio_threshold = BRANCH_RATIO_THRESHOLD;
	ci->cd = malloc(ci->core_count * sizeof(struct core_details));
	if (!ci->cd) {
		RTE_LOG(ERR, POWER_MANAGER, "Failed to allocate memory for core info.");
		return -1;
	}
	for (i = 0; i < ci->core_count; i++) {
		ci->cd[i].global_enabled_cpus = 1;
		ci->cd[i].oob_enabled = 0;
		ci->cd[i].msr_fd = 0;
	}
	printf("%d cores in system\n", ci->core_count);
	return 0;
}

int
power_manager_init(void)
{
	unsigned int i, num_cpus = 0, num_freqs = 0;
	int ret = 0;
	struct core_info *ci;

	rte_power_set_env(PM_ENV_ACPI_CPUFREQ);

	ci = get_core_info();
	if (!ci) {
		RTE_LOG(ERR, POWER_MANAGER,
				"Failed to get core info!\n");
		return -1;
	}

	for (i = 0; i < ci->core_count; i++) {
		if (ci->cd[i].global_enabled_cpus) {
			if (rte_power_init(i) < 0)
				RTE_LOG(ERR, POWER_MANAGER,
						"Unable to initialize power manager "
						"for core %u\n", i);
			num_cpus++;
			num_freqs = rte_power_freqs(i,
					global_core_freq_info[i].freqs,
					RTE_MAX_LCORE_FREQS);
			if (num_freqs == 0) {
				RTE_LOG(ERR, POWER_MANAGER,
					"Unable to get frequency list for core %u\n",
					i);
				ci->cd[i].oob_enabled = 0;
				ret = -1;
			}
			global_core_freq_info[i].num_freqs = num_freqs;

			rte_spinlock_init(&global_core_freq_info[i].power_sl);
		}
		if (ci->cd[i].oob_enabled)
			add_core_to_monitor(i);
	}
	RTE_LOG(INFO, POWER_MANAGER, "Managing %u cores out of %u available host cores\n",
			num_cpus, ci->core_count);
	return ret;

}

uint32_t
power_manager_get_current_frequency(unsigned core_num)
{
	uint32_t freq, index;

	if (core_num >= POWER_MGR_MAX_CPUS) {
		RTE_LOG(ERR, POWER_MANAGER, "Core(%u) is out of range 0...%d\n",
				core_num, POWER_MGR_MAX_CPUS-1);
		return -1;
	}
	if (!(ci.cd[core_num].global_enabled_cpus))
		return 0;

	rte_spinlock_lock(&global_core_freq_info[core_num].power_sl);
	index = rte_power_get_freq(core_num);
	rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl);
	if (index >= POWER_MGR_MAX_CPUS)
		freq = 0;
	else
		freq = global_core_freq_info[core_num].freqs[index];

	return freq;
}

int
power_manager_exit(void)
{
	unsigned int i;
	int ret = 0;
	struct core_info *ci;

	ci = get_core_info();
	if (!ci) {
		RTE_LOG(ERR, POWER_MANAGER,
				"Failed to get core info!\n");
		return -1;
	}

	for (i = 0; i < ci->core_count; i++) {
		if (ci->cd[i].global_enabled_cpus) {
			if (rte_power_exit(i) < 0) {
				RTE_LOG(ERR, POWER_MANAGER, "Unable to shutdown power manager "
						"for core %u\n", i);
				ret = -1;
			}
			ci->cd[i].global_enabled_cpus = 0;
		}
		remove_core_from_monitor(i);
	}
	return ret;
}

int
power_manager_scale_mask_up(uint64_t core_mask)
{
	int ret = 0;

	POWER_SCALE_MASK(up, core_mask, ret);
	return ret;
}

int
power_manager_scale_mask_down(uint64_t core_mask)
{
	int ret = 0;

	POWER_SCALE_MASK(down, core_mask, ret);
	return ret;
}

int
power_manager_scale_mask_min(uint64_t core_mask)
{
	int ret = 0;

	POWER_SCALE_MASK(min, core_mask, ret);
	return ret;
}

int
power_manager_scale_mask_max(uint64_t core_mask)
{
	int ret = 0;

	POWER_SCALE_MASK(max, core_mask, ret);
	return ret;
}

int
power_manager_enable_turbo_mask(uint64_t core_mask)
{
	int ret = 0;

	POWER_SCALE_MASK(enable_turbo, core_mask, ret);
	return ret;
}

int
power_manager_disable_turbo_mask(uint64_t core_mask)
{
	int ret = 0;

	POWER_SCALE_MASK(disable_turbo, core_mask, ret);
	return ret;
}

int
power_manager_scale_core_up(unsigned core_num)
{
	int ret = 0;

	POWER_SCALE_CORE(up, core_num, ret);
	return ret;
}

int
power_manager_scale_core_down(unsigned core_num)
{
	int ret = 0;

	POWER_SCALE_CORE(down, core_num, ret);
	return ret;
}

int
power_manager_scale_core_min(unsigned core_num)
{
	int ret = 0;

	POWER_SCALE_CORE(min, core_num, ret);
	return ret;
}

int
power_manager_scale_core_max(unsigned core_num)
{
	int ret = 0;

	POWER_SCALE_CORE(max, core_num, ret);
	return ret;
}

int
power_manager_enable_turbo_core(unsigned int core_num)
{
	int ret = 0;

	POWER_SCALE_CORE(enable_turbo, core_num, ret);
	return ret;
}

int
power_manager_disable_turbo_core(unsigned int core_num)
{
	int ret = 0;

	POWER_SCALE_CORE(disable_turbo, core_num, ret);
	return ret;
}

int
power_manager_scale_core_med(unsigned int core_num)
{
	int ret = 0;
	struct core_info *ci;

	ci = get_core_info();
	if (core_num >= POWER_MGR_MAX_CPUS)
		return -1;
	if (!(ci->cd[core_num].global_enabled_cpus))
		return -1;
	rte_spinlock_lock(&global_core_freq_info[core_num].power_sl);
	ret = rte_power_set_freq(core_num,
				global_core_freq_info[core_num].num_freqs / 2);
	rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl);
	return ret;
}