aboutsummaryrefslogtreecommitdiffstats
path: root/lib/librte_acl/acl_run.h
blob: bf7842d879e1706f4e71c45920c68b911d841940 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2014 Intel Corporation
 */

#ifndef	_ACL_RUN_H_
#define	_ACL_RUN_H_

#include <rte_acl.h>
#include "acl.h"

#define MAX_SEARCHES_AVX16	16
#define MAX_SEARCHES_SSE8	8
#define MAX_SEARCHES_ALTIVEC8	8
#define MAX_SEARCHES_SSE4	4
#define MAX_SEARCHES_ALTIVEC4	4
#define MAX_SEARCHES_SCALAR	2

#define GET_NEXT_4BYTES(prm, idx)	\
	(*((const int32_t *)((prm)[(idx)].data + *(prm)[idx].data_index++)))


#define RTE_ACL_NODE_INDEX	((uint32_t)~RTE_ACL_NODE_TYPE)

#define	SCALAR_QRANGE_MULT	0x01010101
#define	SCALAR_QRANGE_MASK	0x7f7f7f7f
#define	SCALAR_QRANGE_MIN	0x80808080

/*
 * Structure to manage N parallel trie traversals.
 * The runtime trie traversal routines can process 8, 4, or 2 tries
 * in parallel. Each packet may require multiple trie traversals (up to 4).
 * This structure is used to fill the slots (0 to n-1) for parallel processing
 * with the trie traversals needed for each packet.
 */
struct acl_flow_data {
	uint32_t            num_packets;
	/* number of packets processed */
	uint32_t            started;
	/* number of trie traversals in progress */
	uint32_t            trie;
	/* current trie index (0 to N-1) */
	uint32_t            cmplt_size;
	/* maximum number of packets to process */
	uint32_t            total_packets;
	/* number of result categories per packet. */
	uint32_t            categories;
	const uint64_t     *trans;
	const uint8_t     **data;
	uint32_t           *results;
	struct completion  *last_cmplt;
	struct completion  *cmplt_array;
};

/*
 * Structure to maintain running results for
 * a single packet (up to 4 tries).
 */
struct completion {
	uint32_t *results;                          /* running results. */
	int32_t   priority[RTE_ACL_MAX_CATEGORIES]; /* running priorities. */
	uint32_t  count;                            /* num of remaining tries */
	/* true for allocated struct */
} __attribute__((aligned(XMM_SIZE)));

/*
 * One parms structure for each slot in the search engine.
 */
struct parms {
	const uint8_t              *data;
	/* input data for this packet */
	const uint32_t             *data_index;
	/* data indirection for this trie */
	struct completion          *cmplt;
	/* completion data for this packet */
};

/*
 * Define an global idle node for unused engine slots
 */
static const uint32_t idle[UINT8_MAX + 1];

/*
 * Allocate a completion structure to manage the tries for a packet.
 */
static inline struct completion *
alloc_completion(struct completion *p, uint32_t size, uint32_t tries,
	uint32_t *results)
{
	uint32_t n;

	for (n = 0; n < size; n++) {

		if (p[n].count == 0) {

			/* mark as allocated and set number of tries. */
			p[n].count = tries;
			p[n].results = results;
			return &(p[n]);
		}
	}

	/* should never get here */
	return NULL;
}

/*
 * Resolve priority for a single result trie.
 */
static inline void
resolve_single_priority(uint64_t transition, int n,
	const struct rte_acl_ctx *ctx, struct parms *parms,
	const struct rte_acl_match_results *p)
{
	if (parms[n].cmplt->count == ctx->num_tries ||
			parms[n].cmplt->priority[0] <=
			p[transition].priority[0]) {

		parms[n].cmplt->priority[0] = p[transition].priority[0];
		parms[n].cmplt->results[0] = p[transition].results[0];
	}
}

/*
 * Routine to fill a slot in the parallel trie traversal array (parms) from
 * the list of packets (flows).
 */
static inline uint64_t
acl_start_next_trie(struct acl_flow_data *flows, struct parms *parms, int n,
	const struct rte_acl_ctx *ctx)
{
	uint64_t transition;

	/* if there are any more packets to process */
	if (flows->num_packets < flows->total_packets) {
		parms[n].data = flows->data[flows->num_packets];
		parms[n].data_index = ctx->trie[flows->trie].data_index;

		/* if this is the first trie for this packet */
		if (flows->trie == 0) {
			flows->last_cmplt = alloc_completion(flows->cmplt_array,
				flows->cmplt_size, ctx->num_tries,
				flows->results +
				flows->num_packets * flows->categories);
		}

		/* set completion parameters and starting index for this slot */
		parms[n].cmplt = flows->last_cmplt;
		transition =
			flows->trans[parms[n].data[*parms[n].data_index++] +
			ctx->trie[flows->trie].root_index];

		/*
		 * if this is the last trie for this packet,
		 * then setup next packet.
		 */
		flows->trie++;
		if (flows->trie >= ctx->num_tries) {
			flows->trie = 0;
			flows->num_packets++;
		}

		/* keep track of number of active trie traversals */
		flows->started++;

	/* no more tries to process, set slot to an idle position */
	} else {
		transition = ctx->idle;
		parms[n].data = (const uint8_t *)idle;
		parms[n].data_index = idle;
	}
	return transition;
}

static inline void
acl_set_flow(struct acl_flow_data *flows, struct completion *cmplt,
	uint32_t cmplt_size, const uint8_t **data, uint32_t *results,
	uint32_t data_num, uint32_t categories, const uint64_t *trans)
{
	flows->num_packets = 0;
	flows->started = 0;
	flows->trie = 0;
	flows->last_cmplt = NULL;
	flows->cmplt_array = cmplt;
	flows->total_packets = data_num;
	flows->categories = categories;
	flows->cmplt_size = cmplt_size;
	flows->data = data;
	flows->results = results;
	flows->trans = trans;
}

typedef void (*resolve_priority_t)
(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
	struct parms *parms, const struct rte_acl_match_results *p,
	uint32_t categories);

/*
 * Detect matches. If a match node transition is found, then this trie
 * traversal is complete and fill the slot with the next trie
 * to be processed.
 */
static inline uint64_t
acl_match_check(uint64_t transition, int slot,
	const struct rte_acl_ctx *ctx, struct parms *parms,
	struct acl_flow_data *flows, resolve_priority_t resolve_priority)
{
	const struct rte_acl_match_results *p;

	p = (const struct rte_acl_match_results *)
		(flows->trans + ctx->match_index);

	if (transition & RTE_ACL_NODE_MATCH) {

		/* Remove flags from index and decrement active traversals */
		transition &= RTE_ACL_NODE_INDEX;
		flows->started--;

		/* Resolve priorities for this trie and running results */
		if (flows->categories == 1)
			resolve_single_priority(transition, slot, ctx,
				parms, p);
		else
			resolve_priority(transition, slot, ctx, parms,
				p, flows->categories);

		/* Count down completed tries for this search request */
		parms[slot].cmplt->count--;

		/* Fill the slot with the next trie or idle trie */
		transition = acl_start_next_trie(flows, parms, slot, ctx);
	}

	return transition;
}

#endif /* _ACL_RUN_H_ */