aboutsummaryrefslogtreecommitdiffstats
path: root/lib/librte_acl/acl_run_altivec.h
blob: 62fd6a22fc4f691a8fc7f072159c47e4cd5e3a0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
/*
 *   BSD LICENSE
 *
 *   Copyright (C) IBM Corporation 2016.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of IBM Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#include "acl_run.h"
#include "acl_vect.h"

struct _altivec_acl_const {
	rte_xmm_t xmm_shuffle_input;
	rte_xmm_t xmm_index_mask;
	rte_xmm_t xmm_ones_16;
	rte_xmm_t range_base;
} altivec_acl_const  __attribute__((aligned(RTE_CACHE_LINE_SIZE))) = {
	{
		.u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c}
	},
	{
		.u32 = {RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX,
		RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX}
	},
	{
		.u16 = {1, 1, 1, 1, 1, 1, 1, 1}
	},
	{
		.u32 = {0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c}
	},
};

/*
 * Resolve priority for multiple results (altivec version).
 * This consists comparing the priority of the current traversal with the
 * running set of results for the packet.
 * For each result, keep a running array of the result (rule number) and
 * its priority for each category.
 */
static inline void
resolve_priority_altivec(uint64_t transition, int n,
	const struct rte_acl_ctx *ctx, struct parms *parms,
	const struct rte_acl_match_results *p, uint32_t categories)
{
	uint32_t x;
	xmm_t results, priority, results1, priority1;
	vector bool int selector;
	xmm_t *saved_results, *saved_priority;

	for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {

		saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
		saved_priority =
			(xmm_t *)(&parms[n].cmplt->priority[x]);

		/* get results and priorities for completed trie */
		results = *(const xmm_t *)&p[transition].results[x];
		priority = *(const xmm_t *)&p[transition].priority[x];

		/* if this is not the first completed trie */
		if (parms[n].cmplt->count != ctx->num_tries) {

			/* get running best results and their priorities */
			results1 = *saved_results;
			priority1 = *saved_priority;

			/* select results that are highest priority */
			selector = vec_cmpgt(priority1, priority);
			results = vec_sel(results, results1, selector);
			priority = vec_sel(priority, priority1,
				selector);
		}

		/* save running best results and their priorities */
		*saved_results = results;
		*saved_priority = priority;
	}
}

/*
 * Check for any match in 4 transitions
 */
static __rte_always_inline uint32_t
check_any_match_x4(uint64_t val[])
{
	return (val[0] | val[1] | val[2] | val[3]) & RTE_ACL_NODE_MATCH;
}

static __rte_always_inline void
acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
	struct acl_flow_data *flows, uint64_t transitions[])
{
	while (check_any_match_x4(transitions)) {
		transitions[0] = acl_match_check(transitions[0], slot, ctx,
			parms, flows, resolve_priority_altivec);
		transitions[1] = acl_match_check(transitions[1], slot + 1, ctx,
			parms, flows, resolve_priority_altivec);
		transitions[2] = acl_match_check(transitions[2], slot + 2, ctx,
			parms, flows, resolve_priority_altivec);
		transitions[3] = acl_match_check(transitions[3], slot + 3, ctx,
			parms, flows, resolve_priority_altivec);
	}
}

/*
 * Process 4 transitions (in 2 XMM registers) in parallel
 */
static inline __attribute__((optimize("O2"))) xmm_t
transition4(xmm_t next_input, const uint64_t *trans,
	xmm_t *indices1, xmm_t *indices2)
{
	xmm_t addr, tr_lo, tr_hi;
	xmm_t in, node_type, r, t;
	xmm_t dfa_ofs, quad_ofs;
	xmm_t *index_mask, *tp;
	vector bool int dfa_msk;
	vector signed char zeroes = {};
	union {
		uint64_t d64[2];
		uint32_t d32[4];
	} v;

	/* Move low 32 into tr_lo and high 32 into tr_hi */
	tr_lo = (xmm_t){(*indices1)[0], (*indices1)[2],
			(*indices2)[0], (*indices2)[2]};
	tr_hi = (xmm_t){(*indices1)[1], (*indices1)[3],
			(*indices2)[1], (*indices2)[3]};

	 /* Calculate the address (array index) for all 4 transitions. */
	index_mask = (xmm_t *)&altivec_acl_const.xmm_index_mask.u32;
	t = vec_xor(*index_mask, *index_mask);
	in = vec_perm(next_input, (xmm_t){},
		*(vector unsigned char *)&altivec_acl_const.xmm_shuffle_input);

	/* Calc node type and node addr */
	node_type = vec_and(vec_nor(*index_mask, *index_mask), tr_lo);
	addr = vec_and(tr_lo, *index_mask);

	/* mask for DFA type(0) nodes */
	dfa_msk = vec_cmpeq(node_type, t);

	/* DFA calculations. */
	r = vec_sr(in, (vector unsigned int){30, 30, 30, 30});
	tp = (xmm_t *)&altivec_acl_const.range_base.u32;
	r = vec_add(r, *tp);
	t = vec_sr(in, (vector unsigned int){24, 24, 24, 24});
	r = vec_perm(tr_hi, (xmm_t){(uint16_t)0 << 16},
		(vector unsigned char)r);

	dfa_ofs = vec_sub(t, r);

	/* QUAD/SINGLE caluclations. */
	t = (xmm_t)vec_cmpgt((vector signed char)in, (vector signed char)tr_hi);
	t = (xmm_t)vec_sel(
		vec_sel(
			(vector signed char)vec_sub(
				zeroes, (vector signed char)t),
			(vector signed char)t,
			vec_cmpgt((vector signed char)t, zeroes)),
		zeroes,
		vec_cmpeq((vector signed char)t, zeroes));

	t = (xmm_t)vec_msum((vector signed char)t,
		(vector unsigned char)t, (xmm_t){});
	quad_ofs = (xmm_t)vec_msum((vector signed short)t,
		*(vector signed short *)&altivec_acl_const.xmm_ones_16.u16,
		(xmm_t){});

	/* blend DFA and QUAD/SINGLE. */
	t = vec_sel(quad_ofs, dfa_ofs, dfa_msk);

	/* calculate address for next transitions. */
	addr = vec_add(addr, t);

	v.d64[0] = (uint64_t)trans[addr[0]];
	v.d64[1] = (uint64_t)trans[addr[1]];
	*indices1 = (xmm_t){v.d32[0], v.d32[1], v.d32[2], v.d32[3]};
	v.d64[0] = (uint64_t)trans[addr[2]];
	v.d64[1] = (uint64_t)trans[addr[3]];
	*indices2 = (xmm_t){v.d32[0], v.d32[1], v.d32[2], v.d32[3]};

	return vec_sr(next_input,
		(vector unsigned int){CHAR_BIT, CHAR_BIT, CHAR_BIT, CHAR_BIT});
}

/*
 * Execute trie traversal with 8 traversals in parallel
 */
static inline int
search_altivec_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
	uint32_t *results, uint32_t total_packets, uint32_t categories)
{
	int n;
	struct acl_flow_data flows;
	uint64_t index_array[MAX_SEARCHES_ALTIVEC8];
	struct completion cmplt[MAX_SEARCHES_ALTIVEC8];
	struct parms parms[MAX_SEARCHES_ALTIVEC8];
	xmm_t input0, input1;

	acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
		total_packets, categories, ctx->trans_table);

	for (n = 0; n < MAX_SEARCHES_ALTIVEC8; n++) {
		cmplt[n].count = 0;
		index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
	}

	 /* Check for any matches. */
	acl_match_check_x4(0, ctx, parms, &flows, (uint64_t *)&index_array[0]);
	acl_match_check_x4(4, ctx, parms, &flows, (uint64_t *)&index_array[4]);

	while (flows.started > 0) {

		/* Gather 4 bytes of input data for each stream. */
		input0 = (xmm_t){GET_NEXT_4BYTES(parms, 0),
				GET_NEXT_4BYTES(parms, 1),
				GET_NEXT_4BYTES(parms, 2),
				GET_NEXT_4BYTES(parms, 3)};

		input1 = (xmm_t){GET_NEXT_4BYTES(parms, 4),
				GET_NEXT_4BYTES(parms, 5),
				GET_NEXT_4BYTES(parms, 6),
				GET_NEXT_4BYTES(parms, 7)};

		 /* Process the 4 bytes of input on each stream. */

		input0 = transition4(input0, flows.trans,
			(xmm_t *)&index_array[0], (xmm_t *)&index_array[2]);
		input1 = transition4(input1, flows.trans,
			(xmm_t *)&index_array[4], (xmm_t *)&index_array[6]);

		input0 = transition4(input0, flows.trans,
			(xmm_t *)&index_array[0], (xmm_t *)&index_array[2]);
		input1 = transition4(input1, flows.trans,
			(xmm_t *)&index_array[4], (xmm_t *)&index_array[6]);

		input0 = transition4(input0, flows.trans,
			(xmm_t *)&index_array[0], (xmm_t *)&index_array[2]);
		input1 = transition4(input1, flows.trans,
			(xmm_t *)&index_array[4], (xmm_t *)&index_array[6]);

		input0 = transition4(input0, flows.trans,
			(xmm_t *)&index_array[0], (xmm_t *)&index_array[2]);
		input1 = transition4(input1, flows.trans,
			(xmm_t *)&index_array[4], (xmm_t *)&index_array[6]);

		 /* Check for any matches. */
		acl_match_check_x4(0, ctx, parms, &flows,
			(uint64_t *)&index_array[0]);
		acl_match_check_x4(4, ctx, parms, &flows,
			(uint64_t *)&index_array[4]);
	}

	return 0;
}

/*
 * Execute trie traversal with 4 traversals in parallel
 */
static inline int
search_altivec_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
	 uint32_t *results, int total_packets, uint32_t categories)
{
	int n;
	struct acl_flow_data flows;
	uint64_t index_array[MAX_SEARCHES_ALTIVEC4];
	struct completion cmplt[MAX_SEARCHES_ALTIVEC4];
	struct parms parms[MAX_SEARCHES_ALTIVEC4];
	xmm_t input;

	acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
		total_packets, categories, ctx->trans_table);

	for (n = 0; n < MAX_SEARCHES_ALTIVEC4; n++) {
		cmplt[n].count = 0;
		index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
	}

	/* Check for any matches. */
	acl_match_check_x4(0, ctx, parms, &flows, index_array);

	while (flows.started > 0) {

		/* Gather 4 bytes of input data for each stream. */
		input = (xmm_t){GET_NEXT_4BYTES(parms, 0),
				GET_NEXT_4BYTES(parms, 1),
				GET_NEXT_4BYTES(parms, 2),
				GET_NEXT_4BYTES(parms, 3)};

		/* Process the 4 bytes of input on each stream. */
		input = transition4(input, flows.trans,
			(xmm_t *)&index_array[0], (xmm_t *)&index_array[2]);
		input = transition4(input, flows.trans,
			(xmm_t *)&index_array[0], (xmm_t *)&index_array[2]);
		input = transition4(input, flows.trans,
			(xmm_t *)&index_array[0], (xmm_t *)&index_array[2]);
		input = transition4(input, flows.trans,
			(xmm_t *)&index_array[0], (xmm_t *)&index_array[2]);

		/* Check for any matches. */
		acl_match_check_x4(0, ctx, parms, &flows, index_array);
	}

	return 0;
}