aboutsummaryrefslogtreecommitdiffstats
path: root/lib/librte_eal/common/malloc_elem.c
blob: 0cadc8aff12abd1b6c01630b2cfc833fb5bf6c25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2014 Intel Corporation
 */
#include <stdint.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <sys/queue.h>

#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_launch.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_debug.h>
#include <rte_common.h>
#include <rte_spinlock.h>

#include "malloc_elem.h"
#include "malloc_heap.h"

#define MIN_DATA_SIZE (RTE_CACHE_LINE_SIZE)

/*
 * Initialize a general malloc_elem header structure
 */
void
malloc_elem_init(struct malloc_elem *elem,
		struct malloc_heap *heap, const struct rte_memseg *ms, size_t size)
{
	elem->heap = heap;
	elem->ms = ms;
	elem->prev = NULL;
	memset(&elem->free_list, 0, sizeof(elem->free_list));
	elem->state = ELEM_FREE;
	elem->size = size;
	elem->pad = 0;
	set_header(elem);
	set_trailer(elem);
}

/*
 * Initialize a dummy malloc_elem header for the end-of-memseg marker
 */
void
malloc_elem_mkend(struct malloc_elem *elem, struct malloc_elem *prev)
{
	malloc_elem_init(elem, prev->heap, prev->ms, 0);
	elem->prev = prev;
	elem->state = ELEM_BUSY; /* mark busy so its never merged */
}

/*
 * calculate the starting point of where data of the requested size
 * and alignment would fit in the current element. If the data doesn't
 * fit, return NULL.
 */
static void *
elem_start_pt(struct malloc_elem *elem, size_t size, unsigned align,
		size_t bound)
{
	const size_t bmask = ~(bound - 1);
	uintptr_t end_pt = (uintptr_t)elem +
			elem->size - MALLOC_ELEM_TRAILER_LEN;
	uintptr_t new_data_start = RTE_ALIGN_FLOOR((end_pt - size), align);
	uintptr_t new_elem_start;

	/* check boundary */
	if ((new_data_start & bmask) != ((end_pt - 1) & bmask)) {
		end_pt = RTE_ALIGN_FLOOR(end_pt, bound);
		new_data_start = RTE_ALIGN_FLOOR((end_pt - size), align);
		end_pt = new_data_start + size;
		if (((end_pt - 1) & bmask) != (new_data_start & bmask))
			return NULL;
	}

	new_elem_start = new_data_start - MALLOC_ELEM_HEADER_LEN;

	/* if the new start point is before the exist start, it won't fit */
	return (new_elem_start < (uintptr_t)elem) ? NULL : (void *)new_elem_start;
}

/*
 * use elem_start_pt to determine if we get meet the size and
 * alignment request from the current element
 */
int
malloc_elem_can_hold(struct malloc_elem *elem, size_t size,	unsigned align,
		size_t bound)
{
	return elem_start_pt(elem, size, align, bound) != NULL;
}

/*
 * split an existing element into two smaller elements at the given
 * split_pt parameter.
 */
static void
split_elem(struct malloc_elem *elem, struct malloc_elem *split_pt)
{
	struct malloc_elem *next_elem = RTE_PTR_ADD(elem, elem->size);
	const size_t old_elem_size = (uintptr_t)split_pt - (uintptr_t)elem;
	const size_t new_elem_size = elem->size - old_elem_size;

	malloc_elem_init(split_pt, elem->heap, elem->ms, new_elem_size);
	split_pt->prev = elem;
	next_elem->prev = split_pt;
	elem->size = old_elem_size;
	set_trailer(elem);
}

/*
 * Given an element size, compute its freelist index.
 * We free an element into the freelist containing similarly-sized elements.
 * We try to allocate elements starting with the freelist containing
 * similarly-sized elements, and if necessary, we search freelists
 * containing larger elements.
 *
 * Example element size ranges for a heap with five free lists:
 *   heap->free_head[0] - (0   , 2^8]
 *   heap->free_head[1] - (2^8 , 2^10]
 *   heap->free_head[2] - (2^10 ,2^12]
 *   heap->free_head[3] - (2^12, 2^14]
 *   heap->free_head[4] - (2^14, MAX_SIZE]
 */
size_t
malloc_elem_free_list_index(size_t size)
{
#define MALLOC_MINSIZE_LOG2   8
#define MALLOC_LOG2_INCREMENT 2

	size_t log2;
	size_t index;

	if (size <= (1UL << MALLOC_MINSIZE_LOG2))
		return 0;

	/* Find next power of 2 >= size. */
	log2 = sizeof(size) * 8 - __builtin_clzl(size-1);

	/* Compute freelist index, based on log2(size). */
	index = (log2 - MALLOC_MINSIZE_LOG2 + MALLOC_LOG2_INCREMENT - 1) /
	        MALLOC_LOG2_INCREMENT;

	return index <= RTE_HEAP_NUM_FREELISTS-1?
	        index: RTE_HEAP_NUM_FREELISTS-1;
}

/*
 * Add the specified element to its heap's free list.
 */
void
malloc_elem_free_list_insert(struct malloc_elem *elem)
{
	size_t idx;

	idx = malloc_elem_free_list_index(elem->size - MALLOC_ELEM_HEADER_LEN);
	elem->state = ELEM_FREE;
	LIST_INSERT_HEAD(&elem->heap->free_head[idx], elem, free_list);
}

/*
 * Remove the specified element from its heap's free list.
 */
static void
elem_free_list_remove(struct malloc_elem *elem)
{
	LIST_REMOVE(elem, free_list);
}

/*
 * reserve a block of data in an existing malloc_elem. If the malloc_elem
 * is much larger than the data block requested, we split the element in two.
 * This function is only called from malloc_heap_alloc so parameter checking
 * is not done here, as it's done there previously.
 */
struct malloc_elem *
malloc_elem_alloc(struct malloc_elem *elem, size_t size, unsigned align,
		size_t bound)
{
	struct malloc_elem *new_elem = elem_start_pt(elem, size, align, bound);
	const size_t old_elem_size = (uintptr_t)new_elem - (uintptr_t)elem;
	const size_t trailer_size = elem->size - old_elem_size - size -
		MALLOC_ELEM_OVERHEAD;

	elem_free_list_remove(elem);

	if (trailer_size > MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
		/* split it, too much free space after elem */
		struct malloc_elem *new_free_elem =
				RTE_PTR_ADD(new_elem, size + MALLOC_ELEM_OVERHEAD);

		split_elem(elem, new_free_elem);
		malloc_elem_free_list_insert(new_free_elem);
	}

	if (old_elem_size < MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
		/* don't split it, pad the element instead */
		elem->state = ELEM_BUSY;
		elem->pad = old_elem_size;

		/* put a dummy header in padding, to point to real element header */
		if (elem->pad > 0) { /* pad will be at least 64-bytes, as everything
		                     * is cache-line aligned */
			new_elem->pad = elem->pad;
			new_elem->state = ELEM_PAD;
			new_elem->size = elem->size - elem->pad;
			set_header(new_elem);
		}

		return new_elem;
	}

	/* we are going to split the element in two. The original element
	 * remains free, and the new element is the one allocated.
	 * Re-insert original element, in case its new size makes it
	 * belong on a different list.
	 */
	split_elem(elem, new_elem);
	new_elem->state = ELEM_BUSY;
	malloc_elem_free_list_insert(elem);

	return new_elem;
}

/*
 * join two struct malloc_elem together. elem1 and elem2 must
 * be contiguous in memory.
 */
static inline void
join_elem(struct malloc_elem *elem1, struct malloc_elem *elem2)
{
	struct malloc_elem *next = RTE_PTR_ADD(elem2, elem2->size);
	elem1->size += elem2->size;
	next->prev = elem1;
}

/*
 * free a malloc_elem block by adding it to the free list. If the
 * blocks either immediately before or immediately after newly freed block
 * are also free, the blocks are merged together.
 */
int
malloc_elem_free(struct malloc_elem *elem)
{
	if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
		return -1;

	rte_spinlock_lock(&(elem->heap->lock));
	size_t sz = elem->size - sizeof(*elem) - MALLOC_ELEM_TRAILER_LEN;
	uint8_t *ptr = (uint8_t *)&elem[1];
	struct malloc_elem *next = RTE_PTR_ADD(elem, elem->size);
	if (next->state == ELEM_FREE){
		/* remove from free list, join to this one */
		elem_free_list_remove(next);
		join_elem(elem, next);
		sz += (sizeof(*elem) + MALLOC_ELEM_TRAILER_LEN);
	}

	/* check if previous element is free, if so join with it and return,
	 * need to re-insert in free list, as that element's size is changing
	 */
	if (elem->prev != NULL && elem->prev->state == ELEM_FREE) {
		elem_free_list_remove(elem->prev);
		join_elem(elem->prev, elem);
		sz += (sizeof(*elem) + MALLOC_ELEM_TRAILER_LEN);
		ptr -= (sizeof(*elem) + MALLOC_ELEM_TRAILER_LEN);
		elem = elem->prev;
	}
	malloc_elem_free_list_insert(elem);

	/* decrease heap's count of allocated elements */
	elem->heap->alloc_count--;

	memset(ptr, 0, sz);

	rte_spinlock_unlock(&(elem->heap->lock));

	return 0;
}

/*
 * attempt to resize a malloc_elem by expanding into any free space
 * immediately after it in memory.
 */
int
malloc_elem_resize(struct malloc_elem *elem, size_t size)
{
	const size_t new_size = size + elem->pad + MALLOC_ELEM_OVERHEAD;
	/* if we request a smaller size, then always return ok */
	if (elem->size >= new_size)
		return 0;

	struct malloc_elem *next = RTE_PTR_ADD(elem, elem->size);
	rte_spinlock_lock(&elem->heap->lock);
	if (next ->state != ELEM_FREE)
		goto err_return;
	if (elem->size + next->size < new_size)
		goto err_return;

	/* we now know the element fits, so remove from free list,
	 * join the two
	 */
	elem_free_list_remove(next);
	join_elem(elem, next);

	if (elem->size - new_size >= MIN_DATA_SIZE + MALLOC_ELEM_OVERHEAD) {
		/* now we have a big block together. Lets cut it down a bit, by splitting */
		struct malloc_elem *split_pt = RTE_PTR_ADD(elem, new_size);
		split_pt = RTE_PTR_ALIGN_CEIL(split_pt, RTE_CACHE_LINE_SIZE);
		split_elem(elem, split_pt);
		malloc_elem_free_list_insert(split_pt);
	}
	rte_spinlock_unlock(&elem->heap->lock);
	return 0;

err_return:
	rte_spinlock_unlock(&elem->heap->lock);
	return -1;
}