1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
|
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <inttypes.h>
#include <stdint.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/queue.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_launch.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_debug.h>
#include <rte_common.h>
#include <rte_spinlock.h>
#include "eal_internal_cfg.h"
#include "eal_memalloc.h"
#include "malloc_elem.h"
#include "malloc_heap.h"
size_t
malloc_elem_find_max_iova_contig(struct malloc_elem *elem, size_t align)
{
void *cur_page, *contig_seg_start, *page_end, *cur_seg_end;
void *data_start, *data_end;
rte_iova_t expected_iova;
struct rte_memseg *ms;
size_t page_sz, cur, max;
page_sz = (size_t)elem->msl->page_sz;
data_start = RTE_PTR_ADD(elem, MALLOC_ELEM_HEADER_LEN);
data_end = RTE_PTR_ADD(elem, elem->size - MALLOC_ELEM_TRAILER_LEN);
/* segment must start after header and with specified alignment */
contig_seg_start = RTE_PTR_ALIGN_CEIL(data_start, align);
/* if we're in IOVA as VA mode, or if we're in legacy mode with
* hugepages, all elements are IOVA-contiguous. however, we can only
* make these assumptions about internal memory - externally allocated
* segments have to be checked.
*/
if (!elem->msl->external &&
(rte_eal_iova_mode() == RTE_IOVA_VA ||
(internal_config.legacy_mem &&
rte_eal_has_hugepages())))
return RTE_PTR_DIFF(data_end, contig_seg_start);
cur_page = RTE_PTR_ALIGN_FLOOR(contig_seg_start, page_sz);
ms = rte_mem_virt2memseg(cur_page, elem->msl);
/* do first iteration outside the loop */
page_end = RTE_PTR_ADD(cur_page, page_sz);
cur_seg_end = RTE_MIN(page_end, data_end);
cur = RTE_PTR_DIFF(cur_seg_end, contig_seg_start) -
MALLOC_ELEM_TRAILER_LEN;
max = cur;
expected_iova = ms->iova + page_sz;
/* memsegs are contiguous in memory */
ms++;
cur_page = RTE_PTR_ADD(cur_page, page_sz);
while (cur_page < data_end) {
page_end = RTE_PTR_ADD(cur_page, page_sz);
cur_seg_end = RTE_MIN(page_end, data_end);
/* reset start of contiguous segment if unexpected iova */
if (ms->iova != expected_iova) {
/* next contiguous segment must start at specified
* alignment.
*/
contig_seg_start = RTE_PTR_ALIGN(cur_page, align);
/* new segment start may be on a different page, so find
* the page and skip to next iteration to make sure
* we're not blowing past data end.
*/
ms = rte_mem_virt2memseg(contig_seg_start, elem->msl);
cur_page = ms->addr;
/* don't trigger another recalculation */
expected_iova = ms->iova;
continue;
}
/* cur_seg_end ends on a page boundary or on data end. if we're
* looking at data end, then malloc trailer is already included
* in the calculations. if we're looking at page end, then we
* know there's more data past this page and thus there's space
* for malloc element trailer, so don't count it here.
*/
cur = RTE_PTR_DIFF(cur_seg_end, contig_seg_start);
/* update max if cur value is bigger */
if (cur > max)
max = cur;
/* move to next page */
cur_page = page_end;
expected_iova = ms->iova + page_sz;
/* memsegs are contiguous in memory */
ms++;
}
return max;
}
/*
* Initialize a general malloc_elem header structure
*/
void
malloc_elem_init(struct malloc_elem *elem, struct malloc_heap *heap,
struct rte_memseg_list *msl, size_t size)
{
elem->heap = heap;
elem->msl = msl;
elem->prev = NULL;
elem->next = NULL;
memset(&elem->free_list, 0, sizeof(elem->free_list));
elem->state = ELEM_FREE;
elem->size = size;
elem->pad = 0;
set_header(elem);
set_trailer(elem);
}
void
malloc_elem_insert(struct malloc_elem *elem)
{
struct malloc_elem *prev_elem, *next_elem;
struct malloc_heap *heap = elem->heap;
/* first and last elements must be both NULL or both non-NULL */
if ((heap->first == NULL) != (heap->last == NULL)) {
RTE_LOG(ERR, EAL, "Heap is probably corrupt\n");
return;
}
if (heap->first == NULL && heap->last == NULL) {
/* if empty heap */
heap->first = elem;
heap->last = elem;
prev_elem = NULL;
next_elem = NULL;
} else if (elem < heap->first) {
/* if lower than start */
prev_elem = NULL;
next_elem = heap->first;
heap->first = elem;
} else if (elem > heap->last) {
/* if higher than end */
prev_elem = heap->last;
next_elem = NULL;
heap->last = elem;
} else {
/* the new memory is somewhere inbetween start and end */
uint64_t dist_from_start, dist_from_end;
dist_from_end = RTE_PTR_DIFF(heap->last, elem);
dist_from_start = RTE_PTR_DIFF(elem, heap->first);
/* check which is closer, and find closest list entries */
if (dist_from_start < dist_from_end) {
prev_elem = heap->first;
while (prev_elem->next < elem)
prev_elem = prev_elem->next;
next_elem = prev_elem->next;
} else {
next_elem = heap->last;
while (next_elem->prev > elem)
next_elem = next_elem->prev;
prev_elem = next_elem->prev;
}
}
/* insert new element */
elem->prev = prev_elem;
elem->next = next_elem;
if (prev_elem)
prev_elem->next = elem;
if (next_elem)
next_elem->prev = elem;
}
/*
* Attempt to find enough physically contiguous memory in this block to store
* our data. Assume that element has at least enough space to fit in the data,
* so we just check the page addresses.
*/
static bool
elem_check_phys_contig(const struct rte_memseg_list *msl,
void *start, size_t size)
{
return eal_memalloc_is_contig(msl, start, size);
}
/*
* calculate the starting point of where data of the requested size
* and alignment would fit in the current element. If the data doesn't
* fit, return NULL.
*/
static void *
elem_start_pt(struct malloc_elem *elem, size_t size, unsigned align,
size_t bound, bool contig)
{
size_t elem_size = elem->size;
/*
* we're allocating from the end, so adjust the size of element by
* alignment size.
*/
while (elem_size >= size) {
const size_t bmask = ~(bound - 1);
uintptr_t end_pt = (uintptr_t)elem +
elem_size - MALLOC_ELEM_TRAILER_LEN;
uintptr_t new_data_start = RTE_ALIGN_FLOOR((end_pt - size),
align);
uintptr_t new_elem_start;
/* check boundary */
if ((new_data_start & bmask) != ((end_pt - 1) & bmask)) {
end_pt = RTE_ALIGN_FLOOR(end_pt, bound);
new_data_start = RTE_ALIGN_FLOOR((end_pt - size),
align);
end_pt = new_data_start + size;
if (((end_pt - 1) & bmask) != (new_data_start & bmask))
return NULL;
}
new_elem_start = new_data_start - MALLOC_ELEM_HEADER_LEN;
/* if the new start point is before the exist start,
* it won't fit
*/
if (new_elem_start < (uintptr_t)elem)
return NULL;
if (contig) {
size_t new_data_size = end_pt - new_data_start;
/*
* if physical contiguousness was requested and we
* couldn't fit all data into one physically contiguous
* block, try again with lower addresses.
*/
if (!elem_check_phys_contig(elem->msl,
(void *)new_data_start,
new_data_size)) {
elem_size -= align;
continue;
}
}
return (void *)new_elem_start;
}
return NULL;
}
/*
* use elem_start_pt to determine if we get meet the size and
* alignment request from the current element
*/
int
malloc_elem_can_hold(struct malloc_elem *elem, size_t size, unsigned align,
size_t bound, bool contig)
{
return elem_start_pt(elem, size, align, bound, contig) != NULL;
}
/*
* split an existing element into two smaller elements at the given
* split_pt parameter.
*/
static void
split_elem(struct malloc_elem *elem, struct malloc_elem *split_pt)
{
struct malloc_elem *next_elem = elem->next;
const size_t old_elem_size = (uintptr_t)split_pt - (uintptr_t)elem;
const size_t new_elem_size = elem->size - old_elem_size;
malloc_elem_init(split_pt, elem->heap, elem->msl, new_elem_size);
split_pt->prev = elem;
split_pt->next = next_elem;
if (next_elem)
next_elem->prev = split_pt;
else
elem->heap->last = split_pt;
elem->next = split_pt;
elem->size = old_elem_size;
set_trailer(elem);
}
/*
* our malloc heap is a doubly linked list, so doubly remove our element.
*/
static void __rte_unused
remove_elem(struct malloc_elem *elem)
{
struct malloc_elem *next, *prev;
next = elem->next;
prev = elem->prev;
if (next)
next->prev = prev;
else
elem->heap->last = prev;
if (prev)
prev->next = next;
else
elem->heap->first = next;
elem->prev = NULL;
elem->next = NULL;
}
static int
next_elem_is_adjacent(struct malloc_elem *elem)
{
return elem->next == RTE_PTR_ADD(elem, elem->size);
}
static int
prev_elem_is_adjacent(struct malloc_elem *elem)
{
return elem == RTE_PTR_ADD(elem->prev, elem->prev->size);
}
/*
* Given an element size, compute its freelist index.
* We free an element into the freelist containing similarly-sized elements.
* We try to allocate elements starting with the freelist containing
* similarly-sized elements, and if necessary, we search freelists
* containing larger elements.
*
* Example element size ranges for a heap with five free lists:
* heap->free_head[0] - (0 , 2^8]
* heap->free_head[1] - (2^8 , 2^10]
* heap->free_head[2] - (2^10 ,2^12]
* heap->free_head[3] - (2^12, 2^14]
* heap->free_head[4] - (2^14, MAX_SIZE]
*/
size_t
malloc_elem_free_list_index(size_t size)
{
#define MALLOC_MINSIZE_LOG2 8
#define MALLOC_LOG2_INCREMENT 2
size_t log2;
size_t index;
if (size <= (1UL << MALLOC_MINSIZE_LOG2))
return 0;
/* Find next power of 2 >= size. */
log2 = sizeof(size) * 8 - __builtin_clzl(size-1);
/* Compute freelist index, based on log2(size). */
index = (log2 - MALLOC_MINSIZE_LOG2 + MALLOC_LOG2_INCREMENT - 1) /
MALLOC_LOG2_INCREMENT;
return index <= RTE_HEAP_NUM_FREELISTS-1?
index: RTE_HEAP_NUM_FREELISTS-1;
}
/*
* Add the specified element to its heap's free list.
*/
void
malloc_elem_free_list_insert(struct malloc_elem *elem)
{
size_t idx;
idx = malloc_elem_free_list_index(elem->size - MALLOC_ELEM_HEADER_LEN);
elem->state = ELEM_FREE;
LIST_INSERT_HEAD(&elem->heap->free_head[idx], elem, free_list);
}
/*
* Remove the specified element from its heap's free list.
*/
void
malloc_elem_free_list_remove(struct malloc_elem *elem)
{
LIST_REMOVE(elem, free_list);
}
/*
* reserve a block of data in an existing malloc_elem. If the malloc_elem
* is much larger than the data block requested, we split the element in two.
* This function is only called from malloc_heap_alloc so parameter checking
* is not done here, as it's done there previously.
*/
struct malloc_elem *
malloc_elem_alloc(struct malloc_elem *elem, size_t size, unsigned align,
size_t bound, bool contig)
{
struct malloc_elem *new_elem = elem_start_pt(elem, size, align, bound,
contig);
const size_t old_elem_size = (uintptr_t)new_elem - (uintptr_t)elem;
const size_t trailer_size = elem->size - old_elem_size - size -
MALLOC_ELEM_OVERHEAD;
malloc_elem_free_list_remove(elem);
if (trailer_size > MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
/* split it, too much free space after elem */
struct malloc_elem *new_free_elem =
RTE_PTR_ADD(new_elem, size + MALLOC_ELEM_OVERHEAD);
split_elem(elem, new_free_elem);
malloc_elem_free_list_insert(new_free_elem);
if (elem == elem->heap->last)
elem->heap->last = new_free_elem;
}
if (old_elem_size < MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
/* don't split it, pad the element instead */
elem->state = ELEM_BUSY;
elem->pad = old_elem_size;
/* put a dummy header in padding, to point to real element header */
if (elem->pad > 0) { /* pad will be at least 64-bytes, as everything
* is cache-line aligned */
new_elem->pad = elem->pad;
new_elem->state = ELEM_PAD;
new_elem->size = elem->size - elem->pad;
set_header(new_elem);
}
return new_elem;
}
/* we are going to split the element in two. The original element
* remains free, and the new element is the one allocated.
* Re-insert original element, in case its new size makes it
* belong on a different list.
*/
split_elem(elem, new_elem);
new_elem->state = ELEM_BUSY;
malloc_elem_free_list_insert(elem);
return new_elem;
}
/*
* join two struct malloc_elem together. elem1 and elem2 must
* be contiguous in memory.
*/
static inline void
join_elem(struct malloc_elem *elem1, struct malloc_elem *elem2)
{
struct malloc_elem *next = elem2->next;
elem1->size += elem2->size;
if (next)
next->prev = elem1;
else
elem1->heap->last = elem1;
elem1->next = next;
}
struct malloc_elem *
malloc_elem_join_adjacent_free(struct malloc_elem *elem)
{
/*
* check if next element exists, is adjacent and is free, if so join
* with it, need to remove from free list.
*/
if (elem->next != NULL && elem->next->state == ELEM_FREE &&
next_elem_is_adjacent(elem)) {
void *erase;
size_t erase_len;
/* we will want to erase the trailer and header */
erase = RTE_PTR_SUB(elem->next, MALLOC_ELEM_TRAILER_LEN);
erase_len = MALLOC_ELEM_OVERHEAD + elem->next->pad;
/* remove from free list, join to this one */
malloc_elem_free_list_remove(elem->next);
join_elem(elem, elem->next);
/* erase header, trailer and pad */
memset(erase, 0, erase_len);
}
/*
* check if prev element exists, is adjacent and is free, if so join
* with it, need to remove from free list.
*/
if (elem->prev != NULL && elem->prev->state == ELEM_FREE &&
prev_elem_is_adjacent(elem)) {
struct malloc_elem *new_elem;
void *erase;
size_t erase_len;
/* we will want to erase trailer and header */
erase = RTE_PTR_SUB(elem, MALLOC_ELEM_TRAILER_LEN);
erase_len = MALLOC_ELEM_OVERHEAD + elem->pad;
/* remove from free list, join to this one */
malloc_elem_free_list_remove(elem->prev);
new_elem = elem->prev;
join_elem(new_elem, elem);
/* erase header, trailer and pad */
memset(erase, 0, erase_len);
elem = new_elem;
}
return elem;
}
/*
* free a malloc_elem block by adding it to the free list. If the
* blocks either immediately before or immediately after newly freed block
* are also free, the blocks are merged together.
*/
struct malloc_elem *
malloc_elem_free(struct malloc_elem *elem)
{
void *ptr;
size_t data_len;
ptr = RTE_PTR_ADD(elem, MALLOC_ELEM_HEADER_LEN);
data_len = elem->size - MALLOC_ELEM_OVERHEAD;
elem = malloc_elem_join_adjacent_free(elem);
malloc_elem_free_list_insert(elem);
elem->pad = 0;
/* decrease heap's count of allocated elements */
elem->heap->alloc_count--;
memset(ptr, 0, data_len);
return elem;
}
/* assume all checks were already done */
void
malloc_elem_hide_region(struct malloc_elem *elem, void *start, size_t len)
{
struct malloc_elem *hide_start, *hide_end, *prev, *next;
size_t len_before, len_after;
hide_start = start;
hide_end = RTE_PTR_ADD(start, len);
prev = elem->prev;
next = elem->next;
/* we cannot do anything with non-adjacent elements */
if (next && next_elem_is_adjacent(elem)) {
len_after = RTE_PTR_DIFF(next, hide_end);
if (len_after >= MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
/* split after */
split_elem(elem, hide_end);
malloc_elem_free_list_insert(hide_end);
} else if (len_after > 0) {
RTE_LOG(ERR, EAL, "Unaligned element, heap is probably corrupt\n");
return;
}
}
/* we cannot do anything with non-adjacent elements */
if (prev && prev_elem_is_adjacent(elem)) {
len_before = RTE_PTR_DIFF(hide_start, elem);
if (len_before >= MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
/* split before */
split_elem(elem, hide_start);
prev = elem;
elem = hide_start;
malloc_elem_free_list_insert(prev);
} else if (len_before > 0) {
RTE_LOG(ERR, EAL, "Unaligned element, heap is probably corrupt\n");
return;
}
}
remove_elem(elem);
}
/*
* attempt to resize a malloc_elem by expanding into any free space
* immediately after it in memory.
*/
int
malloc_elem_resize(struct malloc_elem *elem, size_t size)
{
const size_t new_size = size + elem->pad + MALLOC_ELEM_OVERHEAD;
/* if we request a smaller size, then always return ok */
if (elem->size >= new_size)
return 0;
/* check if there is a next element, it's free and adjacent */
if (!elem->next || elem->next->state != ELEM_FREE ||
!next_elem_is_adjacent(elem))
return -1;
if (elem->size + elem->next->size < new_size)
return -1;
/* we now know the element fits, so remove from free list,
* join the two
*/
malloc_elem_free_list_remove(elem->next);
join_elem(elem, elem->next);
if (elem->size - new_size >= MIN_DATA_SIZE + MALLOC_ELEM_OVERHEAD) {
/* now we have a big block together. Lets cut it down a bit, by splitting */
struct malloc_elem *split_pt = RTE_PTR_ADD(elem, new_size);
split_pt = RTE_PTR_ALIGN_CEIL(split_pt, RTE_CACHE_LINE_SIZE);
split_elem(elem, split_pt);
malloc_elem_free_list_insert(split_pt);
}
return 0;
}
static inline const char *
elem_state_to_str(enum elem_state state)
{
switch (state) {
case ELEM_PAD:
return "PAD";
case ELEM_BUSY:
return "BUSY";
case ELEM_FREE:
return "FREE";
}
return "ERROR";
}
void
malloc_elem_dump(const struct malloc_elem *elem, FILE *f)
{
fprintf(f, "Malloc element at %p (%s)\n", elem,
elem_state_to_str(elem->state));
fprintf(f, " len: 0x%zx pad: 0x%" PRIx32 "\n", elem->size, elem->pad);
fprintf(f, " prev: %p next: %p\n", elem->prev, elem->next);
}
|