aboutsummaryrefslogtreecommitdiffstats
path: root/lib/librte_eal/common/rte_malloc.c
blob: b51a6d111bdebad22ecc02949e3b2f1b865e12e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2014 Intel Corporation
 */

#include <stdint.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <sys/queue.h>

#include <rte_memcpy.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_branch_prediction.h>
#include <rte_debug.h>
#include <rte_launch.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_common.h>
#include <rte_spinlock.h>

#include <rte_malloc.h>
#include "malloc_elem.h"
#include "malloc_heap.h"


/* Free the memory space back to heap */
void rte_free(void *addr)
{
	if (addr == NULL) return;
	if (malloc_heap_free(malloc_elem_from_data(addr)) < 0)
		RTE_LOG(ERR, EAL, "Error: Invalid memory\n");
}

/*
 * Allocate memory on specified heap.
 */
void *
rte_malloc_socket(const char *type, size_t size, unsigned int align,
		int socket_arg)
{
	/* return NULL if size is 0 or alignment is not power-of-2 */
	if (size == 0 || (align && !rte_is_power_of_2(align)))
		return NULL;

	if (!rte_eal_has_hugepages())
		socket_arg = SOCKET_ID_ANY;

	/* Check socket parameter */
	if (socket_arg >= RTE_MAX_NUMA_NODES)
		return NULL;

	return malloc_heap_alloc(type, size, socket_arg, 0,
			align == 0 ? 1 : align, 0, false);
}

/*
 * Allocate memory on default heap.
 */
void *
rte_malloc(const char *type, size_t size, unsigned align)
{
	return rte_malloc_socket(type, size, align, SOCKET_ID_ANY);
}

/*
 * Allocate zero'd memory on specified heap.
 */
void *
rte_zmalloc_socket(const char *type, size_t size, unsigned align, int socket)
{
	return rte_malloc_socket(type, size, align, socket);
}

/*
 * Allocate zero'd memory on default heap.
 */
void *
rte_zmalloc(const char *type, size_t size, unsigned align)
{
	return rte_zmalloc_socket(type, size, align, SOCKET_ID_ANY);
}

/*
 * Allocate zero'd memory on specified heap.
 */
void *
rte_calloc_socket(const char *type, size_t num, size_t size, unsigned align, int socket)
{
	return rte_zmalloc_socket(type, num * size, align, socket);
}

/*
 * Allocate zero'd memory on default heap.
 */
void *
rte_calloc(const char *type, size_t num, size_t size, unsigned align)
{
	return rte_zmalloc(type, num * size, align);
}

/*
 * Resize allocated memory.
 */
void *
rte_realloc(void *ptr, size_t size, unsigned align)
{
	if (ptr == NULL)
		return rte_malloc(NULL, size, align);

	struct malloc_elem *elem = malloc_elem_from_data(ptr);
	if (elem == NULL) {
		RTE_LOG(ERR, EAL, "Error: memory corruption detected\n");
		return NULL;
	}

	size = RTE_CACHE_LINE_ROUNDUP(size), align = RTE_CACHE_LINE_ROUNDUP(align);
	/* check alignment matches first, and if ok, see if we can resize block */
	if (RTE_PTR_ALIGN(ptr,align) == ptr &&
			malloc_heap_resize(elem, size) == 0)
		return ptr;

	/* either alignment is off, or we have no room to expand,
	 * so move data. */
	void *new_ptr = rte_malloc(NULL, size, align);
	if (new_ptr == NULL)
		return NULL;
	const unsigned old_size = elem->size - MALLOC_ELEM_OVERHEAD;
	rte_memcpy(new_ptr, ptr, old_size < size ? old_size : size);
	rte_free(ptr);

	return new_ptr;
}

int
rte_malloc_validate(const void *ptr, size_t *size)
{
	const struct malloc_elem *elem = malloc_elem_from_data(ptr);
	if (!malloc_elem_cookies_ok(elem))
		return -1;
	if (size != NULL)
		*size = elem->size - elem->pad - MALLOC_ELEM_OVERHEAD;
	return 0;
}

/*
 * Function to retrieve data for heap on given socket
 */
int
rte_malloc_get_socket_stats(int socket,
		struct rte_malloc_socket_stats *socket_stats)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;

	if (socket >= RTE_MAX_NUMA_NODES || socket < 0)
		return -1;

	return malloc_heap_get_stats(&mcfg->malloc_heaps[socket], socket_stats);
}

/*
 * Function to dump contents of all heaps
 */
void __rte_experimental
rte_malloc_dump_heaps(FILE *f)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	unsigned int idx;

	for (idx = 0; idx < rte_socket_count(); idx++) {
		unsigned int socket = rte_socket_id_by_idx(idx);
		fprintf(f, "Heap on socket %i:\n", socket);
		malloc_heap_dump(&mcfg->malloc_heaps[socket], f);
	}

}

/*
 * Print stats on memory type. If type is NULL, info on all types is printed
 */
void
rte_malloc_dump_stats(FILE *f, __rte_unused const char *type)
{
	unsigned int socket;
	struct rte_malloc_socket_stats sock_stats;
	/* Iterate through all initialised heaps */
	for (socket=0; socket< RTE_MAX_NUMA_NODES; socket++) {
		if ((rte_malloc_get_socket_stats(socket, &sock_stats) < 0))
			continue;

		fprintf(f, "Socket:%u\n", socket);
		fprintf(f, "\tHeap_size:%zu,\n", sock_stats.heap_totalsz_bytes);
		fprintf(f, "\tFree_size:%zu,\n", sock_stats.heap_freesz_bytes);
		fprintf(f, "\tAlloc_size:%zu,\n", sock_stats.heap_allocsz_bytes);
		fprintf(f, "\tGreatest_free_size:%zu,\n",
				sock_stats.greatest_free_size);
		fprintf(f, "\tAlloc_count:%u,\n",sock_stats.alloc_count);
		fprintf(f, "\tFree_count:%u,\n", sock_stats.free_count);
	}
	return;
}

/*
 * TODO: Set limit to memory that can be allocated to memory type
 */
int
rte_malloc_set_limit(__rte_unused const char *type,
		__rte_unused size_t max)
{
	return 0;
}

/*
 * Return the IO address of a virtual address obtained through rte_malloc
 */
rte_iova_t
rte_malloc_virt2iova(const void *addr)
{
	const struct rte_memseg *ms;
	struct malloc_elem *elem = malloc_elem_from_data(addr);

	if (elem == NULL)
		return RTE_BAD_IOVA;

	if (rte_eal_iova_mode() == RTE_IOVA_VA)
		return (uintptr_t) addr;

	ms = rte_mem_virt2memseg(addr, elem->msl);
	if (ms == NULL)
		return RTE_BAD_IOVA;

	if (ms->iova == RTE_BAD_IOVA)
		return RTE_BAD_IOVA;

	return ms->iova + RTE_PTR_DIFF(addr, ms->addr);
}