1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
|
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#ifndef _GRO_TCP4_H_
#define _GRO_TCP4_H_
#include <rte_ip.h>
#include <rte_tcp.h>
#define INVALID_ARRAY_INDEX 0xffffffffUL
#define GRO_TCP4_TBL_MAX_ITEM_NUM (1024UL * 1024UL)
/*
* The max length of a IPv4 packet, which includes the length of the L3
* header, the L4 header and the data payload.
*/
#define MAX_IPV4_PKT_LENGTH UINT16_MAX
/* Header fields representing a TCP/IPv4 flow */
struct tcp4_flow_key {
struct ether_addr eth_saddr;
struct ether_addr eth_daddr;
uint32_t ip_src_addr;
uint32_t ip_dst_addr;
uint32_t recv_ack;
uint16_t src_port;
uint16_t dst_port;
};
struct gro_tcp4_flow {
struct tcp4_flow_key key;
/*
* The index of the first packet in the flow.
* INVALID_ARRAY_INDEX indicates an empty flow.
*/
uint32_t start_index;
};
struct gro_tcp4_item {
/*
* The first MBUF segment of the packet. If the value
* is NULL, it means the item is empty.
*/
struct rte_mbuf *firstseg;
/* The last MBUF segment of the packet */
struct rte_mbuf *lastseg;
/*
* The time when the first packet is inserted into the table.
* This value won't be updated, even if the packet is merged
* with other packets.
*/
uint64_t start_time;
/*
* next_pkt_idx is used to chain the packets that
* are in the same flow but can't be merged together
* (e.g. caused by packet reordering).
*/
uint32_t next_pkt_idx;
/* TCP sequence number of the packet */
uint32_t sent_seq;
/* IPv4 ID of the packet */
uint16_t ip_id;
/* the number of merged packets */
uint16_t nb_merged;
/* Indicate if IPv4 ID can be ignored */
uint8_t is_atomic;
};
/*
* TCP/IPv4 reassembly table structure.
*/
struct gro_tcp4_tbl {
/* item array */
struct gro_tcp4_item *items;
/* flow array */
struct gro_tcp4_flow *flows;
/* current item number */
uint32_t item_num;
/* current flow num */
uint32_t flow_num;
/* item array size */
uint32_t max_item_num;
/* flow array size */
uint32_t max_flow_num;
};
/**
* This function creates a TCP/IPv4 reassembly table.
*
* @param socket_id
* Socket index for allocating the TCP/IPv4 reassemble table
* @param max_flow_num
* The maximum number of flows in the TCP/IPv4 GRO table
* @param max_item_per_flow
* The maximum number of packets per flow
*
* @return
* - Return the table pointer on success.
* - Return NULL on failure.
*/
void *gro_tcp4_tbl_create(uint16_t socket_id,
uint16_t max_flow_num,
uint16_t max_item_per_flow);
/**
* This function destroys a TCP/IPv4 reassembly table.
*
* @param tbl
* Pointer pointing to the TCP/IPv4 reassembly table.
*/
void gro_tcp4_tbl_destroy(void *tbl);
/**
* This function merges a TCP/IPv4 packet. It doesn't process the packet,
* which has SYN, FIN, RST, PSH, CWR, ECE or URG set, or doesn't have
* payload.
*
* This function doesn't check if the packet has correct checksums and
* doesn't re-calculate checksums for the merged packet. Additionally,
* it assumes the packets are complete (i.e., MF==0 && frag_off==0),
* when IP fragmentation is possible (i.e., DF==0). It returns the
* packet, if the packet has invalid parameters (e.g. SYN bit is set)
* or there is no available space in the table.
*
* @param pkt
* Packet to reassemble
* @param tbl
* Pointer pointing to the TCP/IPv4 reassembly table
* @start_time
* The time when the packet is inserted into the table
*
* @return
* - Return a positive value if the packet is merged.
* - Return zero if the packet isn't merged but stored in the table.
* - Return a negative value for invalid parameters or no available
* space in the table.
*/
int32_t gro_tcp4_reassemble(struct rte_mbuf *pkt,
struct gro_tcp4_tbl *tbl,
uint64_t start_time);
/**
* This function flushes timeout packets in a TCP/IPv4 reassembly table,
* and without updating checksums.
*
* @param tbl
* TCP/IPv4 reassembly table pointer
* @param flush_timestamp
* Flush packets which are inserted into the table before or at the
* flush_timestamp.
* @param out
* Pointer array used to keep flushed packets
* @param nb_out
* The element number in 'out'. It also determines the maximum number of
* packets that can be flushed finally.
*
* @return
* The number of flushed packets
*/
uint16_t gro_tcp4_tbl_timeout_flush(struct gro_tcp4_tbl *tbl,
uint64_t flush_timestamp,
struct rte_mbuf **out,
uint16_t nb_out);
/**
* This function returns the number of the packets in a TCP/IPv4
* reassembly table.
*
* @param tbl
* TCP/IPv4 reassembly table pointer
*
* @return
* The number of packets in the table
*/
uint32_t gro_tcp4_tbl_pkt_count(void *tbl);
/*
* Check if two TCP/IPv4 packets belong to the same flow.
*/
static inline int
is_same_tcp4_flow(struct tcp4_flow_key k1, struct tcp4_flow_key k2)
{
return (is_same_ether_addr(&k1.eth_saddr, &k2.eth_saddr) &&
is_same_ether_addr(&k1.eth_daddr, &k2.eth_daddr) &&
(k1.ip_src_addr == k2.ip_src_addr) &&
(k1.ip_dst_addr == k2.ip_dst_addr) &&
(k1.recv_ack == k2.recv_ack) &&
(k1.src_port == k2.src_port) &&
(k1.dst_port == k2.dst_port));
}
/*
* Merge two TCP/IPv4 packets without updating checksums.
* If cmp is larger than 0, append the new packet to the
* original packet. Otherwise, pre-pend the new packet to
* the original packet.
*/
static inline int
merge_two_tcp4_packets(struct gro_tcp4_item *item,
struct rte_mbuf *pkt,
int cmp,
uint32_t sent_seq,
uint16_t ip_id,
uint16_t l2_offset)
{
struct rte_mbuf *pkt_head, *pkt_tail, *lastseg;
uint16_t hdr_len, l2_len;
if (cmp > 0) {
pkt_head = item->firstseg;
pkt_tail = pkt;
} else {
pkt_head = pkt;
pkt_tail = item->firstseg;
}
/* check if the IPv4 packet length is greater than the max value */
hdr_len = l2_offset + pkt_head->l2_len + pkt_head->l3_len +
pkt_head->l4_len;
l2_len = l2_offset > 0 ? pkt_head->outer_l2_len : pkt_head->l2_len;
if (unlikely(pkt_head->pkt_len - l2_len + pkt_tail->pkt_len -
hdr_len > MAX_IPV4_PKT_LENGTH))
return 0;
/* remove the packet header for the tail packet */
rte_pktmbuf_adj(pkt_tail, hdr_len);
/* chain two packets together */
if (cmp > 0) {
item->lastseg->next = pkt;
item->lastseg = rte_pktmbuf_lastseg(pkt);
/* update IP ID to the larger value */
item->ip_id = ip_id;
} else {
lastseg = rte_pktmbuf_lastseg(pkt);
lastseg->next = item->firstseg;
item->firstseg = pkt;
/* update sent_seq to the smaller value */
item->sent_seq = sent_seq;
item->ip_id = ip_id;
}
item->nb_merged++;
/* update MBUF metadata for the merged packet */
pkt_head->nb_segs += pkt_tail->nb_segs;
pkt_head->pkt_len += pkt_tail->pkt_len;
return 1;
}
/*
* Check if two TCP/IPv4 packets are neighbors.
*/
static inline int
check_seq_option(struct gro_tcp4_item *item,
struct tcp_hdr *tcph,
uint32_t sent_seq,
uint16_t ip_id,
uint16_t tcp_hl,
uint16_t tcp_dl,
uint16_t l2_offset,
uint8_t is_atomic)
{
struct rte_mbuf *pkt_orig = item->firstseg;
struct ipv4_hdr *iph_orig;
struct tcp_hdr *tcph_orig;
uint16_t len, tcp_hl_orig;
iph_orig = (struct ipv4_hdr *)(rte_pktmbuf_mtod(pkt_orig, char *) +
l2_offset + pkt_orig->l2_len);
tcph_orig = (struct tcp_hdr *)((char *)iph_orig + pkt_orig->l3_len);
tcp_hl_orig = pkt_orig->l4_len;
/* Check if TCP option fields equal */
len = RTE_MAX(tcp_hl, tcp_hl_orig) - sizeof(struct tcp_hdr);
if ((tcp_hl != tcp_hl_orig) || ((len > 0) &&
(memcmp(tcph + 1, tcph_orig + 1,
len) != 0)))
return 0;
/* Don't merge packets whose DF bits are different */
if (unlikely(item->is_atomic ^ is_atomic))
return 0;
/* check if the two packets are neighbors */
len = pkt_orig->pkt_len - l2_offset - pkt_orig->l2_len -
pkt_orig->l3_len - tcp_hl_orig;
if ((sent_seq == item->sent_seq + len) && (is_atomic ||
(ip_id == item->ip_id + 1)))
/* append the new packet */
return 1;
else if ((sent_seq + tcp_dl == item->sent_seq) && (is_atomic ||
(ip_id + item->nb_merged == item->ip_id)))
/* pre-pend the new packet */
return -1;
return 0;
}
#endif
|