summaryrefslogtreecommitdiffstats
path: root/lib/librte_hash/rte_cuckoo_hash.c
blob: 7b7d1f85e7a9e6996fa19b67d1334170ed67ec3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <string.h>
#include <stdint.h>
#include <errno.h>
#include <stdio.h>
#include <stdarg.h>
#include <sys/queue.h>

#include <rte_common.h>
#include <rte_memory.h>         /* for definition of RTE_CACHE_LINE_SIZE */
#include <rte_log.h>
#include <rte_memcpy.h>
#include <rte_prefetch.h>
#include <rte_branch_prediction.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_per_lcore.h>
#include <rte_errno.h>
#include <rte_string_fns.h>
#include <rte_cpuflags.h>
#include <rte_log.h>
#include <rte_rwlock.h>
#include <rte_spinlock.h>
#include <rte_ring.h>
#include <rte_compat.h>

#include "rte_hash.h"
#if defined(RTE_ARCH_X86)
#include "rte_cmp_x86.h"
#endif

#if defined(RTE_ARCH_ARM64)
#include "rte_cmp_arm64.h"
#endif

TAILQ_HEAD(rte_hash_list, rte_tailq_entry);

static struct rte_tailq_elem rte_hash_tailq = {
	.name = "RTE_HASH",
};
EAL_REGISTER_TAILQ(rte_hash_tailq)

/* Macro to enable/disable run-time checking of function parameters */
#if defined(RTE_LIBRTE_HASH_DEBUG)
#define RETURN_IF_TRUE(cond, retval) do { \
	if (cond) \
		return retval; \
} while (0)
#else
#define RETURN_IF_TRUE(cond, retval)
#endif

/* Hash function used if none is specified */
#if defined(RTE_MACHINE_CPUFLAG_SSE4_2) || defined(RTE_MACHINE_CPUFLAG_CRC32)
#include <rte_hash_crc.h>
#define DEFAULT_HASH_FUNC       rte_hash_crc
#else
#include <rte_jhash.h>
#define DEFAULT_HASH_FUNC       rte_jhash
#endif

/** Number of items per bucket. */
#define RTE_HASH_BUCKET_ENTRIES		4

#define NULL_SIGNATURE			0

#define KEY_ALIGNMENT			16

#define LCORE_CACHE_SIZE		8

#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
/*
 * All different options to select a key compare function,
 * based on the key size and custom function.
 */
enum cmp_jump_table_case {
	KEY_CUSTOM = 0,
	KEY_16_BYTES,
	KEY_32_BYTES,
	KEY_48_BYTES,
	KEY_64_BYTES,
	KEY_80_BYTES,
	KEY_96_BYTES,
	KEY_112_BYTES,
	KEY_128_BYTES,
	KEY_OTHER_BYTES,
	NUM_KEY_CMP_CASES,
};

/*
 * Table storing all different key compare functions
 * (multi-process supported)
 */
const rte_hash_cmp_eq_t cmp_jump_table[NUM_KEY_CMP_CASES] = {
	NULL,
	rte_hash_k16_cmp_eq,
	rte_hash_k32_cmp_eq,
	rte_hash_k48_cmp_eq,
	rte_hash_k64_cmp_eq,
	rte_hash_k80_cmp_eq,
	rte_hash_k96_cmp_eq,
	rte_hash_k112_cmp_eq,
	rte_hash_k128_cmp_eq,
	memcmp
};
#else
/*
 * All different options to select a key compare function,
 * based on the key size and custom function.
 */
enum cmp_jump_table_case {
	KEY_CUSTOM = 0,
	KEY_OTHER_BYTES,
	NUM_KEY_CMP_CASES,
};

/*
 * Table storing all different key compare functions
 * (multi-process supported)
 */
const rte_hash_cmp_eq_t cmp_jump_table[NUM_KEY_CMP_CASES] = {
	NULL,
	memcmp
};

#endif

struct lcore_cache {
	unsigned len; /**< Cache len */
	void *objs[LCORE_CACHE_SIZE]; /**< Cache objects */
} __rte_cache_aligned;

/** A hash table structure. */
struct rte_hash {
	char name[RTE_HASH_NAMESIZE];   /**< Name of the hash. */
	uint32_t entries;               /**< Total table entries. */
	uint32_t num_buckets;           /**< Number of buckets in table. */
	uint32_t key_len;               /**< Length of hash key. */
	rte_hash_function hash_func;    /**< Function used to calculate hash. */
	uint32_t hash_func_init_val;    /**< Init value used by hash_func. */
	rte_hash_cmp_eq_t rte_hash_custom_cmp_eq;
	/**< Custom function used to compare keys. */
	enum cmp_jump_table_case cmp_jump_table_idx;
	/**< Indicates which compare function to use. */
	uint32_t bucket_bitmask;        /**< Bitmask for getting bucket index
						from hash signature. */
	uint32_t key_entry_size;         /**< Size of each key entry. */

	struct rte_ring *free_slots;    /**< Ring that stores all indexes
						of the free slots in the key table */
	void *key_store;                /**< Table storing all keys and data */
	struct rte_hash_bucket *buckets;	/**< Table with buckets storing all the
							hash values and key indexes
							to the key table*/
	uint8_t hw_trans_mem_support;	/**< Hardware transactional
							memory support */
	struct lcore_cache *local_free_slots;
	/**< Local cache per lcore, storing some indexes of the free slots */
} __rte_cache_aligned;

/* Structure storing both primary and secondary hashes */
struct rte_hash_signatures {
	union {
		struct {
			hash_sig_t current;
			hash_sig_t alt;
		};
		uint64_t sig;
	};
};

/* Structure that stores key-value pair */
struct rte_hash_key {
	union {
		uintptr_t idata;
		void *pdata;
	};
	/* Variable key size */
	char key[0];
} __attribute__((aligned(KEY_ALIGNMENT)));

/** Bucket structure */
struct rte_hash_bucket {
	struct rte_hash_signatures signatures[RTE_HASH_BUCKET_ENTRIES];
	/* Includes dummy key index that always contains index 0 */
	uint32_t key_idx[RTE_HASH_BUCKET_ENTRIES + 1];
	uint8_t flag[RTE_HASH_BUCKET_ENTRIES];
} __rte_cache_aligned;

struct rte_hash *
rte_hash_find_existing(const char *name)
{
	struct rte_hash *h = NULL;
	struct rte_tailq_entry *te;
	struct rte_hash_list *hash_list;

	hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);

	rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK);
	TAILQ_FOREACH(te, hash_list, next) {
		h = (struct rte_hash *) te->data;
		if (strncmp(name, h->name, RTE_HASH_NAMESIZE) == 0)
			break;
	}
	rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK);

	if (te == NULL) {
		rte_errno = ENOENT;
		return NULL;
	}
	return h;
}

void rte_hash_set_cmp_func(struct rte_hash *h, rte_hash_cmp_eq_t func)
{
	h->rte_hash_custom_cmp_eq = func;
}

static inline int
rte_hash_cmp_eq(const void *key1, const void *key2, const struct rte_hash *h)
{
	if (h->cmp_jump_table_idx == KEY_CUSTOM)
		return h->rte_hash_custom_cmp_eq(key1, key2, h->key_len);
	else
		return cmp_jump_table[h->cmp_jump_table_idx](key1, key2, h->key_len);
}

struct rte_hash *
rte_hash_create(const struct rte_hash_parameters *params)
{
	struct rte_hash *h = NULL;
	struct rte_tailq_entry *te = NULL;
	struct rte_hash_list *hash_list;
	struct rte_ring *r = NULL;
	char hash_name[RTE_HASH_NAMESIZE];
	void *k = NULL;
	void *buckets = NULL;
	char ring_name[RTE_RING_NAMESIZE];
	unsigned num_key_slots;
	unsigned hw_trans_mem_support = 0;
	unsigned i;

	hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);

	if (params == NULL) {
		RTE_LOG(ERR, HASH, "rte_hash_create has no parameters\n");
		return NULL;
	}

	/* Check for valid parameters */
	if ((params->entries > RTE_HASH_ENTRIES_MAX) ||
			(params->entries < RTE_HASH_BUCKET_ENTRIES) ||
			!rte_is_power_of_2(RTE_HASH_BUCKET_ENTRIES) ||
			(params->key_len == 0)) {
		rte_errno = EINVAL;
		RTE_LOG(ERR, HASH, "rte_hash_create has invalid parameters\n");
		return NULL;
	}

	/* Check extra flags field to check extra options. */
	if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_TRANS_MEM_SUPPORT)
		hw_trans_mem_support = 1;

	/* Store all keys and leave the first entry as a dummy entry for lookup_bulk */
	if (hw_trans_mem_support)
		/*
		 * Increase number of slots by total number of indices
		 * that can be stored in the lcore caches
		 * except for the first cache
		 */
		num_key_slots = params->entries + (RTE_MAX_LCORE - 1) *
					LCORE_CACHE_SIZE + 1;
	else
		num_key_slots = params->entries + 1;

	snprintf(ring_name, sizeof(ring_name), "HT_%s", params->name);
	r = rte_ring_create(ring_name, rte_align32pow2(num_key_slots),
			params->socket_id, 0);
	if (r == NULL) {
		RTE_LOG(ERR, HASH, "memory allocation failed\n");
		goto err;
	}

	snprintf(hash_name, sizeof(hash_name), "HT_%s", params->name);

	rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);

	/* guarantee there's no existing: this is normally already checked
	 * by ring creation above */
	TAILQ_FOREACH(te, hash_list, next) {
		h = (struct rte_hash *) te->data;
		if (strncmp(params->name, h->name, RTE_HASH_NAMESIZE) == 0)
			break;
	}
	h = NULL;
	if (te != NULL) {
		rte_errno = EEXIST;
		te = NULL;
		goto err_unlock;
	}

	te = rte_zmalloc("HASH_TAILQ_ENTRY", sizeof(*te), 0);
	if (te == NULL) {
		RTE_LOG(ERR, HASH, "tailq entry allocation failed\n");
		goto err_unlock;
	}

	h = (struct rte_hash *)rte_zmalloc_socket(hash_name, sizeof(struct rte_hash),
					RTE_CACHE_LINE_SIZE, params->socket_id);

	if (h == NULL) {
		RTE_LOG(ERR, HASH, "memory allocation failed\n");
		goto err_unlock;
	}

	const uint32_t num_buckets = rte_align32pow2(params->entries)
					/ RTE_HASH_BUCKET_ENTRIES;

	buckets = rte_zmalloc_socket(NULL,
				num_buckets * sizeof(struct rte_hash_bucket),
				RTE_CACHE_LINE_SIZE, params->socket_id);

	if (buckets == NULL) {
		RTE_LOG(ERR, HASH, "memory allocation failed\n");
		goto err_unlock;
	}

	const uint32_t key_entry_size = sizeof(struct rte_hash_key) + params->key_len;
	const uint64_t key_tbl_size = (uint64_t) key_entry_size * num_key_slots;

	k = rte_zmalloc_socket(NULL, key_tbl_size,
			RTE_CACHE_LINE_SIZE, params->socket_id);

	if (k == NULL) {
		RTE_LOG(ERR, HASH, "memory allocation failed\n");
		goto err_unlock;
	}

/*
 * If x86 architecture is used, select appropriate compare function,
 * which may use x86 instrinsics, otherwise use memcmp
 */
#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
	/* Select function to compare keys */
	switch (params->key_len) {
	case 16:
		h->cmp_jump_table_idx = KEY_16_BYTES;
		break;
	case 32:
		h->cmp_jump_table_idx = KEY_32_BYTES;
		break;
	case 48:
		h->cmp_jump_table_idx = KEY_48_BYTES;
		break;
	case 64:
		h->cmp_jump_table_idx = KEY_64_BYTES;
		break;
	case 80:
		h->cmp_jump_table_idx = KEY_80_BYTES;
		break;
	case 96:
		h->cmp_jump_table_idx = KEY_96_BYTES;
		break;
	case 112:
		h->cmp_jump_table_idx = KEY_112_BYTES;
		break;
	case 128:
		h->cmp_jump_table_idx = KEY_128_BYTES;
		break;
	default:
		/* If key is not multiple of 16, use generic memcmp */
		h->cmp_jump_table_idx = KEY_OTHER_BYTES;
	}
#else
	h->cmp_jump_table_idx = KEY_OTHER_BYTES;
#endif

	if (hw_trans_mem_support) {
		h->local_free_slots = rte_zmalloc_socket(NULL,
				sizeof(struct lcore_cache) * RTE_MAX_LCORE,
				RTE_CACHE_LINE_SIZE, params->socket_id);
	}

	/* Setup hash context */
	snprintf(h->name, sizeof(h->name), "%s", params->name);
	h->entries = params->entries;
	h->key_len = params->key_len;
	h->key_entry_size = key_entry_size;
	h->hash_func_init_val = params->hash_func_init_val;

	h->num_buckets = num_buckets;
	h->bucket_bitmask = h->num_buckets - 1;
	h->buckets = buckets;
	h->hash_func = (params->hash_func == NULL) ?
		DEFAULT_HASH_FUNC : params->hash_func;
	h->key_store = k;
	h->free_slots = r;
	h->hw_trans_mem_support = hw_trans_mem_support;

	/* populate the free slots ring. Entry zero is reserved for key misses */
	for (i = 1; i < params->entries + 1; i++)
		rte_ring_sp_enqueue(r, (void *)((uintptr_t) i));

	te->data = (void *) h;
	TAILQ_INSERT_TAIL(hash_list, te, next);
	rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);

	return h;
err_unlock:
	rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
err:
	rte_ring_free(r);
	rte_free(te);
	rte_free(h);
	rte_free(buckets);
	rte_free(k);
	return NULL;
}

void
rte_hash_free(struct rte_hash *h)
{
	struct rte_tailq_entry *te;
	struct rte_hash_list *hash_list;

	if (h == NULL)
		return;

	hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);

	rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);

	/* find out tailq entry */
	TAILQ_FOREACH(te, hash_list, next) {
		if (te->data == (void *) h)
			break;
	}

	if (te == NULL) {
		rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
		return;
	}

	TAILQ_REMOVE(hash_list, te, next);

	rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);

	if (h->hw_trans_mem_support)
		rte_free(h->local_free_slots);

	rte_ring_free(h->free_slots);
	rte_free(h->key_store);
	rte_free(h->buckets);
	rte_free(h);
	rte_free(te);
}

hash_sig_t
rte_hash_hash(const struct rte_hash *h, const void *key)
{
	/* calc hash result by key */
	return h->hash_func(key, h->key_len, h->hash_func_init_val);
}

/* Calc the secondary hash value from the primary hash value of a given key */
static inline hash_sig_t
rte_hash_secondary_hash(const hash_sig_t primary_hash)
{
	static const unsigned all_bits_shift = 12;
	static const unsigned alt_bits_xor = 0x5bd1e995;

	uint32_t tag = primary_hash >> all_bits_shift;

	return primary_hash ^ ((tag + 1) * alt_bits_xor);
}

void
rte_hash_reset(struct rte_hash *h)
{
	void *ptr;
	unsigned i;

	if (h == NULL)
		return;

	memset(h->buckets, 0, h->num_buckets * sizeof(struct rte_hash_bucket));
	memset(h->key_store, 0, h->key_entry_size * (h->entries + 1));

	/* clear the free ring */
	while (rte_ring_dequeue(h->free_slots, &ptr) == 0)
		rte_pause();

	/* Repopulate the free slots ring. Entry zero is reserved for key misses */
	for (i = 1; i < h->entries + 1; i++)
		rte_ring_sp_enqueue(h->free_slots, (void *)((uintptr_t) i));

	if (h->hw_trans_mem_support) {
		/* Reset local caches per lcore */
		for (i = 0; i < RTE_MAX_LCORE; i++)
			h->local_free_slots[i].len = 0;
	}
}

/* Search for an entry that can be pushed to its alternative location */
static inline int
make_space_bucket(const struct rte_hash *h, struct rte_hash_bucket *bkt)
{
	unsigned i, j;
	int ret;
	uint32_t next_bucket_idx;
	struct rte_hash_bucket *next_bkt[RTE_HASH_BUCKET_ENTRIES];

	/*
	 * Push existing item (search for bucket with space in
	 * alternative locations) to its alternative location
	 */
	for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
		/* Search for space in alternative locations */
		next_bucket_idx = bkt->signatures[i].alt & h->bucket_bitmask;
		next_bkt[i] = &h->buckets[next_bucket_idx];
		for (j = 0; j < RTE_HASH_BUCKET_ENTRIES; j++) {
			if (next_bkt[i]->signatures[j].sig == NULL_SIGNATURE)
				break;
		}

		if (j != RTE_HASH_BUCKET_ENTRIES)
			break;
	}

	/* Alternative location has spare room (end of recursive function) */
	if (i != RTE_HASH_BUCKET_ENTRIES) {
		next_bkt[i]->signatures[j].alt = bkt->signatures[i].current;
		next_bkt[i]->signatures[j].current = bkt->signatures[i].alt;
		next_bkt[i]->key_idx[j] = bkt->key_idx[i];
		return i;
	}

	/* Pick entry that has not been pushed yet */
	for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++)
		if (bkt->flag[i] == 0)
			break;

	/* All entries have been pushed, so entry cannot be added */
	if (i == RTE_HASH_BUCKET_ENTRIES)
		return -ENOSPC;

	/* Set flag to indicate that this entry is going to be pushed */
	bkt->flag[i] = 1;
	/* Need room in alternative bucket to insert the pushed entry */
	ret = make_space_bucket(h, next_bkt[i]);
	/*
	 * After recursive function.
	 * Clear flags and insert the pushed entry
	 * in its alternative location if successful,
	 * or return error
	 */
	bkt->flag[i] = 0;
	if (ret >= 0) {
		next_bkt[i]->signatures[ret].alt = bkt->signatures[i].current;
		next_bkt[i]->signatures[ret].current = bkt->signatures[i].alt;
		next_bkt[i]->key_idx[ret] = bkt->key_idx[i];
		return i;
	} else
		return ret;

}

/*
 * Function called to enqueue back an index in the cache/ring,
 * as slot has not being used and it can be used in the
 * next addition attempt.
 */
static inline void
enqueue_slot_back(const struct rte_hash *h,
		struct lcore_cache *cached_free_slots,
		void *slot_id)
{
	if (h->hw_trans_mem_support) {
		cached_free_slots->objs[cached_free_slots->len] = slot_id;
		cached_free_slots->len++;
	} else
		rte_ring_sp_enqueue(h->free_slots, slot_id);
}

static inline int32_t
__rte_hash_add_key_with_hash(const struct rte_hash *h, const void *key,
						hash_sig_t sig, void *data)
{
	hash_sig_t alt_hash;
	uint32_t prim_bucket_idx, sec_bucket_idx;
	unsigned i;
	struct rte_hash_bucket *prim_bkt, *sec_bkt;
	struct rte_hash_key *new_k, *k, *keys = h->key_store;
	void *slot_id = NULL;
	uint32_t new_idx;
	int ret;
	unsigned n_slots;
	unsigned lcore_id;
	struct lcore_cache *cached_free_slots = NULL;

	prim_bucket_idx = sig & h->bucket_bitmask;
	prim_bkt = &h->buckets[prim_bucket_idx];
	rte_prefetch0(prim_bkt);

	alt_hash = rte_hash_secondary_hash(sig);
	sec_bucket_idx = alt_hash & h->bucket_bitmask;
	sec_bkt = &h->buckets[sec_bucket_idx];
	rte_prefetch0(sec_bkt);

	/* Get a new slot for storing the new key */
	if (h->hw_trans_mem_support) {
		lcore_id = rte_lcore_id();
		cached_free_slots = &h->local_free_slots[lcore_id];
		/* Try to get a free slot from the local cache */
		if (cached_free_slots->len == 0) {
			/* Need to get another burst of free slots from global ring */
			n_slots = rte_ring_mc_dequeue_burst(h->free_slots,
					cached_free_slots->objs, LCORE_CACHE_SIZE);
			if (n_slots == 0)
				return -ENOSPC;

			cached_free_slots->len += n_slots;
		}

		/* Get a free slot from the local cache */
		cached_free_slots->len--;
		slot_id = cached_free_slots->objs[cached_free_slots->len];
	} else {
		if (rte_ring_sc_dequeue(h->free_slots, &slot_id) != 0)
			return -ENOSPC;
	}

	new_k = RTE_PTR_ADD(keys, (uintptr_t)slot_id * h->key_entry_size);
	rte_prefetch0(new_k);
	new_idx = (uint32_t)((uintptr_t) slot_id);

	/* Check if key is already inserted in primary location */
	for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
		if (prim_bkt->signatures[i].current == sig &&
				prim_bkt->signatures[i].alt == alt_hash) {
			k = (struct rte_hash_key *) ((char *)keys +
					prim_bkt->key_idx[i] * h->key_entry_size);
			if (rte_hash_cmp_eq(key, k->key, h) == 0) {
				/* Enqueue index of free slot back in the ring. */
				enqueue_slot_back(h, cached_free_slots, slot_id);
				/* Update data */
				k->pdata = data;
				/*
				 * Return index where key is stored,
				 * substracting the first dummy index
				 */
				return prim_bkt->key_idx[i] - 1;
			}
		}
	}

	/* Check if key is already inserted in secondary location */
	for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
		if (sec_bkt->signatures[i].alt == sig &&
				sec_bkt->signatures[i].current == alt_hash) {
			k = (struct rte_hash_key *) ((char *)keys +
					sec_bkt->key_idx[i] * h->key_entry_size);
			if (rte_hash_cmp_eq(key, k->key, h) == 0) {
				/* Enqueue index of free slot back in the ring. */
				enqueue_slot_back(h, cached_free_slots, slot_id);
				/* Update data */
				k->pdata = data;
				/*
				 * Return index where key is stored,
				 * substracting the first dummy index
				 */
				return sec_bkt->key_idx[i] - 1;
			}
		}
	}

	/* Copy key */
	rte_memcpy(new_k->key, key, h->key_len);
	new_k->pdata = data;

	/* Insert new entry is there is room in the primary bucket */
	for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
		/* Check if slot is available */
		if (likely(prim_bkt->signatures[i].sig == NULL_SIGNATURE)) {
			prim_bkt->signatures[i].current = sig;
			prim_bkt->signatures[i].alt = alt_hash;
			prim_bkt->key_idx[i] = new_idx;
			return new_idx - 1;
		}
	}

	/* Primary bucket is full, so we need to make space for new entry */
	ret = make_space_bucket(h, prim_bkt);
	/*
	 * After recursive function.
	 * Insert the new entry in the position of the pushed entry
	 * if successful or return error and
	 * store the new slot back in the ring
	 */
	if (ret >= 0) {
		prim_bkt->signatures[ret].current = sig;
		prim_bkt->signatures[ret].alt = alt_hash;
		prim_bkt->key_idx[ret] = new_idx;
		return new_idx - 1;
	}

	/* Error in addition, store new slot back in the ring and return error */
	enqueue_slot_back(h, cached_free_slots, (void *)((uintptr_t) new_idx));

	return ret;
}

int32_t
rte_hash_add_key_with_hash(const struct rte_hash *h,
			const void *key, hash_sig_t sig)
{
	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
	return __rte_hash_add_key_with_hash(h, key, sig, 0);
}

int32_t
rte_hash_add_key(const struct rte_hash *h, const void *key)
{
	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
	return __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), 0);
}

int
rte_hash_add_key_with_hash_data(const struct rte_hash *h,
			const void *key, hash_sig_t sig, void *data)
{
	int ret;

	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
	ret = __rte_hash_add_key_with_hash(h, key, sig, data);
	if (ret >= 0)
		return 0;
	else
		return ret;
}

int
rte_hash_add_key_data(const struct rte_hash *h, const void *key, void *data)
{
	int ret;

	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);

	ret = __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), data);
	if (ret >= 0)
		return 0;
	else
		return ret;
}
static inline int32_t
__rte_hash_lookup_with_hash(const struct rte_hash *h, const void *key,
					hash_sig_t sig, void **data)
{
	uint32_t bucket_idx;
	hash_sig_t alt_hash;
	unsigned i;
	struct rte_hash_bucket *bkt;
	struct rte_hash_key *k, *keys = h->key_store;

	bucket_idx = sig & h->bucket_bitmask;
	bkt = &h->buckets[bucket_idx];

	/* Check if key is in primary location */
	for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
		if (bkt->signatures[i].current == sig &&
				bkt->signatures[i].sig != NULL_SIGNATURE) {
			k = (struct rte_hash_key *) ((char *)keys +
					bkt->key_idx[i] * h->key_entry_size);
			if (rte_hash_cmp_eq(key, k->key, h) == 0) {
				if (data != NULL)
					*data = k->pdata;
				/*
				 * Return index where key is stored,
				 * substracting the first dummy index
				 */
				return bkt->key_idx[i] - 1;
			}
		}
	}

	/* Calculate secondary hash */
	alt_hash = rte_hash_secondary_hash(sig);
	bucket_idx = alt_hash & h->bucket_bitmask;
	bkt = &h->buckets[bucket_idx];

	/* Check if key is in secondary location */
	for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
		if (bkt->signatures[i].current == alt_hash &&
				bkt->signatures[i].alt == sig) {
			k = (struct rte_hash_key *) ((char *)keys +
					bkt->key_idx[i] * h->key_entry_size);
			if (rte_hash_cmp_eq(key, k->key, h) == 0) {
				if (data != NULL)
					*data = k->pdata;
				/*
				 * Return index where key is stored,
				 * substracting the first dummy index
				 */
				return bkt->key_idx[i] - 1;
			}
		}
	}

	return -ENOENT;
}

int32_t
rte_hash_lookup_with_hash(const struct rte_hash *h,
			const void *key, hash_sig_t sig)
{
	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
	return __rte_hash_lookup_with_hash(h, key, sig, NULL);
}

int32_t
rte_hash_lookup(const struct rte_hash *h, const void *key)
{
	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
	return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), NULL);
}

int
rte_hash_lookup_with_hash_data(const struct rte_hash *h,
			const void *key, hash_sig_t sig, void **data)
{
	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
	return __rte_hash_lookup_with_hash(h, key, sig, data);
}

int
rte_hash_lookup_data(const struct rte_hash *h, const void *key, void **data)
{
	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
	return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), data);
}

static inline void
remove_entry(const struct rte_hash *h, struct rte_hash_bucket *bkt, unsigned i)
{
	unsigned lcore_id, n_slots;
	struct lcore_cache *cached_free_slots;

	bkt->signatures[i].sig = NULL_SIGNATURE;
	if (h->hw_trans_mem_support) {
		lcore_id = rte_lcore_id();
		cached_free_slots = &h->local_free_slots[lcore_id];
		/* Cache full, need to free it. */
		if (cached_free_slots->len == LCORE_CACHE_SIZE) {
			/* Need to enqueue the free slots in global ring. */
			n_slots = rte_ring_mp_enqueue_burst(h->free_slots,
						cached_free_slots->objs,
						LCORE_CACHE_SIZE);
			cached_free_slots->len -= n_slots;
		}
		/* Put index of new free slot in cache. */
		cached_free_slots->objs[cached_free_slots->len] =
				(void *)((uintptr_t)bkt->key_idx[i]);
		cached_free_slots->len++;
	} else {
		rte_ring_sp_enqueue(h->free_slots,
				(void *)((uintptr_t)bkt->key_idx[i]));
	}
}

static inline int32_t
__rte_hash_del_key_with_hash(const struct rte_hash *h, const void *key,
						hash_sig_t sig)
{
	uint32_t bucket_idx;
	hash_sig_t alt_hash;
	unsigned i;
	struct rte_hash_bucket *bkt;
	struct rte_hash_key *k, *keys = h->key_store;

	bucket_idx = sig & h->bucket_bitmask;
	bkt = &h->buckets[bucket_idx];

	/* Check if key is in primary location */
	for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
		if (bkt->signatures[i].current == sig &&
				bkt->signatures[i].sig != NULL_SIGNATURE) {
			k = (struct rte_hash_key *) ((char *)keys +
					bkt->key_idx[i] * h->key_entry_size);
			if (rte_hash_cmp_eq(key, k->key, h) == 0) {
				remove_entry(h, bkt, i);

				/*
				 * Return index where key is stored,
				 * substracting the first dummy index
				 */
				return bkt->key_idx[i] - 1;
			}
		}
	}

	/* Calculate secondary hash */
	alt_hash = rte_hash_secondary_hash(sig);
	bucket_idx = alt_hash & h->bucket_bitmask;
	bkt = &h->buckets[bucket_idx];

	/* Check if key is in secondary location */
	for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
		if (bkt->signatures[i].current == alt_hash &&
				bkt->signatures[i].sig != NULL_SIGNATURE) {
			k = (struct rte_hash_key *) ((char *)keys +
					bkt->key_idx[i] * h->key_entry_size);
			if (rte_hash_cmp_eq(key, k->key, h) == 0) {
				remove_entry(h, bkt, i);

				/*
				 * Return index where key is stored,
				 * substracting the first dummy index
				 */
				return bkt->key_idx[i] - 1;
			}
		}
	}

	return -ENOENT;
}

int32_t
rte_hash_del_key_with_hash(const struct rte_hash *h,
			const void *key, hash_sig_t sig)
{
	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
	return __rte_hash_del_key_with_hash(h, key, sig);
}

int32_t
rte_hash_del_key(const struct rte_hash *h, const void *key)
{
	RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
	return __rte_hash_del_key_with_hash(h, key, rte_hash_hash(h, key));
}

/* Lookup bulk stage 0: Prefetch input key */
static inline void
lookup_stage0(unsigned *idx, uint64_t *lookup_mask,
		const void * const *keys)
{
	*idx = __builtin_ctzl(*lookup_mask);
	if (*lookup_mask == 0)
		*idx = 0;

	rte_prefetch0(keys[*idx]);
	*lookup_mask &= ~(1llu << *idx);
}

/*
 * Lookup bulk stage 1: Calculate primary/secondary hashes
 * and prefetch primary/secondary buckets
 */
static inline void
lookup_stage1(unsigned idx, hash_sig_t *prim_hash, hash_sig_t *sec_hash,
		const struct rte_hash_bucket **primary_bkt,
		const struct rte_hash_bucket **secondary_bkt,
		hash_sig_t *hash_vals, const void * const *keys,
		const struct rte_hash *h)
{
	*prim_hash = rte_hash_hash(h, keys[idx]);
	hash_vals[idx] = *prim_hash;
	*sec_hash = rte_hash_secondary_hash(*prim_hash);

	*primary_bkt = &h->buckets[*prim_hash & h->bucket_bitmask];
	*secondary_bkt = &h->buckets[*sec_hash & h->bucket_bitmask];

	rte_prefetch0(*primary_bkt);
	rte_prefetch0(*secondary_bkt);
}

/*
 * Lookup bulk stage 2:  Search for match hashes in primary/secondary locations
 * and prefetch first key slot
 */
static inline void
lookup_stage2(unsigned idx, hash_sig_t prim_hash, hash_sig_t sec_hash,
		const struct rte_hash_bucket *prim_bkt,
		const struct rte_hash_bucket *sec_bkt,
		const struct rte_hash_key **key_slot, int32_t *positions,
		uint64_t *extra_hits_mask, const void *keys,
		const struct rte_hash *h)
{
	unsigned prim_hash_matches, sec_hash_matches, key_idx, i;
	unsigned total_hash_matches;

	prim_hash_matches = 1 << RTE_HASH_BUCKET_ENTRIES;
	sec_hash_matches = 1 << RTE_HASH_BUCKET_ENTRIES;
	for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
		prim_hash_matches |= ((prim_hash == prim_bkt->signatures[i].current) << i);
		sec_hash_matches |= ((sec_hash == sec_bkt->signatures[i].current) << i);
	}

	key_idx = prim_bkt->key_idx[__builtin_ctzl(prim_hash_matches)];
	if (key_idx == 0)
		key_idx = sec_bkt->key_idx[__builtin_ctzl(sec_hash_matches)];

	total_hash_matches = (prim_hash_matches |
				(sec_hash_matches << (RTE_HASH_BUCKET_ENTRIES + 1)));
	*key_slot = (const struct rte_hash_key *) ((const char *)keys +
					key_idx * h->key_entry_size);

	rte_prefetch0(*key_slot);
	/*
	 * Return index where key is stored,
	 * substracting the first dummy index
	 */
	positions[idx] = (key_idx - 1);

	*extra_hits_mask |= (uint64_t)(__builtin_popcount(total_hash_matches) > 3) << idx;

}


/* Lookup bulk stage 3: Check if key matches, update hit mask and return data */
static inline void
lookup_stage3(unsigned idx, const struct rte_hash_key *key_slot, const void * const *keys,
		const int32_t *positions, void *data[], uint64_t *hits,
		const struct rte_hash *h)
{
	unsigned hit;
	unsigned key_idx;

	hit = !rte_hash_cmp_eq(key_slot->key, keys[idx], h);
	if (data != NULL)
		data[idx] = key_slot->pdata;

	key_idx = positions[idx] + 1;
	/*
	 * If key index is 0, force hit to be 0, in case key to be looked up
	 * is all zero (as in the dummy slot), which would result in a wrong hit
	 */
	*hits |= (uint64_t)(hit && !!key_idx)  << idx;
}

static inline void
__rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
			uint32_t num_keys, int32_t *positions,
			uint64_t *hit_mask, void *data[])
{
	uint64_t hits = 0;
	uint64_t extra_hits_mask = 0;
	uint64_t lookup_mask, miss_mask;
	unsigned idx;
	const void *key_store = h->key_store;
	int ret;
	hash_sig_t hash_vals[RTE_HASH_LOOKUP_BULK_MAX];

	unsigned idx00, idx01, idx10, idx11, idx20, idx21, idx30, idx31;
	const struct rte_hash_bucket *primary_bkt10, *primary_bkt11;
	const struct rte_hash_bucket *secondary_bkt10, *secondary_bkt11;
	const struct rte_hash_bucket *primary_bkt20, *primary_bkt21;
	const struct rte_hash_bucket *secondary_bkt20, *secondary_bkt21;
	const struct rte_hash_key *k_slot20, *k_slot21, *k_slot30, *k_slot31;
	hash_sig_t primary_hash10, primary_hash11;
	hash_sig_t secondary_hash10, secondary_hash11;
	hash_sig_t primary_hash20, primary_hash21;
	hash_sig_t secondary_hash20, secondary_hash21;

	lookup_mask = (uint64_t) -1 >> (64 - num_keys);
	miss_mask = lookup_mask;

	lookup_stage0(&idx00, &lookup_mask, keys);
	lookup_stage0(&idx01, &lookup_mask, keys);

	idx10 = idx00, idx11 = idx01;

	lookup_stage0(&idx00, &lookup_mask, keys);
	lookup_stage0(&idx01, &lookup_mask, keys);
	lookup_stage1(idx10, &primary_hash10, &secondary_hash10,
			&primary_bkt10, &secondary_bkt10, hash_vals, keys, h);
	lookup_stage1(idx11, &primary_hash11, &secondary_hash11,
			&primary_bkt11,	&secondary_bkt11, hash_vals, keys, h);

	primary_bkt20 = primary_bkt10;
	primary_bkt21 = primary_bkt11;
	secondary_bkt20 = secondary_bkt10;
	secondary_bkt21 = secondary_bkt11;
	primary_hash20 = primary_hash10;
	primary_hash21 = primary_hash11;
	secondary_hash20 = secondary_hash10;
	secondary_hash21 = secondary_hash11;
	idx20 = idx10, idx21 = idx11;
	idx10 = idx00, idx11 = idx01;

	lookup_stage0(&idx00, &lookup_mask, keys);
	lookup_stage0(&idx01, &lookup_mask, keys);
	lookup_stage1(idx10, &primary_hash10, &secondary_hash10,
			&primary_bkt10, &secondary_bkt10, hash_vals, keys, h);
	lookup_stage1(idx11, &primary_hash11, &secondary_hash11,
			&primary_bkt11,	&secondary_bkt11, hash_vals, keys, h);
	lookup_stage2(idx20, primary_hash20, secondary_hash20, primary_bkt20,
			secondary_bkt20, &k_slot20, positions, &extra_hits_mask,
			key_store, h);
	lookup_stage2(idx21, primary_hash21, secondary_hash21, primary_bkt21,
			secondary_bkt21, &k_slot21, positions, &extra_hits_mask,
			key_store, h);

	while (lookup_mask) {
		k_slot30 = k_slot20, k_slot31 = k_slot21;
		idx30 = idx20, idx31 = idx21;
		primary_bkt20 = primary_bkt10;
		primary_bkt21 = primary_bkt11;
		secondary_bkt20 = secondary_bkt10;
		secondary_bkt21 = secondary_bkt11;
		primary_hash20 = primary_hash10;
		primary_hash21 = primary_hash11;
		secondary_hash20 = secondary_hash10;
		secondary_hash21 = secondary_hash11;
		idx20 = idx10, idx21 = idx11;
		idx10 = idx00, idx11 = idx01;

		lookup_stage0(&idx00, &lookup_mask, keys);
		lookup_stage0(&idx01, &lookup_mask, keys);
		lookup_stage1(idx10, &primary_hash10, &secondary_hash10,
			&primary_bkt10, &secondary_bkt10, hash_vals, keys, h);
		lookup_stage1(idx11, &primary_hash11, &secondary_hash11,
			&primary_bkt11,	&secondary_bkt11, hash_vals, keys, h);
		lookup_stage2(idx20, primary_hash20, secondary_hash20,
			primary_bkt20, secondary_bkt20, &k_slot20, positions,
			&extra_hits_mask, key_store, h);
		lookup_stage2(idx21, primary_hash21, secondary_hash21,
			primary_bkt21, secondary_bkt21,	&k_slot21, positions,
			&extra_hits_mask, key_store, h);
		lookup_stage3(idx30, k_slot30, keys, positions, data, &hits, h);
		lookup_stage3(idx31, k_slot31, keys, positions, data, &hits, h);
	}

	k_slot30 = k_slot20, k_slot31 = k_slot21;
	idx30 = idx20, idx31 = idx21;
	primary_bkt20 = primary_bkt10;
	primary_bkt21 = primary_bkt11;
	secondary_bkt20 = secondary_bkt10;
	secondary_bkt21 = secondary_bkt11;
	primary_hash20 = primary_hash10;
	primary_hash21 = primary_hash11;
	secondary_hash20 = secondary_hash10;
	secondary_hash21 = secondary_hash11;
	idx20 = idx10, idx21 = idx11;
	idx10 = idx00, idx11 = idx01;

	lookup_stage1(idx10, &primary_hash10, &secondary_hash10,
		&primary_bkt10, &secondary_bkt10, hash_vals, keys, h);
	lookup_stage1(idx11, &primary_hash11, &secondary_hash11,
		&primary_bkt11,	&secondary_bkt11, hash_vals, keys, h);
	lookup_stage2(idx20, primary_hash20, secondary_hash20, primary_bkt20,
		secondary_bkt20, &k_slot20, positions, &extra_hits_mask,
		key_store, h);
	lookup_stage2(idx21, primary_hash21, secondary_hash21, primary_bkt21,
		secondary_bkt21, &k_slot21, positions, &extra_hits_mask,
		key_store, h);
	lookup_stage3(idx30, k_slot30, keys, positions, data, &hits, h);
	lookup_stage3(idx31, k_slot31, keys, positions, data, &hits, h);

	k_slot30 = k_slot20, k_slot31 = k_slot21;
	idx30 = idx20, idx31 = idx21;
	primary_bkt20 = primary_bkt10;
	primary_bkt21 = primary_bkt11;
	secondary_bkt20 = secondary_bkt10;
	secondary_bkt21 = secondary_bkt11;
	primary_hash20 = primary_hash10;
	primary_hash21 = primary_hash11;
	secondary_hash20 = secondary_hash10;
	secondary_hash21 = secondary_hash11;
	idx20 = idx10, idx21 = idx11;

	lookup_stage2(idx20, primary_hash20, secondary_hash20, primary_bkt20,
		secondary_bkt20, &k_slot20, positions, &extra_hits_mask,
		key_store, h);
	lookup_stage2(idx21, primary_hash21, secondary_hash21, primary_bkt21,
		secondary_bkt21, &k_slot21, positions, &extra_hits_mask,
		key_store, h);
	lookup_stage3(idx30, k_slot30, keys, positions, data, &hits, h);
	lookup_stage3(idx31, k_slot31, keys, positions, data, &hits, h);

	k_slot30 = k_slot20, k_slot31 = k_slot21;
	idx30 = idx20, idx31 = idx21;

	lookup_stage3(idx30, k_slot30, keys, positions, data, &hits, h);
	lookup_stage3(idx31, k_slot31, keys, positions, data, &hits, h);

	/* ignore any items we have already found */
	extra_hits_mask &= ~hits;

	if (unlikely(extra_hits_mask)) {
		/* run a single search for each remaining item */
		do {
			idx = __builtin_ctzl(extra_hits_mask);
			if (data != NULL) {
				ret = rte_hash_lookup_with_hash_data(h,
						keys[idx], hash_vals[idx], &data[idx]);
				if (ret >= 0)
					hits |= 1ULL << idx;
			} else {
				positions[idx] = rte_hash_lookup_with_hash(h,
							keys[idx], hash_vals[idx]);
				if (positions[idx] >= 0)
					hits |= 1llu << idx;
			}
			extra_hits_mask &= ~(1llu << idx);
		} while (extra_hits_mask);
	}

	miss_mask &= ~hits;
	if (unlikely(miss_mask)) {
		do {
			idx = __builtin_ctzl(miss_mask);
			positions[idx] = -ENOENT;
			miss_mask &= ~(1llu << idx);
		} while (miss_mask);
	}

	if (hit_mask != NULL)
		*hit_mask = hits;
}

int
rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
		      uint32_t num_keys, int32_t *positions)
{
	RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
			(num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
			(positions == NULL)), -EINVAL);

	__rte_hash_lookup_bulk(h, keys, num_keys, positions, NULL, NULL);
	return 0;
}

int
rte_hash_lookup_bulk_data(const struct rte_hash *h, const void **keys,
		      uint32_t num_keys, uint64_t *hit_mask, void *data[])
{
	RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
			(num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
			(hit_mask == NULL)), -EINVAL);

	int32_t positions[num_keys];

	__rte_hash_lookup_bulk(h, keys, num_keys, positions, hit_mask, data);

	/* Return number of hits */
	return __builtin_popcountl(*hit_mask);
}

int32_t
rte_hash_iterate(const struct rte_hash *h, const void **key, void **data, uint32_t *next)
{
	uint32_t bucket_idx, idx, position;
	struct rte_hash_key *next_key;

	RETURN_IF_TRUE(((h == NULL) || (next == NULL)), -EINVAL);

	const uint32_t total_entries = h->num_buckets * RTE_HASH_BUCKET_ENTRIES;
	/* Out of bounds */
	if (*next >= total_entries)
		return -ENOENT;

	/* Calculate bucket and index of current iterator */
	bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
	idx = *next % RTE_HASH_BUCKET_ENTRIES;

	/* If current position is empty, go to the next one */
	while (h->buckets[bucket_idx].signatures[idx].sig == NULL_SIGNATURE) {
		(*next)++;
		/* End of table */
		if (*next == total_entries)
			return -ENOENT;
		bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
		idx = *next % RTE_HASH_BUCKET_ENTRIES;
	}

	/* Get position of entry in key table */
	position = h->buckets[bucket_idx].key_idx[idx];
	next_key = (struct rte_hash_key *) ((char *)h->key_store +
				position * h->key_entry_size);
	/* Return key and data */
	*key = next_key->key;
	*data = next_key->pdata;

	/* Increment iterator */
	(*next)++;

	return position - 1;
}