aboutsummaryrefslogtreecommitdiffstats
path: root/lib/librte_ip_frag/rte_ipv6_fragmentation.c
blob: 62a7e4e830285c33ccb46cdf54900009dfe0b43d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2014 Intel Corporation
 */

#include <stddef.h>
#include <errno.h>

#include <rte_memcpy.h>

#include "ip_frag_common.h"

/**
 * @file
 * RTE IPv6 Fragmentation
 *
 * Implementation of IPv6 fragmentation.
 *
 */

static inline void
__fill_ipv6hdr_frag(struct ipv6_hdr *dst,
		const struct ipv6_hdr *src, uint16_t len, uint16_t fofs,
		uint32_t mf)
{
	struct ipv6_extension_fragment *fh;

	rte_memcpy(dst, src, sizeof(*dst));
	dst->payload_len = rte_cpu_to_be_16(len);
	dst->proto = IPPROTO_FRAGMENT;

	fh = (struct ipv6_extension_fragment *) ++dst;
	fh->next_header = src->proto;
	fh->reserved = 0;
	fh->frag_data = rte_cpu_to_be_16(RTE_IPV6_SET_FRAG_DATA(fofs, mf));
	fh->id = 0;
}

static inline void
__free_fragments(struct rte_mbuf *mb[], uint32_t num)
{
	uint32_t i;
	for (i = 0; i < num; i++)
		rte_pktmbuf_free(mb[i]);
}

/**
 * IPv6 fragmentation.
 *
 * This function implements the fragmentation of IPv6 packets.
 *
 * @param pkt_in
 *   The input packet.
 * @param pkts_out
 *   Array storing the output fragments.
 * @param mtu_size
 *   Size in bytes of the Maximum Transfer Unit (MTU) for the outgoing IPv6
 *   datagrams. This value includes the size of the IPv6 header.
 * @param pool_direct
 *   MBUF pool used for allocating direct buffers for the output fragments.
 * @param pool_indirect
 *   MBUF pool used for allocating indirect buffers for the output fragments.
 * @return
 *   Upon successful completion - number of output fragments placed
 *   in the pkts_out array.
 *   Otherwise - (-1) * <errno>.
 */
int32_t
rte_ipv6_fragment_packet(struct rte_mbuf *pkt_in,
	struct rte_mbuf **pkts_out,
	uint16_t nb_pkts_out,
	uint16_t mtu_size,
	struct rte_mempool *pool_direct,
	struct rte_mempool *pool_indirect)
{
	struct rte_mbuf *in_seg = NULL;
	struct ipv6_hdr *in_hdr;
	uint32_t out_pkt_pos, in_seg_data_pos;
	uint32_t more_in_segs;
	uint16_t fragment_offset, frag_size;

	frag_size = (uint16_t)(mtu_size - sizeof(struct ipv6_hdr));

	/* Fragment size should be a multiple of 8. */
	RTE_ASSERT((frag_size & ~RTE_IPV6_EHDR_FO_MASK) == 0);

	/* Check that pkts_out is big enough to hold all fragments */
	if (unlikely (frag_size * nb_pkts_out <
	    (uint16_t)(pkt_in->pkt_len - sizeof (struct ipv6_hdr))))
		return -EINVAL;

	in_hdr = rte_pktmbuf_mtod(pkt_in, struct ipv6_hdr *);

	in_seg = pkt_in;
	in_seg_data_pos = sizeof(struct ipv6_hdr);
	out_pkt_pos = 0;
	fragment_offset = 0;

	more_in_segs = 1;
	while (likely(more_in_segs)) {
		struct rte_mbuf *out_pkt = NULL, *out_seg_prev = NULL;
		uint32_t more_out_segs;
		struct ipv6_hdr *out_hdr;

		/* Allocate direct buffer */
		out_pkt = rte_pktmbuf_alloc(pool_direct);
		if (unlikely(out_pkt == NULL)) {
			__free_fragments(pkts_out, out_pkt_pos);
			return -ENOMEM;
		}

		/* Reserve space for the IP header that will be built later */
		out_pkt->data_len = sizeof(struct ipv6_hdr) + sizeof(struct ipv6_extension_fragment);
		out_pkt->pkt_len  = sizeof(struct ipv6_hdr) + sizeof(struct ipv6_extension_fragment);

		out_seg_prev = out_pkt;
		more_out_segs = 1;
		while (likely(more_out_segs && more_in_segs)) {
			struct rte_mbuf *out_seg = NULL;
			uint32_t len;

			/* Allocate indirect buffer */
			out_seg = rte_pktmbuf_alloc(pool_indirect);
			if (unlikely(out_seg == NULL)) {
				rte_pktmbuf_free(out_pkt);
				__free_fragments(pkts_out, out_pkt_pos);
				return -ENOMEM;
			}
			out_seg_prev->next = out_seg;
			out_seg_prev = out_seg;

			/* Prepare indirect buffer */
			rte_pktmbuf_attach(out_seg, in_seg);
			len = mtu_size - out_pkt->pkt_len;
			if (len > (in_seg->data_len - in_seg_data_pos)) {
				len = in_seg->data_len - in_seg_data_pos;
			}
			out_seg->data_off = in_seg->data_off + in_seg_data_pos;
			out_seg->data_len = (uint16_t)len;
			out_pkt->pkt_len = (uint16_t)(len +
			    out_pkt->pkt_len);
			out_pkt->nb_segs += 1;
			in_seg_data_pos += len;

			/* Current output packet (i.e. fragment) done ? */
			if (unlikely(out_pkt->pkt_len >= mtu_size)) {
				more_out_segs = 0;
			}

			/* Current input segment done ? */
			if (unlikely(in_seg_data_pos == in_seg->data_len)) {
				in_seg = in_seg->next;
				in_seg_data_pos = 0;

				if (unlikely(in_seg == NULL)) {
					more_in_segs = 0;
				}
			}
		}

		/* Build the IP header */

		out_hdr = rte_pktmbuf_mtod(out_pkt, struct ipv6_hdr *);

		__fill_ipv6hdr_frag(out_hdr, in_hdr,
		    (uint16_t) out_pkt->pkt_len - sizeof(struct ipv6_hdr),
		    fragment_offset, more_in_segs);

		fragment_offset = (uint16_t)(fragment_offset +
		    out_pkt->pkt_len - sizeof(struct ipv6_hdr)
			- sizeof(struct ipv6_extension_fragment));

		/* Write the fragment to the output list */
		pkts_out[out_pkt_pos] = out_pkt;
		out_pkt_pos ++;
	}

	return out_pkt_pos;
}