aboutsummaryrefslogtreecommitdiffstats
path: root/lib/librte_member/rte_member_ht.c
blob: 59332d56c2bff6a3d94ec9da06b020a4c01ee0a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2017 Intel Corporation. All rights reserved.
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <rte_errno.h>
#include <rte_malloc.h>
#include <rte_prefetch.h>
#include <rte_random.h>
#include <rte_log.h>

#include "rte_member.h"
#include "rte_member_ht.h"

#if defined(RTE_ARCH_X86)
#include "rte_member_x86.h"
#endif

/* Search bucket for entry with tmp_sig and update set_id */
static inline int
update_entry_search(uint32_t bucket_id, member_sig_t tmp_sig,
		struct member_ht_bucket *buckets,
		member_set_t set_id)
{
	uint32_t i;

	for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++) {
		if (buckets[bucket_id].sigs[i] == tmp_sig) {
			buckets[bucket_id].sets[i] = set_id;
			return 1;
		}
	}
	return 0;
}

static inline int
search_bucket_single(uint32_t bucket_id, member_sig_t tmp_sig,
		struct member_ht_bucket *buckets,
		member_set_t *set_id)
{
	uint32_t iter;

	for (iter = 0; iter < RTE_MEMBER_BUCKET_ENTRIES; iter++) {
		if (tmp_sig == buckets[bucket_id].sigs[iter] &&
				buckets[bucket_id].sets[iter] !=
				RTE_MEMBER_NO_MATCH) {
			*set_id = buckets[bucket_id].sets[iter];
			return 1;
		}
	}
	return 0;
}

static inline void
search_bucket_multi(uint32_t bucket_id, member_sig_t tmp_sig,
		struct member_ht_bucket *buckets,
		uint32_t *counter,
		uint32_t matches_per_key,
		member_set_t *set_id)
{
	uint32_t iter;

	for (iter = 0; iter < RTE_MEMBER_BUCKET_ENTRIES; iter++) {
		if (tmp_sig == buckets[bucket_id].sigs[iter] &&
				buckets[bucket_id].sets[iter] !=
				RTE_MEMBER_NO_MATCH) {
			set_id[*counter] = buckets[bucket_id].sets[iter];
			(*counter)++;
			if (*counter >= matches_per_key)
				return;
		}
	}
}

int
rte_member_create_ht(struct rte_member_setsum *ss,
		const struct rte_member_parameters *params)
{
	uint32_t i, j;
	uint32_t size_bucket_t;
	uint32_t num_entries = rte_align32pow2(params->num_keys);

	if ((num_entries > RTE_MEMBER_ENTRIES_MAX) ||
			!rte_is_power_of_2(RTE_MEMBER_BUCKET_ENTRIES) ||
			num_entries < RTE_MEMBER_BUCKET_ENTRIES) {
		rte_errno = EINVAL;
		RTE_MEMBER_LOG(ERR,
			"Membership HT create with invalid parameters\n");
		return -EINVAL;
	}

	uint32_t num_buckets = num_entries / RTE_MEMBER_BUCKET_ENTRIES;

	size_bucket_t = sizeof(struct member_ht_bucket);

	struct member_ht_bucket *buckets = rte_zmalloc_socket(NULL,
			num_buckets * size_bucket_t,
			RTE_CACHE_LINE_SIZE, ss->socket_id);

	if (buckets == NULL) {
		RTE_MEMBER_LOG(ERR, "memory allocation failed for HT "
						"setsummary\n");
		return -ENOMEM;
	}

	ss->table = buckets;
	ss->bucket_cnt = num_buckets;
	ss->bucket_mask = num_buckets - 1;
	ss->cache = params->is_cache;

	for (i = 0; i < num_buckets; i++) {
		for (j = 0; j < RTE_MEMBER_BUCKET_ENTRIES; j++)
			buckets[i].sets[j] = RTE_MEMBER_NO_MATCH;
	}
#if defined(RTE_ARCH_X86)
	if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) &&
			RTE_MEMBER_BUCKET_ENTRIES == 16)
		ss->sig_cmp_fn = RTE_MEMBER_COMPARE_AVX2;
	else
#endif
		ss->sig_cmp_fn = RTE_MEMBER_COMPARE_SCALAR;

	RTE_MEMBER_LOG(DEBUG, "Hash table based filter created, "
			"the table has %u entries, %u buckets\n",
			num_entries, num_buckets);
	return 0;
}

static inline void
get_buckets_index(const struct rte_member_setsum *ss, const void *key,
		uint32_t *prim_bkt, uint32_t *sec_bkt, member_sig_t *sig)
{
	uint32_t first_hash = MEMBER_HASH_FUNC(key, ss->key_len,
						ss->prim_hash_seed);
	uint32_t sec_hash = MEMBER_HASH_FUNC(&first_hash, sizeof(uint32_t),
						ss->sec_hash_seed);
	/*
	 * We use the first hash value for the signature, and the second hash
	 * value to derive the primary and secondary bucket locations.
	 *
	 * For non-cache mode, we use the lower bits for the primary bucket
	 * location. Then we xor primary bucket location and the signature
	 * to get the secondary bucket location. This is called "partial-key
	 * cuckoo hashing" proposed by B. Fan, et al's paper
	 * "Cuckoo Filter: Practically Better Than Bloom". The benefit to use
	 * xor is that one could derive the alternative bucket location
	 * by only using the current bucket location and the signature. This is
	 * generally required by non-cache mode's eviction and deletion
	 * process without the need to store alternative hash value nor the full
	 * key.
	 *
	 * For cache mode, we use the lower bits for the primary bucket
	 * location and the higher bits for the secondary bucket location. In
	 * cache mode, keys are simply overwritten if bucket is full. We do not
	 * use xor since lower/higher bits are more independent hash values thus
	 * should provide slightly better table load.
	 */
	*sig = first_hash;
	if (ss->cache) {
		*prim_bkt = sec_hash & ss->bucket_mask;
		*sec_bkt =  (sec_hash >> 16) & ss->bucket_mask;
	} else {
		*prim_bkt = sec_hash & ss->bucket_mask;
		*sec_bkt =  (*prim_bkt ^ *sig) & ss->bucket_mask;
	}
}

int
rte_member_lookup_ht(const struct rte_member_setsum *ss,
		const void *key, member_set_t *set_id)
{
	uint32_t prim_bucket, sec_bucket;
	member_sig_t tmp_sig;
	struct member_ht_bucket *buckets = ss->table;

	*set_id = RTE_MEMBER_NO_MATCH;
	get_buckets_index(ss, key, &prim_bucket, &sec_bucket, &tmp_sig);

	switch (ss->sig_cmp_fn) {
#if defined(RTE_ARCH_X86) && defined(RTE_MACHINE_CPUFLAG_AVX2)
	case RTE_MEMBER_COMPARE_AVX2:
		if (search_bucket_single_avx(prim_bucket, tmp_sig, buckets,
				set_id) ||
				search_bucket_single_avx(sec_bucket, tmp_sig,
					buckets, set_id))
			return 1;
		break;
#endif
	default:
		if (search_bucket_single(prim_bucket, tmp_sig, buckets,
				set_id) ||
				search_bucket_single(sec_bucket, tmp_sig,
					buckets, set_id))
			return 1;
	}

	return 0;
}

uint32_t
rte_member_lookup_bulk_ht(const struct rte_member_setsum *ss,
		const void **keys, uint32_t num_keys, member_set_t *set_id)
{
	uint32_t i;
	uint32_t num_matches = 0;
	struct member_ht_bucket *buckets = ss->table;
	member_sig_t tmp_sig[RTE_MEMBER_LOOKUP_BULK_MAX];
	uint32_t prim_buckets[RTE_MEMBER_LOOKUP_BULK_MAX];
	uint32_t sec_buckets[RTE_MEMBER_LOOKUP_BULK_MAX];

	for (i = 0; i < num_keys; i++) {
		get_buckets_index(ss, keys[i], &prim_buckets[i],
				&sec_buckets[i], &tmp_sig[i]);
		rte_prefetch0(&buckets[prim_buckets[i]]);
		rte_prefetch0(&buckets[sec_buckets[i]]);
	}

	for (i = 0; i < num_keys; i++) {
		switch (ss->sig_cmp_fn) {
#if defined(RTE_ARCH_X86) && defined(RTE_MACHINE_CPUFLAG_AVX2)
		case RTE_MEMBER_COMPARE_AVX2:
			if (search_bucket_single_avx(prim_buckets[i],
					tmp_sig[i], buckets, &set_id[i]) ||
				search_bucket_single_avx(sec_buckets[i],
					tmp_sig[i], buckets, &set_id[i]))
				num_matches++;
			else
				set_id[i] = RTE_MEMBER_NO_MATCH;
			break;
#endif
		default:
			if (search_bucket_single(prim_buckets[i], tmp_sig[i],
					buckets, &set_id[i]) ||
					search_bucket_single(sec_buckets[i],
					tmp_sig[i], buckets, &set_id[i]))
				num_matches++;
			else
				set_id[i] = RTE_MEMBER_NO_MATCH;
		}
	}
	return num_matches;
}

uint32_t
rte_member_lookup_multi_ht(const struct rte_member_setsum *ss,
		const void *key, uint32_t match_per_key,
		member_set_t *set_id)
{
	uint32_t num_matches = 0;
	uint32_t prim_bucket, sec_bucket;
	member_sig_t tmp_sig;
	struct member_ht_bucket *buckets = ss->table;

	get_buckets_index(ss, key, &prim_bucket, &sec_bucket, &tmp_sig);

	switch (ss->sig_cmp_fn) {
#if defined(RTE_ARCH_X86) && defined(RTE_MACHINE_CPUFLAG_AVX2)
	case RTE_MEMBER_COMPARE_AVX2:
		search_bucket_multi_avx(prim_bucket, tmp_sig, buckets,
			&num_matches, match_per_key, set_id);
		if (num_matches < match_per_key)
			search_bucket_multi_avx(sec_bucket, tmp_sig,
				buckets, &num_matches, match_per_key, set_id);
		return num_matches;
#endif
	default:
		search_bucket_multi(prim_bucket, tmp_sig, buckets, &num_matches,
				 match_per_key, set_id);
		if (num_matches < match_per_key)
			search_bucket_multi(sec_bucket, tmp_sig,
				buckets, &num_matches, match_per_key, set_id);
		return num_matches;
	}
}

uint32_t
rte_member_lookup_multi_bulk_ht(const struct rte_member_setsum *ss,
		const void **keys, uint32_t num_keys, uint32_t match_per_key,
		uint32_t *match_count,
		member_set_t *set_ids)
{
	uint32_t i;
	uint32_t num_matches = 0;
	struct member_ht_bucket *buckets = ss->table;
	uint32_t match_cnt_tmp;
	member_sig_t tmp_sig[RTE_MEMBER_LOOKUP_BULK_MAX];
	uint32_t prim_buckets[RTE_MEMBER_LOOKUP_BULK_MAX];
	uint32_t sec_buckets[RTE_MEMBER_LOOKUP_BULK_MAX];

	for (i = 0; i < num_keys; i++) {
		get_buckets_index(ss, keys[i], &prim_buckets[i],
				&sec_buckets[i], &tmp_sig[i]);
		rte_prefetch0(&buckets[prim_buckets[i]]);
		rte_prefetch0(&buckets[sec_buckets[i]]);
	}
	for (i = 0; i < num_keys; i++) {
		match_cnt_tmp = 0;

		switch (ss->sig_cmp_fn) {
#if defined(RTE_ARCH_X86) && defined(RTE_MACHINE_CPUFLAG_AVX2)
		case RTE_MEMBER_COMPARE_AVX2:
			search_bucket_multi_avx(prim_buckets[i], tmp_sig[i],
				buckets, &match_cnt_tmp, match_per_key,
				&set_ids[i*match_per_key]);
			if (match_cnt_tmp < match_per_key)
				search_bucket_multi_avx(sec_buckets[i],
					tmp_sig[i], buckets, &match_cnt_tmp,
					match_per_key,
					&set_ids[i*match_per_key]);
			match_count[i] = match_cnt_tmp;
			if (match_cnt_tmp != 0)
				num_matches++;
			break;
#endif
		default:
			search_bucket_multi(prim_buckets[i], tmp_sig[i],
				buckets, &match_cnt_tmp, match_per_key,
				&set_ids[i*match_per_key]);
			if (match_cnt_tmp < match_per_key)
				search_bucket_multi(sec_buckets[i], tmp_sig[i],
					buckets, &match_cnt_tmp, match_per_key,
					&set_ids[i*match_per_key]);
			match_count[i] = match_cnt_tmp;
			if (match_cnt_tmp != 0)
				num_matches++;
		}
	}
	return num_matches;
}

static inline int
try_insert(struct member_ht_bucket *buckets, uint32_t prim, uint32_t sec,
		member_sig_t sig, member_set_t set_id)
{
	int i;
	/* If not full then insert into one slot */
	for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++) {
		if (buckets[prim].sets[i] == RTE_MEMBER_NO_MATCH) {
			buckets[prim].sigs[i] = sig;
			buckets[prim].sets[i] = set_id;
			return 0;
		}
	}
	/* If prim failed, we need to access second bucket */
	for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++) {
		if (buckets[sec].sets[i] == RTE_MEMBER_NO_MATCH) {
			buckets[sec].sigs[i] = sig;
			buckets[sec].sets[i] = set_id;
			return 0;
		}
	}
	return -1;
}

static inline int
try_update(struct member_ht_bucket *buckets, uint32_t prim, uint32_t sec,
		member_sig_t sig, member_set_t set_id,
		enum rte_member_sig_compare_function cmp_fn)
{
	switch (cmp_fn) {
#if defined(RTE_ARCH_X86) && defined(RTE_MACHINE_CPUFLAG_AVX2)
	case RTE_MEMBER_COMPARE_AVX2:
		if (update_entry_search_avx(prim, sig, buckets, set_id) ||
				update_entry_search_avx(sec, sig, buckets,
					set_id))
			return 0;
		break;
#endif
	default:
		if (update_entry_search(prim, sig, buckets, set_id) ||
				update_entry_search(sec, sig, buckets,
					set_id))
			return 0;
	}
	return -1;
}

static inline int
evict_from_bucket(void)
{
	/* For now, we randomly pick one entry to evict */
	return rte_rand() & (RTE_MEMBER_BUCKET_ENTRIES - 1);
}

/*
 * This function is similar to the cuckoo hash make_space function in hash
 * library
 */
static inline int
make_space_bucket(const struct rte_member_setsum *ss, uint32_t bkt_idx,
			unsigned int *nr_pushes)
{
	unsigned int i, j;
	int ret;
	struct member_ht_bucket *buckets = ss->table;
	uint32_t next_bucket_idx;
	struct member_ht_bucket *next_bkt[RTE_MEMBER_BUCKET_ENTRIES];
	struct member_ht_bucket *bkt = &buckets[bkt_idx];
	/* MSB is set to indicate if an entry has been already pushed */
	member_set_t flag_mask = 1U << (sizeof(member_set_t) * 8 - 1);

	/*
	 * Push existing item (search for bucket with space in
	 * alternative locations) to its alternative location
	 */
	for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++) {
		/* Search for space in alternative locations */
		next_bucket_idx = (bkt->sigs[i] ^ bkt_idx) & ss->bucket_mask;
		next_bkt[i] = &buckets[next_bucket_idx];
		for (j = 0; j < RTE_MEMBER_BUCKET_ENTRIES; j++) {
			if (next_bkt[i]->sets[j] == RTE_MEMBER_NO_MATCH)
				break;
		}

		if (j != RTE_MEMBER_BUCKET_ENTRIES)
			break;
	}

	/* Alternative location has spare room (end of recursive function) */
	if (i != RTE_MEMBER_BUCKET_ENTRIES) {
		next_bkt[i]->sigs[j] = bkt->sigs[i];
		next_bkt[i]->sets[j] = bkt->sets[i];
		return i;
	}

	/* Pick entry that has not been pushed yet */
	for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++)
		if ((bkt->sets[i] & flag_mask) == 0)
			break;

	/* All entries have been pushed, so entry cannot be added */
	if (i == RTE_MEMBER_BUCKET_ENTRIES ||
			++(*nr_pushes) > RTE_MEMBER_MAX_PUSHES)
		return -ENOSPC;

	next_bucket_idx = (bkt->sigs[i] ^ bkt_idx) & ss->bucket_mask;
	/* Set flag to indicate that this entry is going to be pushed */
	bkt->sets[i] |= flag_mask;

	/* Need room in alternative bucket to insert the pushed entry */
	ret = make_space_bucket(ss, next_bucket_idx, nr_pushes);
	/*
	 * After recursive function.
	 * Clear flags and insert the pushed entry
	 * in its alternative location if successful,
	 * or return error
	 */
	bkt->sets[i] &= ~flag_mask;
	if (ret >= 0) {
		next_bkt[i]->sigs[ret] = bkt->sigs[i];
		next_bkt[i]->sets[ret] = bkt->sets[i];
		return i;
	} else
		return ret;
}

int
rte_member_add_ht(const struct rte_member_setsum *ss,
		const void *key, member_set_t set_id)
{
	int ret;
	unsigned int nr_pushes = 0;
	uint32_t prim_bucket, sec_bucket;
	member_sig_t tmp_sig;
	struct member_ht_bucket *buckets = ss->table;
	member_set_t flag_mask = 1U << (sizeof(member_set_t) * 8 - 1);

	if (set_id == RTE_MEMBER_NO_MATCH || (set_id & flag_mask) != 0)
		return -EINVAL;

	get_buckets_index(ss, key, &prim_bucket, &sec_bucket, &tmp_sig);

	/*
	 * If it is cache based setsummary, we try overwriting (updating)
	 * existing entry with the same signature first. In cache mode, we allow
	 * false negatives and only cache the most recent keys.
	 *
	 * For non-cache mode, we do not update existing entry with the same
	 * signature. This is because if two keys with same signature update
	 * each other, false negative may happen, which is not the expected
	 * behavior for non-cache setsummary.
	 */
	if (ss->cache) {
		ret = try_update(buckets, prim_bucket, sec_bucket, tmp_sig,
					set_id, ss->sig_cmp_fn);
		if (ret != -1)
			return ret;
	}
	/* If not full then insert into one slot */
	ret = try_insert(buckets, prim_bucket, sec_bucket, tmp_sig, set_id);
	if (ret != -1)
		return ret;

	/* Random pick prim or sec for recursive displacement */
	uint32_t select_bucket = (tmp_sig && 1U) ? prim_bucket : sec_bucket;
	if (ss->cache) {
		ret = evict_from_bucket();
		buckets[select_bucket].sigs[ret] = tmp_sig;
		buckets[select_bucket].sets[ret] = set_id;
		return 1;
	}

	ret = make_space_bucket(ss, select_bucket, &nr_pushes);
	if (ret >= 0) {
		buckets[select_bucket].sigs[ret] = tmp_sig;
		buckets[select_bucket].sets[ret] = set_id;
		ret = 1;
	}

	return ret;
}

void
rte_member_free_ht(struct rte_member_setsum *ss)
{
	rte_free(ss->table);
}

int
rte_member_delete_ht(const struct rte_member_setsum *ss, const void *key,
		member_set_t set_id)
{
	int i;
	uint32_t prim_bucket, sec_bucket;
	member_sig_t tmp_sig;
	struct member_ht_bucket *buckets = ss->table;

	get_buckets_index(ss, key, &prim_bucket, &sec_bucket, &tmp_sig);

	for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++) {
		if (tmp_sig == buckets[prim_bucket].sigs[i] &&
				set_id == buckets[prim_bucket].sets[i]) {
			buckets[prim_bucket].sets[i] = RTE_MEMBER_NO_MATCH;
			return 0;
		}
	}

	for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++) {
		if (tmp_sig == buckets[sec_bucket].sigs[i] &&
				set_id == buckets[sec_bucket].sets[i]) {
			buckets[sec_bucket].sets[i] = RTE_MEMBER_NO_MATCH;
			return 0;
		}
	}
	return -ENOENT;
}

void
rte_member_reset_ht(const struct rte_member_setsum *ss)
{
	uint32_t i, j;
	struct member_ht_bucket *buckets = ss->table;

	for (i = 0; i < ss->bucket_cnt; i++) {
		for (j = 0; j < RTE_MEMBER_BUCKET_ENTRIES; j++)
			buckets[i].sets[j] = RTE_MEMBER_NO_MATCH;
	}
}